当前位置:文档之家› 物理化学实验报告柴油微乳液拟三元相图的绘制及燃烧性能测定

物理化学实验报告柴油微乳液拟三元相图的绘制及燃烧性能测定

物理化学实验报告柴油微乳液拟三元相图的绘制及燃烧性能测定
物理化学实验报告柴油微乳液拟三元相图的绘制及燃烧性能测定

华南师范大学实验报告

专业:材料化学 年级班级:12级材料化学

课程名称:物理化学实验 指导老师:何广平

实验项目:柴油微乳液拟三元相图的绘制及燃烧性能测定

柴油微乳液拟三元相图的绘制及燃烧性能测定

一、实验目的

实验第一阶段:本实验学习柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液,通过氧弹卡计进行燃烧性能测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。 实验第二阶段:通过对乳化柴油的燃烧热的测定,掌握燃烧热的定义,学会测定物质燃烧热的方法,了解恒压燃烧热与恒容燃烧热的差别;了解氧弹卡计的主要部件的作用,掌握氧弹卡计的量热技术;熟悉雷诺图解法校正温度改变值的方法。

二、实验原理

实验第一阶段:拟三元相图的研究方法

实验第二阶段:

雷诺图解法处理数据;

通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。本实验所燃烧物质为柴油和乳化柴油,属于混合物,固测定的是燃烧物质的燃烧值。

铁丝铁丝水热计样品Q m T W Q m V -?=+)(

样品铁丝铁丝水)

(热计m Q m T W Q V -?=+

标准物:苯甲酸 g J Q 4.6694=铁丝 k

35.14541ml 3000J W =水)( 三、实验试剂和仪器

实验试剂:柴油0#、油酸(化学纯)、十六烷基三甲基溴化铵(CTAB )(化学纯)、氨水、正丁醇

实验仪器:燃烧热测定装置一套、充氧装置一套、万用电表 、5安保险丝、1000ml 烧杯、磁力搅拌器、搅拌子(中)、电导率仪 、氧气、电子分析天平(每组一台); 烧杯(50ml )、250ml 、镊子、滤纸、PH 试纸、玻棒、洗耳球、胶头滴管等

四、实验内容和步骤

第一阶段:水-柴油体系配制及拟三元相图绘制

1.复合乳化剂配比:油酸66.15%、十六烷基三甲基溴化铵(CTAB)0.91%、氨水

9.1%, 正丁醇 23.8%

2.复合乳化剂配制:室温下,将油酸36.5克放入50ml 的烧杯中, 加入5克氨水,充分搅拌,反应20分钟后 加入0.5克CTAB,1

3.2克正丁醇,在磁力搅拌器上不断搅拌至溶解(时间约需30分钟),此时所得复合乳化剂清晰、透亮,放置备用。

3.柴油-水-复合乳化剂微乳液柴油的制备与拟三元相图绘制

在一定温度下(通常为室温), 称取(10g)的水- 柴油,其中 [m(柴油0#)∶m(水)分别为 9∶1、 8∶2、6∶4、4∶6、 3∶7,、2∶8,]样品 ,分别放在50ml 烧杯中,逐渐往烧杯中滴加复合乳化剂, 并不断在磁力搅拌器上搅拌至溶液刚好变澄清, 静置约20 min 后观察, 如仍透明, 则记录所加复合表面活性剂的用量。根据重量差减法记录加入的复合乳化剂重量,并根据体系中所含有的柴油、水的重量,计算柴油- 水- 复合乳化剂拟三元体系达到透明状态时各物质的重量%,根据各不同配比拟三元体系中各个物质的重量%,把复合乳化剂作为一个组分,另两个组分分别为油和水,绘制拟三元相图,用以观察柴油微乳液体系的相行为。

第二阶段:乳化柴油燃烧热的测定

柴油与乳化柴油燃烧性能测定:实验中选择柴油0#、W/O 乳化柴油作为燃烧体系,分别将约1.2克燃油体系放入坩埚,将铁丝接在氧弹卡计的两极上,并将铁丝浸没柴油中,向氧弹量热计中充以氧气,弹内的氧气压力冲至0.9Mpa,在燃

油不完全燃烧的条件下,通过测定燃烧过程中△t、△T值以及燃烧残渣的重量,计算Qv/m 、△T/m(K/g)、△T/△t(K/s),比较柴油与乳化柴油的燃烧效率以及燃烧速率不同,并对燃烧结果进行评价。

五、实验现象

第一阶段:

1.配置复合乳化剂过程当中,把氨水加入油酸之后搅拌,这时逐渐有乳白色的絮状物生成,并逐渐结成团状粘稠固体。加入CTAB和正丁醇之后搅拌,固体逐渐溶解为淡黄色液体;

2.柴油与水混合之后,随着磁力搅拌器带动搅拌子搅拌,混合物逐渐浑浊(油水比例比较低时出现团状固体),随后浑浊澄清成亮黄色液体。

第二阶段:

1.待柴油燃烧之后,坩埚中盛有炭黑,而固定坩埚的装置中没有明显炭黑存在;

2.待乳化柴油燃烧之后,坩埚中基本没有炭黑,而固定坩埚的装置中有明显炭黑分散分布。

六、实验数据及其分析

第一阶段:

表一:复合乳化剂各成分的质量

试剂油酸氨水正丁醇CTAB

质量(g)36.5120 5.0126 13.2046 0.5018

表二:乳化柴油中柴油-水-复合乳化剂的质量情况

水-油总质量:5g

油水比例

油的质量

(g)水的质量

(g)

乳化剂质

量(g)

油-水-乳

化剂总质

量(g)

油的质量

分数(%)

水的质量

分数(%)

乳化剂质

量分数

(%)

9:1 4.5340 0.4703 0.7665 5.7708 78.57%8.15%13.28% 8:2 3.9776 1.0900 2.5036 7.5712 52.54%14.40%33.07% 6:4 3.0821 2.0255 3.1661 8.2737 37.25%24.48%38.27%

4:6 2.0043 3.0026 5.3515 10.3584 19.35%28.99%51.66% 3:7 1.5120 3.5476 4.5947 9.6543 15.66%36.75%47.59% 2:8 1.0169 3.9858 7.4486 12.4513 8.17%32.01%59.82%

图一:柴油-水-复合乳化剂拟三元相图的绘制

数据分析:

可以看到,柴油-水-复合乳化剂拟三元相图中,不共融区仍然比较宽。这可能在实验过程当中,由于颜色观察差异,导致在乳化柴油在颜色变成亮黄之后仍不断加入复合的乳化剂,这可能是使不共融区变大的其中一个原因。在放置时间为一周的情况下,油水比例9:1、8:2的乳化柴油仍未变质,说明实验制作的乳化柴油质量复合要求。

第二阶段:

表三:乳化柴油和0#柴油燃烧温度变化表

时间/30s

温度变化值?T(℃)

乳化柴油0#柴油

柴油质量m/g 1.2053 1.2040

铁丝质量差?m/g (0.0145-0.0105)g=0.040g (0.0120-0.0106)g=0.014g

1 0.608 0.829

2 0.838 0.951

3 0.928 0.999

4 0.963 1.020

5 0.97

6 1.028

6 0.980 1.032

7 0.982 1.034

8 0.984 1.035

9(点火) 1.045 1.406

10 1.551 1.817

11 2.275 2.275

12 2.769 2.649

13 3.087 2.914

14 3.276 3.087

15 3.404 3.198

16 3.488 3.274

17 3.55 3.330

18 3.595 3.370

19 3.632 3.401

20 3.657 3.423

21 3.694 3.441

22 3.706 3.455

23 3.716 3.466

24 3.723 3.474

25 3.729 3.481

26 3.733 3.484

27 3.736 3.489

28 3.739 3.491

29 3.741 3.492

图二:乳化柴油和柴油燃烧温度变化数据图

数据分析:

1.Q V 的计算

根据

样品

铁丝铁丝

水)(热计

m

Q m

T

W

Q

V -

?

=+

可得:

0#柴油

Q

V1

=-[14541.35×(3.492-1.406)-0.014×6694.4]/1.2040=-25115.89J/g 乳化柴油:

Q

V2

=-[14541.35×(3.741-1.045)-0.040×6694.4]/1.2053=-27960.52J/g 由此可见:乳化柴油的燃烧值要高于未乳化的柴油。

2.Q V/m(KJ/m2)的计算

Q V/m(0#柴油)=-25115.89/1.2040=-20.86 KJ/m2

Q V/m(乳化柴油)=-27960.52/1.2053=-23.20 KJ/m2

3.△T/m(K/g)的计算

△T/m(0#柴油)=(3.492-1.406)/1.2040=1.7326 K/g

△T/m(乳化柴油)=(3.741-1.045)/1.2053=2.2368 K/g

4.△T/△t(K/s)的计算

△T/△t(0#柴油)=(3.492-1.406)/630=3.30×10-3 K/s

△T/△t(乳化柴油)=(3.492-1.035)/630×100%=3.90×10-3 K/s

表四:乳化柴油和普通柴油燃烧数据

Q V (KJ/g)Q V/m(KJ/m2)△T/m(K/g)△T/△t(K/s)乳化柴油-27.96 -23.20 2.23 3.90×10-3 0#柴油-25.12 -20.86 1.73 3.30×10-3

从以上Q V、△T/m(K/g)、△T/△t(K/s)的计算中,可发现,单位乳化柴油比单位柴油放出的燃烧值、单位温度的变化、单位温度的变化速率要大,这就给实际的生产带来可观的社会经济价值,而通过实验现象发现,相同质量的乳化柴油和普通柴油不完全燃烧的情况下,普通柴油产生的炭黑量要明显的乳化柴油产生的,因此柴油的乳化可在一定程度上降低化石能源燃烧给环境带来的污染,具有一定的社会环境价值。

七、思考题

(1)柴油的主要成分是什么?其燃烧后可能形成的产物有那些?

答:柴油的主要成分柴油主要是由低级的烷烃、烯烃、环烷烃、芳香烃、多环芳烃与少量硫、氮及添加剂组成的混合物。生成的产物可能有,N的化合物NxOx、SO2、 CO、CO2、水以及炭黑等。

(2)乳化柴油与微乳柴油的区别?制备方法上有什么不同?

答:与乳化柴油相比,微乳燃油可长期稳定,不分层,且制备简单,并能使燃烧更完全,燃烧效率高,节油率达5%~15% ,排气温度下降20%~60%,烟度下降40%~77%,NOx和CO排放量降低25%,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。

制备方法不同:微乳柴油的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微柴油。乳化柴油由柴油70%+助剂15%+水15%混合而成,采用油水法可以制备乳化柴油,步骤如下:选定所要加入的乳化剂,采用HLB值筛选法控制所要加入乳化剂的量;用玻璃棒搅拌使各种乳化剂混合均匀。

(3)乳化柴油为什么不稳定?其对柴油发动机产生的损害是什么?

答:乳化柴油用的添加剂,是以降低界面张力为设计目标,让表面活性剂组成的复合界面膜,强力而牢固地吸附在油水表面,但它不是热力学上的稳定体系,故稳定性不好,大多1-3个月不分层,不错的也只有半年左右。乳化油属于热力学不稳定体系,随环境条件的改变、放置时间变长会出现稳定性差、存储时间短及燃烧不稳定等现象,使内燃机工作不正常并产生锈蚀等危害,限制了它的推广应用范围。

(4)为什么要进行柴油微乳液的研究?形成微乳柴油的通常条件是什么?其中各组分的作用是什么?

答:近年来,随着我国农业和交通运输业的飞速发展,对石油的需求量增大,而石油资源有限,于是出现了石油供应不足、价格上涨的趋势。人类面临日益严峻的能源危机。但经济的可持续发展必须是在保护生存环境、节约宝贵资源和降低能耗的前提下的发展。因此,如何提高燃油燃烧效率和减少环境污染,研究新型节油防污染技术,包括最为人们青睐并具有节能效率高,减少尾气污染的燃料乳化以及微乳化技术,己成为人们十分关心的问题。微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微乳燃料。其中各组分的作用是,醇的种类和表面活性剂复配比例对水最大增溶量有很大影响。醇碳数适中时,醇更易富集于界面上,增加了界面面积,使增溶水量增加, 更易形成微乳液。

(5)什么是相图?什么是拟三元相图?绘制微乳柴油拟三元相图的作用是什么?

答:对于多相体系,个相间的相互转化,新相的形成,旧相的消失与温度,压力,成有关。根据实验数据给出的表示相变规律的各种几何图形称为相图。在等温等压下三组分体系的相行为可以采用平面三角形来表示,称为三元相图。对四组分体系,需要采用立体正四面体。而四组分以上的体系就无法全面的表示。通常对四组分或四组分以上体系,采用变量合并法,比如固定某两个组分的配比,使实际独立变量不超过三个,从而仍可用三角相图来表示,这样的相图称为拟三元相图。柴油微乳液研究可采用拟三元相图的方法研究,相图绘制简单,根据相图可以初步推测体系的结构状态,能够比较直观地反映微乳体系相的变化,当体系有液晶相、凝胶相出现时,也能对微乳液及其相边界进行直观表示。

(6)确定微乳液结构性质的简单方法(W/0型乳液或0/W型乳液)有那些?其原理是什么?

答:微乳液性质测定:粗略配置10g/500ml的CoCl2溶液,将滤纸浸泡在该溶液中。使用时将预先浸泡在CoCl2溶液中的滤纸取出烘干,滴上乳液,若滤纸不变色仍为紫色,则为W/0型乳液,若变为红色则为0/W型乳液。

实验原理:滤纸变色是乳液外相的水和C0Cl:反应生成Co(OH)2(紫色)的结果CoC12+2H2O一Co(OH)2+2HCl

采用电导法进行乳液性质测定:电导行为是微乳液的重要性质之一。关于微乳液的电导研究,基本上围绕微乳液体系的导电行为和根据电导测量研究微乳液体系的相行为。尽管电导测量不能直接反映各种条件对微乳液粒子的大小的影响, 但微乳液的电导率在某种程度上反映了微乳液的结构,例如W/O或O/W结构。

采用偏光显微镜初步观察乳液粒径大小:不同颗粒大小,对照射光的光路影响不同。

(7)为什么将柴油微乳化可提高柴油的燃烧效率,减少尾气排放?其可能的机理有那些?

答:乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W),在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内相,燃料油则包在水珠的外层,被称为连续相或外相。我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。提高了乳化燃料的燃烧率,降低了排烟中的烟尘含量。同时由于乳化水的蒸发作用,均衡了燃烧时的温度场,从而抑制了NOx 的形成,达到节能环保的目的。

(8)氧弹量热技术的测量原理是什么?如何通过氧弹量热计测定微乳柴油的燃烧值?燃油的完全燃烧与不完全燃烧有什么区别?

答:用氧弹式卡计测量萘的燃烧热测量的基本原理是能量守恒定律。基本方法是:将一定量的微乳柴油样品在氧弹中完全燃烧,燃烧时放出的热量使卡计、周围介质(本实验用水)、搅拌器、水桶等的温度升高。测定了燃烧前后卡计(包括周围介质)温度的变化值,求算出样品的燃烧热。

计算公式:,其中m是待测物质的重量(g),M是待测物质的分子量,Q点火丝是点火丝的燃烧热,m点火丝是燃烧的点火丝质量。ΔT是样品燃烧前后卡计温度变化值,W卡为卡计(包括卡计中水)的热容量(又叫水当量),表示卡计温度升高1度所需要吸收的热量,卡计的W卡是通过测量已知燃烧热的物质(如苯甲酸,Qv=-26460J/g)来确定。燃烧完全则测量比较准确,燃烧不完全造成误差很大。(9)本实验乳化剂配方中,各种物质的作用是什么?

答:油酸作阴离子表面活化剂,CTAB作阳离子表面活化剂,氨水是使HLB 值亲水剂方向,正丁醇是作表面辅助剂。

八、参考文献

[1] 胡玮,曹红燕,李建平.用origin绘制氯仿—醋酸—水三元液系相图[B].实验技术与管理,2007.24(3)

[2] 李科,蒋剑春,李翔宇.乳化柴油的研究进展[A].生物质化学工程,2010.44(1)

大学物理化学实验报告---液体饱和蒸汽压的测定

纯液体饱和蒸汽压的测量 目的要求 一、 明确纯液体饱和蒸气压的定义和汽液两相平衡的概念,深入了解纯液体饱 和蒸气压与温度的关系公式——克劳修斯-克拉贝龙方程式。 二、 用数字式真空计测量不同温度下环己烷的饱和蒸气压。初步掌握真空实验 技术。 三、 学会用图解法求被测液体在实验温度范围内的平均摩尔气化热与正常沸 点。 实验原理 通常温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。 液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变,当外压为1atm (101.325kPa )时,液体的沸点称为该液体的正常沸点。 液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: 2 m vap d ln d RT H T p ?= (1) 式中,R 为摩尔气体常数;T 为热力学温度;Δvap H m 为在温度T 时纯液体的摩尔 气化热。 假定Δvap H m 与温度无关,或因温度范围较小,Δvap H m 可以近似作为常数,积分上式,得: C T R H p +??-=1 ln m vap (2) 其中C 为积分常数。由此式可以看出,以ln p 对1/T 作图,应为一直线,直线的斜率为 R H m vap ?- ,由斜率可求算液体的Δvap H m 。 静态法测定液体饱和蒸气压,是指在某一温度下,直接测量饱和蒸气压,此 法一般适用于蒸气压比较大的液体。静态法测量不同温度下纯液体饱和蒸气压,有升温法和降温法二种。本次实验采用升温法测定不同温度下纯液体的饱和蒸气压,所用仪器是纯液体饱和蒸气压测定装置,如图1所示: 平衡管由A 球和U 型管B 、C 组成。平衡管上接一冷凝管,以橡皮管与压

液体饱和蒸气压的测定_物化实验报告

物理化学实验(B) 实验报告 【实验名称】B.5 液体饱和蒸气压的测定 【】J.N 【班级】第4小组 【学号】 【组编号】5号 【实验日期】2015年5月11日 【室温】24.1 ℃ 【大气压】100.11 kPa 【摘要】 本实验通过静态法测得CCl4的lg(p pθ )与T的关系为 lg(p p )=?1709.9 T +4.9078,平均摩尔汽化热为3.274×104 J?mol?1, 气化熵为93.87 J?mol?1?K?1。通过动态法测得水的lg(p p ) 与T的关系为lg(p pθ)=?2078.7 T +5.5792,平均摩尔汽化热为3.980× 104 J?mol?1,气化熵为106.7 J?mol?1?K?1。温度读数的不准确对实验的误差极小,实验误差的主要是由于静态法中肉眼判断液面平衡的不准确性以及动态法中金属测温探头在沸腾过程中并非一端位于液面下一端位于液面上等因素所引起的。

一、实验部分 1.主要仪器药品和设备 1.1 主要药品 CCl4、二次水等 1.2 主要仪器 数字式温度-压力测定仪,循环水流泵,1/10刻度温度计,电磁搅拌器,电加热器,两口圆底烧瓶,真空缓冲瓶,安全瓶,直形冷凝管,搅拌磁子,真空脂,冷凝水循环系统 2.实验步骤 2.1 静态法测定饱和蒸气压 2.1.1 仪器装置 1-盛水大烧杯, 2-温度计,3-搅拌, 4-平衡管,5-冷凝管, 6-开口U型水银压 力计,7-缓冲瓶,8- 进气活塞,9-抽气活 塞,10-放空活塞, 11-安全瓶,12、13- 橡皮管,14-三通活 塞。 实际仪器略有 差异,压力温度数值 从温度-压力测定仪 中读出。 平衡管中加入 CCL4至容量的2/3. 2.1.2 检验气密性 打开油泵,再开缓冲瓶上连接油泵的活塞,使体系压力减少50 kPa。关闭活塞,若5 min压强变化少于0.3 kPa,则装置气密性良好。 2.1.3 测大气压下沸点 使体系与大气相通,水浴加热至78 ℃,停止加热不断搅拌。当b、c液面达到同一水平时,立即记下此时的温度和大气压力。重复测定,若连续两次测定沸点差小于0.05 ℃,则空气已排净,此时温度即为大气压下沸点。 2.1.4 测定不同压强下沸点 关闭通往大气的活塞。先开由泵,再开连油泵的活塞,使体系减压约6.7 kPa。关闭接油泵活塞,搅拌,至b、c液面达到同一水平时,立即记下此时的温度和大气压力。继续减压,测定其沸点。至压力差为50 kPa,结束实验,读大气压力。2.1.5 整理仪器 打开所有活塞,关闭搅拌器、温度-压力测定仪、冷凝水进出口及油泵开关,

物理化学实验报告_溶解热的测定

物理化学实验报告 溶解热的测定 实验时间:2018年4月日 姓名:刘双 班级: 学号: 1.实验目的 (1)了解电热补偿法测量热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或者作图求出硝酸钾在水中的微分溶解热、积分冲淡热和微分冲淡热。 (3)掌握微机采集数据、处理数据的实验方法和实验技术。 2.实验原理 物质溶解于溶剂过程的热效应称为溶解热,物质溶解过程包括晶体点阵的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等过程,这些过程热效应的代数和就是溶解过程的热效应,溶解热包括积分(或变浓)溶解热和微分(或定浓)溶解热。把溶剂加到溶液中使之稀释,其热效应称为冲淡热。包括积分(或变浓)冲淡热和微分(或定浓)冲淡热。 溶解热Q:在恒温、恒压下,物质的量为n2的溶质溶于物质的量为n1的溶剂(或溶于某浓度的溶液)中产生的热效应。 积分溶解热Qs:在恒温、恒压下,1mol溶质溶于物质的量为n1的溶剂中产生的热效应。 微分溶解热(ee ee2)e 1 :在恒温、恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中 的热效应。 冲淡热:在恒温、恒压下,物质的量为n1的溶剂加入到某浓度的溶液中产生的热效应。 积分冲淡热Q d:在恒温、恒压下,把原含1mol溶质和n02mol溶剂的溶液冲淡到含溶剂为n01mol时的热效应,为某两浓度的积分溶解热之差。 微分冲淡热(ee ee1) e2 或(eee ee0 ) e2 :在恒温、恒压下,1mol溶剂加入到某一确定浓度的无 限量的溶液中产生的热效应。 它们之间的关系可表示为:

dQ=(ee ee1) e2 ee1+( ee ee2 ) e1 ee2 上式在比值e1 e2 恒定下积分,得: e=(ee ee1 ) e2 e1+( ee ee2 ) e1 e2 ee2=ee,令:e1 n2 =e0,则有: ( ?Q ?n1 )=[ ?(n2Q s ?(n2n0) ]=( ?Q s ?n0 ) Q d=(ee)e01?(ee)e02 其中积分溶解热ee可以直接由实验测定,其他三种可以由ee?e0曲线求得。 欲求溶解过程中的各种热效应,应先测量各种浓度下的的积分溶解热。可采用累加的方法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先后加入的溶质的总量可计算出n0,而各次热效应总和即为该浓度下的溶解热。本实验测量硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。先测定体系的初始温度T,当反应进行后温度不断降低时,由电加热法使体系复原到起始温度,根据所耗电能求出热效应Q。 3.仪器和试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率0.001℃,电压测量范围0~20V,电压测量分辨率0.01V,电流测量范围0~2A,电流测量分辨率0.01A。 精密稳流电源:YP-2B型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子)。 称量瓶8只,毛笔,研钵。 硝酸钾(A.R.) 4.实验操作 (1)取8个称量瓶,分别编号。 (2)取KNO3于研钵中,研磨充分。 (3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下所称量的数据。

物理化学实验报告.

《大学化学基础实验2》实验报告 课程:物理化学实验 专业:环境科学 班级: 学号: 学生姓名:邓丁 指导教师:谭蕾 实验日期:5月24日

实验一、溶解焓的测定 一、实验名称:溶解焓的测定。 二、目的要求:(1)学会用量热法测定盐类的积分溶解焓。 (2)掌握作图外推法求真实温差的方法。 三、基本原理: 盐类的溶解通常包含两个同时进行的过程:一是晶格的破坏,为吸热过程;二是离子的溶剂化,即离子的水合作用,为放热过程。溶解焓则是这两个过程热效应的总和,因此,盐类的溶解过程最终是吸热还是放热,是由这两个热效应的相应大小所决定的。影响溶解焓的主要因素有温度、压力、溶质的性质以及用量等。热平衡式: △sol H m=-[(m1C1+m2C2)+C]△TM/m2 式中, sol H m 为盐在溶液温度及浓度下的积分溶解焓, J·mol , m1 , m2 分别为水和溶质的质量, M 为溶质的摩尔质量,kg·mol -1 ;C1 ,C 2 分别为溶剂水, kg; 溶质的比热容,J·kg -1;T 为溶解过程中的真实温差,K;C 为量热计的热容, J·K- 1 ,也称热量计常数.本实验通过测定已知积分溶解焓的标准物质 KCl 的 T ,标定出量热计热容 C 的值. 四、实验主要仪器名称: NDRH-2S型溶解焓测定实验装置1套(包括数字式温度温差测量仪1台、300mL简单量热计1只、电磁搅拌器1台);250mL容量瓶1个;秒表1快;电子 ;蒸馏水 天平1台;KCl;KNO 3 五、实验步骤: (1)量热计热容 C 的测定 ( 1 ) 将仪器打开 , 预热 . 准确称量 5.147g 研磨好的 KCl , 待用 . n KCl : n水 = 1: 200 (2)在干净并干燥的量热计中准确放入 250mL 温室下的蒸馏水,然后将温度传感器的探头插入量热计的液体中.打开搅拌器开关,保持一定的搅拌速度,待温差变化基本稳定后,读取水的温度 T1 ,作为基温. (3)同时, 每隔30s就记录一次温差值,连续记录8 次后, 将称量好的 5.174g KCl 经漏斗全部迅速倒入量热计中,盖好.10s记录一次温度值,至温度基本稳定不变,再每隔 30s记录一次温度的数值,记录 8 次即可停止. (4)测出量热计中溶液的温度,记作 T2 .计算 T1 , T2 平均值,作为体系的温度.倒出溶液,取出搅拌子,用蒸馏水洗净量热计. KNO3 熔解热的测定:标准称量 3.513g KNO3 ,代替 KCl 重复上述操作.

大学物理化学实验报告-络合物的磁化率的测定

物理化学实验报告 院系化学化工学院 班级化学 061 学号 13 姓名沈建明

实验名称 络合物的磁化率的测定 日期 同组者姓名 史黄亮 室温 ℃ 气压 kPa 成绩 一、目的和要求 1、掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法; 2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型 二、基本原理 物质的磁性一般可分为三种: 顺磁性, 反磁性和铁磁性。 a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。反磁物质的χD < 0(电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导致物质具有反磁性)。 b. 顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物质的 Xp > 0。(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生的磁效应)。 c. 铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性并不消失,呈现出滞后现象等一些特殊的磁效应。 d. 摩尔磁化率: 古埃法测定物质的摩尔磁化率( )的原理 通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 。 把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域 H ,而另一端位于磁场强度很弱的区域 H 0,则样品在沿样品管方向所受的力F 可表示为: M χH F mH Z χ?=?P P D M χχχχ≈+=

其中:m 为样品质量,H 为磁场强度, 为沿样品管方向的磁场梯度。 本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度H 。测定亚铁氰化钾 和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。 三、仪器、试剂 MB-1A 磁天平(包括电磁铁,电光天平,励磁电源) 1套 软质玻璃样品管 1只 角匙 1只 漏斗 1只 莫尔氏盐(NH 4)2SO 4·FeSO 4·6H 2O (分析纯) FeSO 4·7H 2O (分析纯) K 4Fe(CN)6·3H 2O (分析纯) 四、实验步骤 1. 磁场强度(H )的测定 : 用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H ).励磁电流变化0A →3A →→4A →→3A →0A ,分别测定励磁电流在各值下的天平的读数(4A 的值可以不读,持续2分钟左右,消磁),用同一仪器在同等条件下进行后续的测定。 具体操作如下: (1)把样品管悬于磁场的中心位置,测定空管在加励磁电流前,后磁场中的重 量。求出空管在加磁场前,后的重量变化管 ,重复测定三次读数,取平均值。 (2)把已经研细的莫尔氏盐通过小漏斗装入样品管,样品高度约为8m (此时样 品另一端位于磁场强度H=0处)。读出样品的高度,要注意样品研磨细小,装样均匀不能有断层。测定莫尔氏盐在加励磁电流前,后磁场中的重量。求出在加磁场前后的重量变化样品+管,重复测定三次读数,取平均值。 2.样品的莫尔磁化率测定: 把测定过莫尔氏盐的试管擦洗干净,把待测样品 ,分别装在样品管中,按着上述步骤(1) ,(2)分别测定在加磁场前,后的重量。求出重量的变化(管和样品+管),重复测定三次读数,取 H Z ??[]462()3K Fe CN H O ?4 2 7FeSO H O ?

物理化学实验报告-BZ振荡反应

物理化学实验报告 BZ 振荡反应 1.实验报告 (1)了解BZ 反应的基本原理。 (2)观察化学振荡现象。 (3)练习用微机处理实验数据和作图。 2. 实验原理 化学振荡:反应系统中某些物理量随时间作周期性的变化。 BZ 体系是指由溴酸盐,有机物在酸性介质中,在有(或无)金属离子催化剂作用下构成的体系。有苏联科学家Belousov 发现,后经Zhabotinski 发现而得名。 本实验以 +4 ~ CH 2(COOH)2 ~ H 2SO 4作为反映体系。该体系的总反应为: 体系中存在着下面的反应过程。 过程A : 2 3 过程B : 4 5 6 Br - 的再生过程: 当[Br - ]足够高时,主要发生过程A ,2反应是速率控制步骤。研究表明,当达到准定态 当[Br -]低时,发生过程B ,Ce +3 被氧化。4反应是速率控制步骤。4.5反应将自催化产生HBrO 2

可以看出:Br - 和 HbrO 2的。当K 3 [Br - ]>K 4时,自催化过程不可能发生。自催化是BZ 振荡反应中必不可少的步骤,否则该振荡不能发生。研究表明,Br - 的临界浓度为: 若已知实验的初始浓度,可由上式估算[Br - ]crit 。 体系中存在着两个受溴离子浓度控制的过程A 和过程B ,当[Br - ]高于临界浓度[Br - ]crit 时发生过程A ,当[Br - ]低于[Br -]crit 时发生过程B 。[Br - ]起着开关的作用,他控制着A,B 之间的变化。这样体系就在过程A 、过程B 间往复振荡。 在反应进行时,系统中[Br - ]、[HbrO 2]、[Ce +3 ]、[Ce +4 ]都随时间作周期性的变化,实验中,可以用溴离子选择电极测定[Br - ],用铂丝电极测定[Ce +4 ]、[Ce +3 ]随时间变化的曲线。溶液的颜色在黄色和无色之间振荡,若再加入适量的FeSO 4邻菲咯啉溶液,溶液的颜色将在蓝色和红色之间振荡。 从加入硫酸铈铵到开始振荡的时间为t 诱 ,诱导期与反应速率成反比。 即 并得到 本实验使用的BZ 反应数据采集接口系统,并与微型计算机相连。通过接口系统测定电极的电势信号,经通讯口传送到PC 。自动采集处理数据。 3.实验仪器与试剂 BZ 反应数据采集接口系统 恒温槽 溴酸钾0.25 mol ·dm -3 磁力搅拌器 硫酸3.00 mol ·dm -3 丙二酸0.45mol ·dm -3 硫酸铈铵4×10-3 mol ·dm -3 微型计算机 反应器 4.实验步骤

凝固点-物化实验报告

实验7 凝固点降低法测定摩尔质量 姓名:憨家豪;学号:2012012026;班级:材23班;同组实验人员:赵晓慧 实验日期:2014-3-8;提交报告日期:2014-3-15 带实验的助教姓名:袁斌 1. 引言 1.1 实验目的 1.用凝固点降低法测定尿素的摩尔质量。 2.学会用步冷曲线对溶液凝固点进行校正。 3.通过本实验加深对稀溶液依数性的认识。 1.2 实验原理 稀溶液具有依数性,凝固点降低是依数性的一种表现,它与溶液质量摩尔浓度的关系为: *×f f f f B T T T K b ?=-= 式中:f T ?为凝固点降低值,* f T 、f T 分别为纯溶剂、溶液的凝固点,B b 为溶液质量摩尔浓度,f K 为凝固点降低常数,它只与所用溶剂的特性有关。如果稀溶液是由质量为B m 的溶质溶于质量为A m 的溶剂中而构成,则上式可写为: 1000× ×B f f A m T K M m ?= 即 310B f f A m M K T m =? 式中: f K 为溶剂的凝固点降低常数(单位为K ·kg ·mol -1 );M 为溶质的摩尔质量(单位为g ·mol -1 )。 如果已知溶液的f K 值,则可通过实验测出溶液的凝固点降低值 f T ?,利用上式即可求出溶质的摩尔质量。 常用溶剂的f K 值见下表1。 表1 常用溶剂的f K 值

实验中,要测量溶剂和溶液的凝固点之差。对于纯溶剂如图1所示,将溶剂逐渐降低至过冷(由于新相形成需要一定的能量,故结晶并不析出),温度降低至一定值时出现结晶,当晶体生成时,放出的热量使体系温度回升,而后温度保持相对恒定。对于纯溶剂来说,在一定压力下,凝固点是固定不变的,直到全部液体凝固成固体后才会下降。相对恒定的温度即为凝固点。 对于溶液来说,除温度外还有溶液浓度的影响。当溶液温度回升后,由于不断析出溶剂晶体,所以溶液的浓度逐渐增大,凝固点会逐渐降低。因此,凝固点不是一个恒定的值。如把回升的最高点温度作为凝固点,这时由于已有溶剂晶体析出,所以溶液浓度已不是起始浓度,而大于起始浓度,这时的凝固点不是原浓度溶液的凝固点。要精确测量,应测出步冷曲线,按图1(b )所示方法,外推至f T 校正。 图1 溶剂和溶液的步冷曲线 2. 实验操作 2.1 实验用品、仪器型号及测试装置示意图 SWC-IID 精密数字温度温差仪、冷阱、大试管、移液管(25 mL )、85-2型恒温磁力搅拌器、DC-2010节能型智能恒温槽、分析天平。 去离子水,尿素(分析纯)。 测试装置示意图(如下)

化学实验报告格式

化学实验报告格式 导读:本文是关于化学实验报告格式的文章,如果觉得很不错,欢迎点评和分享! 【篇一:化学实验报告的格式】 1、实验题目 编组 同组者 日期 室温 湿度 气压 天气 2、实验原理 3、实验用品试剂仪器 4、实验装置图 5、操作步骤 6、注意事项 7、数据记录与处理 8、结果讨论 9、实验感受(利弊分析) 【篇二:高一化学实验报告格式】

1:实验目的,具体写该次实验要达到的要求和实现的任务。 2:实验原理,是写你这次实验操作是依据什么来完成的,一般你的实验书上都有,你总结一下就行。 3:实验用品,包括实验所用器材,液体和固体药品等。 4:实验步骤: 5:实验数据记录和处理。 6:问题分析及讨论 【篇三:化学实验报告格式】 化学实验报告格式示例例一定量分析实验报告格式 (以草酸中H2C2O4含量的测定为例) 实验题目:草酸中H2C2O4含量的测定 实验目的: 学习NaOH标准溶液的配制、标定及有关仪器的使用; 学习碱式滴定管的使用,练习滴定操作。 实验原理: H2C2O4为有机弱酸,其Ka1=5、9×10-2,Ka2=6、4×10-5、常量组分分析时cKa1>10-8,cKa2>10-8,Ka1/Ka2<105,可在水溶液中一次性滴定其两步离解的H+: H2C2O4+2NaOH===Na2C2O4+2H2O 计量点pH值8、4左右,可用酚酞为指示剂。 NaOH标准溶液采用间接配制法获得,以邻苯二甲酸氢钾标定:-COOK

-COOH +NaOH=== -COOK -COONa +H2O 此反应计量点pH值9、1左右,同样可用酚酞为指示剂。 实验方法: 一、NaOH标准溶液的配制与标定 用台式天平称取NaOH1g于100mL烧杯中,加50mL蒸馏水,搅拌使其溶解。移入500mL试剂瓶中,再加200mL蒸馏水,摇匀。 准确称取0、4~0、5g邻苯二甲酸氢钾三份,分别置于250mL 锥形瓶中,加20~30mL蒸馏水溶解,再加1~2滴0、2%酚酞指示剂,用NaOH标准溶液滴定至溶液呈微红色,半分钟不褪色即为终点。 二、H2C2O4含量测定 准确称取0、5g左右草酸试样,置于小烧杯中,加20mL蒸馏水溶解,然后定量地转入100mL容量瓶中,用蒸馏水稀释至刻度,摇匀。 用20mL移液管移取试样溶液于锥形瓶中,加酚酞指示剂1~2滴,用NaOH标准溶液滴定至溶液呈微红色,半分钟不褪色即为终点。平行做三次。 实验数据记录与处理:

物理化学------各个实验实验报告参考答案

燃烧热的的测定 一、实验目的 1.通过萘和蔗糖的燃烧热的测定,掌握有关热化学实验的一般知识和测量技术。了解氧弹式热计的原理、构造和使用方法。 2.了解恒压燃烧热与恒容燃烧热的差别和相互关系。 3.学会应用图解法校正温度改变值。 二、实验原理 燃烧热是指1mol 物质完全燃烧时所放出的热量,在恒容条件下测得的燃烧热为恒容燃烧热(V Q ),恒压条件下测得燃烧热为恒压燃烧热(p Q )。若把参加反应的气体和生成气体视为理想气体,则 p V Q Q nRT =+?。若测得p Q 或V Q 中的任一个,就可根据此式乘出另一 个。化学反应热效应(包括燃烧热)常用恒压热效应(p Q )表示。 在盛有定量水的容器中,放入装有一定量样品和样体的密闭氧弹,然后使样品完全燃烧,放出热量使水和仪器升温,若仪器中水量为W (g),仪器热容W ',燃烧前后温度为t 0和t n ,则m(g)物质燃烧热 '0()()V n Q Cw w t t =+-。若水的比热容C =1。摩尔质量为M 的物质。其 摩尔燃烧热为0()()V n M Q W W t t m ''= +-,热容W '可用已知燃烧热的标准物质(苯甲酸,V Q =26.4341J g -)来标定。将其放入量热计中,燃烧测其始末速度,求W '。一般因每次水量相同,可作为一个定量W 来处理。0()V n M Q W t t m = - 三.实验步骤 1热容W '的测定 1)检查压片用的钢模,用电子天平称约0.8g 苯甲酸,倒入模具,讲样品压片,除去样品表面碎屑,取一段棉线,在精密天平上分别称量样品和棉线的质量,并记录。 2)拧开氧弹盖,擦净内壁及电极接线柱,用万用表检查两电极是 了解燃烧热的定义,水当量的含 压片要压实, 注意不要混用压片

大学物理化学实验报告

年月日评定: 姓名:学号: 年级:专业: 室温:大气压: 一、实验名称:BET容量法测定固体的比表面积 二、实验目的: 三、实验原理: 四、实验数据及处理: 五、讨论思考: 1. 氮气及氢气在该实验中的作用是什么? 2. 若用Langmuir方法处理测量得到的数据,样品的比表面偏大还是偏 小?

年月日评定:姓名:学号: 年级:专业: 室温:大气压: 一、实验名称:恒温水浴的组装及其性能测试 二、实验目的: 三、实验原理: 四、实验数据及处理: 请完成下表: 表1 恒温槽灵敏度测量数据记录

五、作图: 以时间为横坐标,温度为纵坐标,绘制25℃和30℃的温度—时间曲线,求算恒温槽的灵敏度,并对恒温槽的性能进行评价。 六、讨论思考: 1. 影响恒温槽灵敏度的主要因素有哪些,试作简要分析? 2. 欲提高恒温槽的控温精度,应采取哪些措施?

年月日评定: 姓名:学号: 年级:专业: 室温:大气压: 一、实验名称:最大泡压法测定溶液的表面张力 二、实验目的: 三、实验原理: 四、实验数据及处理 1.以纯水的测量结果计算仪器毛细管常数K′,纯水的表面张力σ查书附录。 ?p1=?p2=?p3= 平均值:?p=K′=σ /?p 2.计算各溶液的σ值(K′=σ /?h) 表1 各溶液的表面张力σ c/mol· L-1 σ /N·m-1 3.做σ-c图,并在曲线上取十个点,分别做出切线,求得对应的斜率(dσ -d c)r,求算各浓度的吸附量Γ,附图。

表2 各溶液的吸附量 4. 做(c /Γ)-c 图,由直线斜率求其饱和吸附量∞Γ,并计算乙醇分子的横 截面积σB ,附图。 表3 c /~c 数据表 斜率= ,∞Γ= , σB =1/∞ΓL = 五、讨论思考: 1. 与文献值(见书中附录)对照,检验你的测定结果,并分析原因。 2. 增(减)压速率过快,对测量结果有何影响?表面张力测定仪的清洁与 否和温度之不恒定对测量结果有何影响?

燃烧热物化实验报告

燃烧热的测定 姓名:憨家豪学号:2012012026 班级:材23 同组人:赵晓慧 实验日期:2014年4月19日提交报告日期:2014年4月20日 实验老师姓名:郭勋 1 引言 1.1实验目的 (1)熟悉弹式量热计的原理、构造及使用方法; (2)明确恒压燃烧热与恒容燃烧热的差别及相互关系; (3)掌握温差测量的实验原理和技术; (4)学会用雷诺图解法校正温度改变值; 1.2实验原理 在指定温度及一定压力下,1 mol物质完全燃烧时的定压反应热,称为该物质在此温度下的摩尔燃烧热,记作△c H m。通常,完全燃烧是指C→CO2(g),H2→H2O(l),S→SO2(g),而N、卤素、银等元素变为游离状态。由于在上述条件下△H=Q p,因此△c H m也就是该物质燃烧反应的等压热效应Q p。 在实际测量中,燃烧反应在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q v(即燃烧反应的△c U m)。若反应系统中的气体均为理想气体,根据热力学推导,Q p和Q v的关系为 Q P=Q V+?nRT(1)式中:T——反应温度,K; ?n——反应前后产物与反应物中气体的物质的量之差; R——摩尔气体常数。

通过实验测得Q V值,根据上式就可计算出Q P,即燃烧热的值。 测量热效应的仪器称作量热计。量热计的种类很多。一般测量燃烧热用弹式量热计。本实验所用量热计和氧弹结构如图2-2-1和图2-2-2所示。实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。同时,还对内水桶的外表面进行了电抛光。这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成一个绝热体系。 弹式量热计的基本原理是能量守恒定律。样品完全燃烧所释放的能量使得氧弹本身及

大学物理化学实验报告-原电池电动势的测定.docx

大学物理化学实验报告-原电池电动势的测 定 篇一:原电池电动势的测定实验报告_浙江大学 (1) 实验报告 课程名称:大学化学实验p实验类型:中级化学实验实验项目名称:原电池电动势的测定 同组学生姓名:无指导老师冷文华 一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得 一、实验目的和要求 用补偿法测量原电池电动势,并用数学方法分析二、实验原理: 补偿法测电源电动势的原理: 必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。 为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势e。 如图所示,电位差计就是根据补偿法原理的,它由工作电流回路、标准回路和测量电极回路组成。 ① 工作电流电路:首先调节可变电阻rp,使均匀划线ab上有一定的电势降。 ② 标准回路:将变换开关sw合向es,对工作电流进行标定。借助调节rp 使得ig=0来实现es=uca。③ 测量回路:sw扳回ex,调节电势测量旋钮,直到ig=0。读出ex。 uj-25高电势直流电位差计: 1、转换开关旋钮:相当于上图中sw,指在n处,即sw接通en,指在x1,即接通未知电池ex。 2、电计按钮:原理图中的k。 3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻rp。

-1-2-3-4-5-6 4、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此 示出。 三、仪器与试剂: 仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100ml容量瓶5个,50ml滴定管一支,恒温槽一套,饱和氯化钾盐桥。 -1 试剂:0.200mol·lkcl溶液 四、实验步骤: 1、配制溶液。 -1-1-1-1 将0.200 mol·l的kcl溶液分别稀释成0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 -1-1 mol·l,0.0900 mol·l各100ml。 2、根据补偿法原理连接电路,恒温槽恒温至25℃。 3、将转换开关拨至n处,调节工作电流调节旋钮粗。中、细,依次按下电计旋钮粗、细,直至检流计 示数为零。 4、连好待测电池,hg |hg2cl2,kcl(饱和)‖kcl(c)|agcl |ag 5、将转换开关拨至x1位置,从大到小旋转测量旋钮,按下电计按钮,直至检流计示数为零为止,6个 小窗口的读数即为待测电极的电动势。 -1-1-1-1 6、改变电极中c依次为0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 mol·l,0.0900 -1 mol·l,测各不同浓度下的电极电势ex。

物化实验报告册

《物理化学实验》 报告册 —学年第学期 专业: 班级: 姓名: 学号:

物理化学实验是继无机化学实验、分析化学实和有机化学实验之后的一门基础实验课。综合了化学领域中各分支所需的基本研究工具和方法,通过实验的手段,研究物质的物理化学性质以及这些物理化学性质与化学反应之间的关系,从而形成规律的认识,使学生掌握物理化学的有关理论、实验方法和实验技术,以培养学生分析问题和解决问题的能力。 物理化学实验的主要目的是使学生能够掌握物理化学实验的基本方法和技能,从而能够根据所学原理设计实验,正确选择和使用仪器,培养学生正确地观察现象,记录数据和处理数据以及分析式样结果的能力;培养学生严肃认真、实事求是的科学态度和作风;通过物理化学实验课程的教学还可以验证所学的原理,加深和巩固对物理化学原理的理解,提高学生对物理化学知识灵活运用的能力。 为了达到上述目的,必须对学生进行正确而严格的基本操作训练,并提出明确的要求。实验过程中的具体要求分为以下三个方面: 一、实验前的预习 1.实验前必须充分预习,明确实验内容和目的,掌握实验的基本原理,了解所用仪器、仪表的构造和操作规程,熟悉实验步骤,明确实验要测量的数据并做好实验记录。 2.写出预习报告,内容包括实验目的、原理和简单的实验内容提要,针对实验时要记录的数据详细地设计一个原始数据记录表格,预习报告在实验前交教师检查。 二、实验过程 1.进入实验室后不得大声喧哗和乱摸乱动,根据教师安排按实验台编号进入到指定的实验台,检查核对所需仪器。 2.不了解仪器使用方法前不得乱试,不得擅自拆卸仪器。仪器安装调试好后,必须经教师检查无误后方能进行实验。 3.遇有仪器损坏,应立即报告,检查原因,并登记损坏情况。 4.严格按实验操作规程进行,不得随意改动,若确有改动的必要,事先应取得教师的同意。5.应注意养成良好的记录习惯。记录数据要求完全,准确.、整齐、清楚。所有数据应记录在预习报告上,不能只拣好的记,不得用铅笔或红笔记录。要采用表格形式记录数据。不能随意涂改数据。如发现某个数据有问题应该舍弃时,可用笔先将其划掉,再写出正确数据。6.充分利用实验时间,观察现象,记录数据,分析和思考问题,提高学习效率。 7.实验完毕,应将数据交教师审查合格并签字后,再拆实验装置,如数据不合格需补做或重做。 8.实验过程中应爱护仪器,节约药品。实验完毕后应仔细清洗和整理实验仪器,打扫实验室卫生。 三、实验报告 实验结束后,应严格地根据实验记录,对实验现象作出解释,写出有关反应,或根据实验数据进行处理和计算,作出相应的结论,并对实验中的问题进行讨论,独立完成实验报告,及时交指导教师审阅。书写实验报告应字迹端正,简明扼要,整齐清洁。

物理化学实验报告

物理化学实验报告实验人:***** 学号:********* 班级: ********** 实验日期:2012/3/17 实验一计算机联用测定无机盐溶解热 一、实验目的 的积分溶解热。 (1)用量热计测定KNO 3 (2)掌握量热实验中温差校正方法以及与计算机联用测量溶解过程动态曲线的方法。 二、实验原理 盐类的溶解过程通常包含着两个同时进行的过程:晶格的破坏和离子的溶剂化。前者为吸热过程,后者为放热过程。溶解热是这两种热效应的总和。因此,盐溶解过程最终是吸热或放热,是由这两个热效应的相对大小决定的。在恒压条件下,由于量热计为绝热系统,溶解过程所吸收的热或放出的热全部由系统温度的变化放映出来。如下图:

由图可知,恒压下焓变△H为△H 1和△H 2 之和,即:△H=△H 1 +△H 2 绝热系统, Q p =△H 1 所以,在t 1 温度下溶解的恒压热效应△H为:△H=△H 2 =K(t 1 -t 2 ) =-K(t 2-t 1 ) 式中K是量热计与KNO 3 水溶液所组成的系统的总热容量,(t 2 -t 1 ) 为KNO 3溶解前后系统温度的变化值△t 溶解 。 设将质量为m的KNO 3 溶解于一定体积的水中, KNO 3的摩尔质量为M,则在此浓度下KNO 3 的积分溶 解热为:△ sol H m =△HM/m=-KM/m·△t 溶解 K值可由电热法求取。K·△t 加热 =Q。若加热电压为U,通过电热丝的电流强度为I,通电时间为τ则: K·△t 加热=IUτ所以K =IUτ/△t 加热 真实的△t加热应为H与G两点所对应的温度t H 与t G 之差。 三、试剂与仪器 试剂:干燥过的分析纯KNO 3 。 仪器:量热计,磁力搅拌器,直流稳压电源,半导 体温度计,信号处理器,电脑,天平。 四、实验步骤 1用量筒量取100mL去离子水,倒入量热计中并测量水温。2称取2.7~2.9gKNO 3(精确到±0.01g)。3先打开信号处理器、直流稳压器,再打开电脑。自动进入实验测试软件,在“项目管理”中点击“打开项目”,选择“溶解热测定”,再点击“打开项目”,输入自己学号和称取的样品重量。4系统提示装入试样的后,立即装入待测试样;5等待测试结果,注意数据变化。测试完毕,系统自动保存。读取 五、数据处理 (1)作盐溶解过程和电加热过程温度一时间图,外推法求△t 溶解与△t 加热 。

物化实验实验报告

粘度法测定高聚物相对分子质量 一.实验目的 1.掌握用乌氏粘度计测定高聚物溶液粘度的原理和方法。 2.测定线型聚合物聚乙二醇的粘均相对分子质量。 二.实验原理 聚合物的相对分子质量是一个统计的平均值。粘度法测定高聚物相对分子质量适用的相对分子质量范围为1×104~1×107,方法类型属于相对法。 粘性液体在流动过程中所受阻力的大小可用粘度系数来表示。粘度分绝对粘度和相对粘度。绝对粘度有两种表示方法:动力粘度和运动粘度。相对粘度是某液体粘度与标准液体粘度之比。 溶液粘度与纯溶剂粘度的比值称作相对粘度ηr,即ηr=η/ηo,相对于溶剂,溶液粘度增加的分数称为增比粘度,ηsp=ηr-1。 使用同一粘度计,在足够稀的聚合物溶液里,ηr=η/ηo=t/t o,只要测定溶液和溶剂在毛细管中的流出时间就可得到ηr;同时,在足够稀的溶液里,质量浓度c,ηr和[η] 之间符合经验公式:(lnηr)/c=[η]-β[η]2c,通过lnηr/c对c作图,外推至c=0时所得截距即为[η];同时,在足够稀的溶液里,质量浓度c,ηsp和[η]之间符合经验公式:ηsp/c=[η]+k[η]2c,通过ηsp/c对c作图,外推至c=0时所得截距即为[η]。两个线性方程作图得到的截距应该在同一点。 聚合物溶液的特性粘度[η]与聚合物相对分子质量之间的关系,可以通过Mark——Houwink经验方程来计算,[η]=KMηα;Mη是粘均相对分子质量,K、α是与温度、聚合物及溶剂的性质相关的常数;聚乙二醇水溶液在30℃的K值为12.5×106/m3·kg-1,α值为0.78。 通过以上的原理阐述,就可以通过本次实验测定高聚物的粘均相对分子质量。三.实验仪器和试剂 仪器:恒温槽1套;乌氏粘度计1支;100ml容量瓶5只;秒表1只。 试剂:聚乙二醇(AR);去离子水。 四.实验步骤 1.设定恒温槽温度为30℃±0.5℃。 2.配制溶液。8%(质量分数)的聚乙二醇溶液5ml、10ml、15ml、20ml、25ml定容于100ml容量瓶中。 3.洗涤粘度计。 4.测定溶剂流出时间t o,测定不同浓度的溶液流出时间t。 五.数据记录与处理 实验室室温:28.5℃大气压:101.52Kpa t o:纯溶剂在a、b线移动所需时间; t1:5ml8%聚乙二醇溶液定容于100ml容量瓶中溶液在a、b线移动所需时间; t2:10ml8%聚乙二醇溶液定容于100ml容量瓶中溶液在a、b线移动所需时间; t3:15ml8%聚乙二醇溶液定容于100ml容量瓶中溶液在a、b线移动所需时间; t4:20ml8%聚乙二醇溶液定容于100ml容量瓶中溶液在a、b线移动所需时间; t5:25ml8%聚乙二醇溶液定容于100ml容量瓶中溶液在a、b线移动所需时间; 所有溶液的密度以1×103kg/m3的水的标准密度,以简化计算。

大学物理化学实验报告-原电池电动势的测定

篇一:原电池电动势的测定实验报告_浙江大学 (1) 实验报告 课程名称:大学化学实验实验类型:中级化学实验实验项目名称:原电池电动势的测定 同组学生姓名:无指导老师冷文华 一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得 一、实验目的和要求 用补偿法测量原电池电动势,并用数学方法分析二、实验原理: 补偿法测电源电动势的原理: 必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。 为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势。 如图所示,电位差计就是根据补偿法原理设计的,它由工作电流回路、标准回路和测量电极回路组成。 ①工作电流电路:首先调节可变电阻,使均匀划线AB上有一定的电势降。 ②标准回路:将变换开关合向,对工作电流进行标定。借助调节使得 =0来实现 = CA。③测量回路:扳回,调节电势测量旋钮,直到 =0。读出。 -25高电势直流电位差计: 1、转换开关旋钮:相当于上图中,指在处,即接通,指在 1,即接通未知电池。 2、电计按钮:原理图中的。 3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻。 -1-2-3-4-5-6 4、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此

示出。 三、仪器与试剂: 仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100 容量瓶5个,50 滴定管一支,恒温槽一套,饱和氯化钾盐桥。 -1 试剂:0. · C 溶液 四、实验步骤: 1、配制溶液。 -1-1-1-1 将0. ·的 C 溶液分别稀释成0.0100 ·,0.0300 ·,0.0500 ·,0.0700 -1-1 ·,0.0900 ·各100 。 2、根据补偿法原理连接电路,恒温槽恒温至25℃。 3、将转换开关拨至处,调节工作电流调节旋钮粗。中、细,依次按下电计旋钮粗、细,直至检流计 示数为零。 4、连好待测电池, | 2C 2, C (饱和)‖ C (c)|A C |A 5、将转换开关拨至 1位置,从大到小旋转测量旋钮,按下电计按钮,直至检流计示数为零为止,6个 小窗口的读数即为待测电极的电动势。 -1-1-1-1 6、改变电极中c依次为0.0100 ·,0.0300 ·,0.0500 ·,0.0700 ·,0.0900 -1

物化实验报告

(此文档为word 格式,下载后您可任意编辑修改!) 2.11 电导法测定乙酸乙酯皂化反应的速率常数 一.目的要求 1.了解二级反应的特点,学会用图解计算法求取二级反应的速率常数. 2.用电导法测定乙酸乙酯皂化反应的速率常数,了解反应活化能的测定方法. 二.基本原理 乙酸乙酯皂化是一个二级反应,其反应式为: +--+++?→?++Na OH H C COO CH OH Na H COOC CH 523523 在反应过程中,各物质的浓度随时间而变.某一时刻的OH - 离子浓度可用标准酸进行滴定求得,也可通过测定溶液的某些物理性质而得到.用电导仪测定溶液的电导值G 随时间的变化关系,可以监测反应的进程,进而可求算反应的速率常数.二级反应的速率与反应物的浓度的2次方有关. 若反应物和NaOH 的初始浓度相同(均设为c ),设反应时间为t 时,反应所产生的和的浓度为x ,若逆反应可忽略,则反应物和产物的浓度时间的关系为: OH H C COONa CH NaOH H COOC CH 523523+?→?+ t=0 c c 0 0 t=t c-x c-x x x t=∞ →0 →0 →c →c 上述二级反应的速率方程可表示为: ))(()(x c x c k t x t x c --==--d d d d .........(11.1) 积分得: 或 .........(11.2) 显然,只要测出反应进程中任意时刻t 时的x 值,再将已知浓度c 代入上式,即可得到反应的速率常数k 值. 因反应物是稀水溶液,故可假定全部电离.则溶液中参与导电的离子有Na +、OH -和等,Na +在反应前后浓度不变,OH -的迁移率比的大得多.随着反应时间的增加,OH -不断减少,而不断增加,所以体系的电导值不断下降.在一定范围内,可以认为体系电导值的减少量与的浓度x 的增加量成正比,即: t=t x=β(G 0 - G t ) .........(11.3) t=∞ c=β(G 0 - G ∞) .........(11.4) 式中,G 0和G t 分别是溶液起始和t 时的电导值, G ∞为反应终了时的电导值,β是比例系数.将(11.3)、(11.4)代入(11.2)得: ∞ ∞--=----=G G G G G G G G G G ckt t t t t 0 000)]()[()(ββ .........(11.5) 据上式可知,只要测出G 0、G ∞和一组G t 值,据(11.5)式,由对t 作图,应得一直

相关主题
文本预览
相关文档 最新文档