当前位置:文档之家› 遗传课后题补充答案完整版

遗传课后题补充答案完整版

遗传课后题补充答案完整版
遗传课后题补充答案完整版

刘庆昌版《遗传学》答案补充

生科1301 荣誉出品

主编

侯帅兵李泽光

参编

李泽光岳巍刘新露徐泽千宋新宇侯帅兵

(排名不分先后)

主审

刘洋

第二章遗传物质的分子基础

1.怎样证明DNA是绝大多数生物的遗传物质?

证明DNA是生物的主要遗传物质,可设计两种实验进行直接证明DNA是生物的主要遗传物质:

(1)肺炎双球菌定向转化试验:有毒SⅢ型(65℃杀死)→小鼠成活→无细菌

无毒RⅡ型→小鼠成活→重现RⅡ型有毒SⅢ型→小鼠死亡→重现SⅢ型RⅡ型有毒SⅢ型(65℃) →小鼠→死亡→重现SⅢ型将IIIS型细菌的DNA提取物与IIR型细菌混合在一起,在离体培养的条件下,也成功地使少数IIR 型细菌定向转化为IIIS型细菌。该提取物不受蛋白酶、多糖酶和核糖核酸酶的影响,而只能为DNA酶所破坏。所以可确认导致转化的物质是DNA。

(2)噬菌体的侵染与繁殖试验

T2噬菌体的DNA在大肠杆菌内,不仅能够利用大肠杆菌合成DNA的材料来复制自己的DNA,而且能够利用大肠肝菌合成蛋白质的材料,来合成其蛋白质外壳和尾部,因而形成完整的新生的噬菌体。32P和35S分别标记T2噬菌体的DNA与蛋白质。因为P是DNA的组分,但不见于蛋白质;而S是蛋白质的组分,但不见于DNA。然后用标记的T2噬菌体(32P或35S)分别感染大肠杆菌,经10分钟后,用搅拌器甩掉附着于细胞外面的噬菌体外壳。发现在第一种情况下,基本上全部放射活性见于细菌内而不被甩掉并可传递给子代。在第二种情况下,放射性活性大部分见于被甩掉的外壳中,细菌内只有较低的放射性活性,且不能传递给子代。

2.简述DNA双螺旋结构及其特点。

(1)两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行地环绕于同一轴上,象一个扭曲起来的梯子。

(2)两条多核苷酸链走向为反向平行(antiparallel)。即一条链磷酸二脂键为5-3’方向,而另一条为3’-5’方向,二者刚好相反。亦即一条链对另一条链是颠倒过来的,这称为反向平行。

(3)每条长链的内侧是扁平的盘状碱基,碱基一方面与脱氧核糖相联系,另一方面通过氢键(hydrogen bond)与它互补的碱基相联系,相互层叠宛如一级一级的梯子横档。互补碱基对A与T之间形成两对氢键,而C与G之间形成三对氢键。上下碱基对之间的距离为3.4?。

(4)每个螺旋为34?(3.4nm)长,刚好含有10个碱基对,其直径约为20?

(5)在双螺旋分子的表面大沟(major groove)和小沟(minor groove)交替出现。

3.原核生物DNA聚合酶有哪几种?各有何特点?

原核生物DNA聚合酶有一些共同的特性:只有5’-3’聚合酶的功能,而没有3’-5’聚合酶功能,DNA 链的延伸只能从5’向3’端进行。它们都没有直接起始合成DNA的能力,只能在引物存在下进行链的延伸,因此,DNA的合成必须有引物引导才能进行。都有核酸外切酶的功能,可对合成过程中发生的错识进行校正,从而保证DNA复制的高度准确性。

4.真核生物和原核生物DNA合成过程有哪些不同?

(1)原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的,无终止位点。

(2)真核生物DNA复制中合成的“冈崎片段”的长度比原核生物要短。在原核生物中冈崎片段的长度为1000-2000个核苷酸;而在真核生物中有100-150 核苷酸。

(3)在原核生物中有DNA聚合酶I、II和III等三种聚合酶,并由聚合酶III同时控制二条链的合成。真核生物的DNA聚合酶多。有α、β、γ、δ和ε。其中聚合酶α和δ的作用是复制染色体。聚合酶α控制后随链的合成,聚合酶δ则控制前导链的合成。

(4)染色体端体的复制:原核生物的染色体大多数为环状,而真核生染色体为线状。

(5)真核生物DNA复制只是发生在细胞周期的特定时期。只在细胞周期的S期进行,二原核生物在整个细胞生长过程中都可以进行。

(6)核小体的复制。亲本的组蛋白八聚体以全保留的方式分布在一条子链上,新组蛋白八聚体是重新合成的,分布在另一条子链上。

(7)真核生物染色体端粒的复制,在端粒酶的作用下完成。

5.简述原核生物RNA的转录过程,真核生物与原核生物相比,其转录有何不同。

(一)、RNA聚合酶组装与启动子的识别结合催化转录的RNA聚合酶是一种由多个蛋白亚基组成的复合酶。δ因子识别转录的起始位置,并使RNA聚合酶结合在启动子部位。

(二)、链的起始RNA链转录的起始首先是RNA聚合酶在δ因子的作用下结合于DNA的启动子部位,启动子位于RNA转录起始点的上游,δ因子对启动子的识别是转录的第一步。并在RNA聚合酶的作用下,使DNA双链解开,形成转录泡,为RNA合成提供单链模板,并按照碱基配对的原则,结合核苷酸,然后,在核苷酸之间形成磷酸二脂键,使其相连,形成RNA新链。

(三)、链的延伸RNA链的延伸是在δ因子释放以后,在RNA聚合酶四聚体核心酶的催化下进行。

(四)、链的终止当RNA链延伸遇到终止信号(termination signal)时,RNA转录复合体就发生解体,而使新合成的RNA链释放出来。

真核生物与原核生物RNA的转录过程总体上基本相同,但是,其过程则要复杂得多,主要有以下几点不同:首先,真核生物RNA的转录是在细胞核内进行,而蛋白质的合成则是在细胞质内,所以,RNA转录后首先必须从核内运输到细胞质内,才能进行蛋白质的合成。其次,原核生物的一个mRNA分子通常含有多个基因,而少数较低等真核生物外,在真核生物中,一个mRNA分子一般只编码一个基因。第三、在原核生物中只有一种RNA聚合酶催化所有RNA的合成,而在真核生物中则有RNA聚合酶、II、III等三种不同酶,分别催化不同种类型RNA的合成。第四、不象在原核生物中,RNA聚合酶可以直接起始转录合成RNA。在真核生物中,三种RNA聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录。另外,RNA聚合酶对转录启动子的识别,也比原核生物更加复杂。

6.试述mRNA、tRNA、rRNA和核糖体各有什么作用?

(1)mRNA的功能就是把DNA上的遗传信息准确无误地记录下来,通过其上的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达中的遗传信息传递过程。

(2) tRNA的功能就是把游离的氨基酸运到核糖体上,tRNA能根据mRNA的遗传信息依次准确地将它携带的氨基酸连接成多肽链。

(3)rRNA是组成核糖体的主要成分,一般与核糖体蛋白质结合在一起形成核糖体,而核糖体是蛋白质合成的中心。

7.简述原核生物蛋白质合成的过程。

主要有三个阶段:肽链的起始、延伸、终止。

8. 如果DNA 的一条链上(A+G)/(T+C)=0.6,那么互补链上的同一个比率是多少?

[答案]:其互补链上的(A+G)/(T+C)为1/0.6=1.7。

10. 有几种不同的mRNA 可以编码氨基酸序列met-leu-his-gly ?

[答案]:根据遗传密码字典,有1种密码子编码met 、6种密码子编码leu 、2种密码子编组氨酸、4种密码子编码gly ;因此有1×6×2×4=48不同的mRNA 可以编码该氨基酸序列。

分别为: met leu his gly AUG UUA UUG CUU CUC CUA CUG

CAG CAC GGU GGC GGA GGG

第五章基因突变

1.举例说明自发突变和诱发突变、正突变和反突变、显性突变和隐形突变。

在自然条件自然发生的突变称为自发突变,人为利用物理、化学因素处理诱发基因突变称为诱发突变;野生型基因突变为突变型为正突变,突变型突变为野生型为反突变;由显性基因产生隐形基因称为隐形突变;反之由隐形基因产生显性基因称为显性突变。

4.为什么基因突变大多数是有害的?

大多数基因的突变,对生物的生长和发育往往是有害的。因为现存的生物都是经历长期自然选择进化而来的,它们的遗传物质及其控制下的代谢过程.都已经达到相对平衡和协调状态。如果某一基因发生突变,原有的协调关系不可避免地要遭到破坏或削弱.生物赖于正常生活的代谢关系就会被打乱,从而引起程度不同的有害后果。一般表现为生育反常,极端的会导致死亡。

5.基因突变的性状变异类型有哪些?

(1)形态突变、(2)生化突变、(3)致死突变、(4)条件致死突变、(5)抗性突变

6.有性繁殖和无性繁殖、自花授粉和异花授粉与突变性状表现有什么关系?

有性繁殖植物:细胞发生显性突变则在后代中立即表现;如果是隐性突变后代自交也可以得到纯合的突变体。体细胞发生显性突变则以嵌合体形式存在,体细胞发生隐性突变不能立即表现,如要使它表现则需要把隐性突变体进行有性繁殖。

无性繁殖植物体细胞显性突变后形成嵌合体,用嵌合体进行无性繁殖可以得到表现各种变异的嵌合体,也可能得到同质突变体,发生隐性突变则无法通过无性繁殖使之得到表现。

自花授粉植物:一般自花授粉植物突变频率低,遗传上较稳定,但是突变后容易表现,容易被检出。

异花授粉植物:异花授粉植物突变频率相对较高,但是突变后不容易被检出。因为显性突变成杂合状态存在,隐性突变大多被显性基因遮盖而不表现,只要在自交时基因型纯合,才能表现。

7.试用红色面包霉的生化突变试验,说明性状与基因表现的关系。

射线照射后的分生孢子可诱发突变,让诱变过的分生孢子与野生型交配,产生分离的子囊孢子,放入完全培养基里培养生长,基本培养基上只有野生型能够生长突变型均不能生长,鉴定是否突变。

⑴.取出完全培养基中各组分生孢子,分别于基本培养基上,如果能够生长,说明仍与野生型一样,没有突变。如不能够生长,说明发生了变异。

⑵.把确定为突变型的各组材料,分别培养于加入各种物质的基本培养基中,如某一培养基上能生长,就说明控制合成加入物质的这种基因发生了突变。

⑶.如在上步2 中确定为缺乏维生素合成能力的突变型,再进一步在培养基中分别加入各种维生素分别培养这种突变型,如果其中一个能生长,则说明是控制该个维生素合成的基因发生了突变。

上述生化突变的研究,清楚地说明基因控制性状,并非基因直接作用于性状,而是通过一系列生化过程来实

现的。

8.在高秆小麦田里突然出现一株矮化植株,怎样验证它是由于基因突变,还是由于环境影响产生的?

如果是在苗期发现这种情况,有可能是环境条件如土壤肥力、光照等因素引起,在当代可加强矮化植株与正常植株的栽培管理,使其处于相同环境条件下,观察它们在生长上的差异。如果到完全成熟时,两者高度表现相似,说明它是不遗传的变异,由环境影响引起的,反之,如果变异体与原始亲本明显不同,仍然表现为矮秆,说明它可能是遗传的变异。然后进行子代比较加以验证,可将矮化植株所收种子与高秆小麦的种子播种在相同的环境条件下,比较它的后代与对照在株高上的差异。如矮化植株的种子所长成的植株仍然矮化,则证明在高秆小麦田里出现的一株矮化植株是由于基因突变引起的。

9.何为芽变?在生产实践上有什么价值?

芽变是体细胞突变的一种,突变发生在芽的分生组织细胞中。当芽萌发长成枝条,并在性状上表现出与原类型不同,即为芽变。芽变是植物产生新变异的丰富源泉,它既可为杂交育种提供新的种质资源,又可从中选出优良新品种,是选育品种的一种简易而有效的方法。全世界有一半苹果产量来自于芽变,如品种元帅、红星、新红星、首红、超首红。

10.利用花粉直感现象测定突变频率在亲本状态配置上应该注意什么问题?

一般应该用隐性纯合体作母本,用显性纯合体经诱变处理的花粉作父本进行杂交。

12.碱基缺失,插入突变与碱基替换的后果有何不同?

如果缺失与插入的碱基不是三或三的倍数时,突变效应将不仅限于缺失与插入碱基本身,还会导致下游阅读框改变,即移码,这样产生的突变对生物体的影响较大,而单纯的碱基替换不会造成移码突变,存在转换和颠换两种,不改变基因序列长度及转录产物mRNA分子的阅读框,所以产生的效应不明显甚至可能不改变生物体表现型。

13.DNA损伤修复途径有哪些?其中哪些途径能避免差错?哪些允许修复差错并产生突变?

DNA损伤修复途径包括:错配修复、直接修复、切除修复、双链断裂修复、复制后修复和倾向差错修复。DNA 损伤修复主要有结构完整性修复与序列正确性修复两方面的作用。

结构完整性修复是所有修复途径最根本功能,是保证细胞、生物体生存的最首要前提。

错配修复、直接修复和切除修复途径在修复结构的同时通常也能够修复序列正确性,从而避

免DNA损伤导致基因突变产生,因此也称为避免差错修复。在DNA损伤比较严重的情况下,修复途径为了最大限度地修复DNA分子结构的完整性,可能容忍、甚至倾向产生序列差错,从而导致基因突变的产生。其中双链断裂修复、复制后修复属于容忍差错修复,SOS修复为倾向差错修复。

14.生物突变的防护机制主要有哪些,他们是针对前突变损伤还是基因突变形成后?

密码的简并性、回复突变、抑制突变、二倍体和多倍体、选择和致死

基因突变形成后

15.试述物理因素诱变的机理

电离辐射包括α射线、β射线和中子等粒子辐射,还包括γ射线和X射线等电磁辐射。电离辐射能使构成基因的化学物质直接发生电离作用。轻者造成基因分子结构的改变,产生突变了的新基因,重者造成染色体的断裂,引起染色体结构的畸变。

紫外线造成基因分子链的离析。分子链已经离析的基因在重新组合的时候,有可能发生差错而出现基因突变。紫外线特别作用于嘧啶,使得同链上邻近的嘧啶核苷酸之间形成多价的联合。最通常的结果是促使胸腺嘧啶联合成二聚体;或是将胞嘧啶脱氨成尿嘧啶,或是将水加到嘧啶的C4、C5位置上成为光产物。它可以削弱C与G之间的氢键,使DNA链发生局部分离或变性。

16.化学诱变剂有哪些类型,它们的诱变机理各是什么?

碱基类似物:在复制过程中代替正常碱基掺入到DNA分子中,在下一次复制前发生互变异构移位产生复制错误。

碱基修饰物:直接修饰碱基化学结构,改变其配对特性,引起DNA损伤和复制错误。

DNA插入剂:导致DAN复制过程中产生插入或缺失突变。

第六章染色体结构变异

1.缺失可分为哪两种类型?两者的细胞学特征各是什么?

(1)顶端缺失:染色体某臂的外端缺失。

(2)中间缺失:染色体某臂的内段缺失。

补:顶端着丝点染色体:染色体整条臂的丢失。

4.如何利用染色体缺失进行基因定位?

利用假显性现象,杂合体表现隐性性状,进行基因定位,其关键为:

(1

(2

另:利用染色体缺失产生的假显现象进行基因定位。如果染色体某一显性基因因染色体片段的缺失而丢失,失去作用,其隐形的等位基因就得以表现。进行细胞学检查缺失发生在哪条染色体的哪一部位,就可以确定该基因的位置。

5.顺接重复和反接重复的形成有何不同?哪种重复类型更常见?

(1).顺接重复:指某区段按照自己在染色体上的正常顺序重复。

反接重复:指某区段在重复时颠倒了自己在染色体上的正常直线顺序。

(2).顺接重复最常见。

6.染色体区段重复会产生哪些遗传效应?举例说明其在植物育种中的应用。

(1).扰乱基因的固有平衡体系:影响比缺失轻,主要是改变原有的进化适应关系。

如果蝇的眼色遗传:红色(V+)对朱红色(V)为显性,但 V+ V 红色,V+ VV 朱红色说明2个隐性基因的作用大于1个显性等位基因,改变了原来一个显性基因与一个隐性基因的关系。

(2).重复引起表现型变异(如果蝇的棒眼遗传):

(1).基因的剂量效应:细胞内某基因出现次数越多,表现型效应越显著。

(2).基因的位置效应:基因的表现型效应因其所在的染色体不同位置而有一定程度的改变。

应用:重复区段基因拷贝数增加可能导致性状变异,诱导特定基因所在染色体区段重复可能提高其性状表现水平。如:植物抗逆相关基因、营养成分或特定次生代谢产物相关基因。诱导大麦的α—淀粉酶基因所在染色体区段重复,可大大提高其α—淀粉酶表达量从而显著改良大麦品质。

7.如何通过细胞学观察区别臂内倒立和臂间倒位?

(1)臂内倒位:倒位区段发生在染色体的某一臂上。臂内倒位杂合体产生双着丝点染色单体,随着出现后期Ⅰ桥。(2)臂间倒位:倒位区段涉及染色体的两个臂,倒位区段内有着丝点。臂间倒位杂合体产生大量缺失和重复染色单体。

10.臂内倒立和臂间倒立为什么被称为“交换抑制因子”那么交换是否真的被抑制而没有发生呢?

(1)因为发生染色体倒位之后,因为含有重复和缺失的配子是没有功能的,这样的重组类型不能成活好像交换被抑制了,所以被称为交换抑制因子。

(2)交换其实发生了,只是交换的染色单体会发生缺失重复引起死亡,所以才叫交换抑制因子。

11.倒位杂合体和易位杂合体都会产生不育的配子,这两种不育现象表现有何差异?

(1)倒位杂合体的部分的不育:含交换染色单体的孢子大多数是不育的。

①.无着丝点断片(臂内倒位杂合体),在后期Ⅰ丢失;

②.双着丝点的缺失染色体单体(臂内倒位杂合体),在成为后期桥折断后形成缺失染色体,得到这种缺失染色体的孢子不育;

③.单着丝点的重复缺失染色体(臂间倒位杂合体)和缺失染色体(臂内倒位杂合体),得到它们的孢子也是不育;

④.正常或倒位染色单体,孢子可育。

∴倒位杂合体的大多数含交换染色单体的孢子不育,是倒位杂合体的连锁基因重组率显著下降的原因。

(2)半不育是易位杂合体的突出特点:

①.相邻式分离:产生重复、缺失染色体,配子不育;

②.交替式分离:染色体具有全部基因,配子可育。

交替式和两种相邻式分离的机会大致相等,即花粉和胚囊均有50%是败育的,结实率50%。

另:倒位杂合体表现为部分不育,而易位杂合体表现为半不育。

12.玉米中a、b两基因正常情况下是连锁的,曾发现它们在一个品种中表现为独立遗传,试解释这种现象。

13.某植物染色体1区段正常顺序为ABCDEF,染色体2区段正常顺序为MNOPQR。两条染色体发生相互易位,两条易位染色体区段顺序分别为:ABCPQR和MNODEF。图示易位杂合体减数分裂粗线期染色体联会形态,并分析花粉育性情况。

(1)易位杂合体减数分裂的粗线期会形成“十”字形图像

(2)①.如果减数分裂后期Ⅰ联会在一起的4条染色体呈相邻式分离可产生4种配子,即ABCDEF FEDOMN、ABCPQR MNOPQR、ABCDEF ABCPQR和FEDOMN MNOPQR。4种配子中都含有缺失染色体,因此都是不育的。

②.如果这4条染色体呈交替式分离,可产生2种类型的配子,即ABCDEF MNOPQR和ABCPQR MNODEF。这两种配子都不缺少正常染色体的任何片段,因而都能发育成正常可育的配子。

14.易位杂合体植株自交可以产生哪几种染色体组成的子代?比例如何?

相互完全可育的易位杂合体、易位纯合体、完全可育正常体、半不育型

比例:

17.采用电离辐射诱导染色体结构变异与诱导基因突变在处理方法上有什么不同?为什么?

电离辐射作用轻则造成基因分子结构紊乱,重则造成染色体断裂。就基因突变而言,突变率通常与辐射剂量成正比,但不受辐射强度的影响。倘若照射总剂量不变,不管单位时间内所照射的剂量多少,基因突变率保持不变。就染色体结构变异而言,不同结构变异的产生频率与染色体折断次数有关。只需1次染色体折断的结构变异类型产生频率在一定范围内与辐射剂量成正比,而不受辐射强度影响。需要2次折断才能产生结构变异类型的频率与辐射剂量平方成正比。所以染色体结构变异发生频率不仅与辐射剂量有关还与辐射强度有关。用慢照射来获得更高频率需要1次断裂的结构变异类型与基因突变,而提高剂量率能获得更高频率的需要2次或2次以上断裂的变异类型。

第八章数量性状的遗传

1.质量性状和数量性状的区别在哪里?这两类性状的分析方法有何异同?

答:质量性状和数量性状的区别主要有:①. 质量性状的变异是呈间断性,杂交后代可明确分组;数量性状的变异则呈连续性,杂交后的分离世代不能明确分组。②. 质量性状不易受环境条件的影响;数量性状一般容易受环境条件的影响而发生变异,而这种变异一般是不能遗传的。③. 质量性状在不同环境条件下的表现较为稳定;而控制数量性状的基因则在特定时空条件下表达,不同环境条件下基因表达的程度可能不同,因此数量性状普遍存在着基因型与环境互作。对于质量性状一般采用系谱和概率分析的方法,并进行卡方检验;而数量性状的研究则需要遗传学方法和生物统计方法的结合,一般要采用适当的遗传交配设计、合理的环境设计、适当的度量手段和有效的统计分析方法,估算出遗传群体的均值、方差、协方差和相关系数等遗传参数等加以研究。

2.如何对数量性状的表型值进行剖分?

数量性状表型值(P)线性剖分为基因型值(G)和环境效应值(E)两个部分,即:

P=G+E+I GE(9-1)其中:IGE是基因型与环境的互作偏差效应值。

假设

影响数量性状表型值的环境效应,又可分为系统性环境效应(或称固定环境效应)和随机环境效应两类。随机环境效应又可分为持久性环境效应和暂时性环境效应。

3. 叙述表现型方差和基因型方差的关系。

表现型方差由基因型方差(VG)、基因型×环境互作方差(Ve)和环境机误方差(VE)构成,即,其中基因型方差和基因型×环境互作方差是可以遗传的,而纯粹的环境方差是不能遗传的。

4.数量性状的遗传基础是什么?为什么绝大部分数量性状表现为正态分布?

数量性状是指在一个群体内的各个体间表现为连续变异的性状,如动植物的高度或长度等.数量性状较易受环境的影响,在一个群体内各个个体的差异一般呈连续的正态分布,难以在个体间明确地分组. 数量性状遗传来自于1909年由瑞典学者H·尼尔松·埃勒提出多基因学说, 他认为根据质量性状研究的结果得来的孟德尔定律同样可以用来解释数量性状的遗传。多基因学说的要点是:①同一数量性状由若干对基因所控制;②各个基因对于性状的效应都很微小,而且大致相等;1941年英国数量遗传学家K·马瑟把这类控制数量性状的基因称为相应地把效应显著而数量较少的控制质量性状的基因称为主效基因;③控制同一数量性状的微效基因的作用一般是累加性的;④控制数量性状的等位基因间一般没有明显的显隐性关系。

按照多基因学说,如果控制某一数量性状的基因对数是N,则杂交子二代中该性状表型的分布可以用二项式分布(1/2+1/2)2N展开的各项系数表示。例如小麦的种皮颜色由三对基因所控制,每一对基因的表型效应大致上相等而且是累加的,因此杂交子二代中出现的种皮颜色有七种,相当于二项式(1/2+1/2)2×3展开的各项。如果基因的对数更多,那么各组间的表型的差别将更小,分布也将更接近于正态分布。

5. 叙述主效基因、微效基因、修饰基因对数量性状遗传作用的异同之处。

答:主效基因、微效基因、修饰基因在数量性状遗传中均可起一定的作用,其基因表达均可控制数量性状的表现。但是它们对数量性状所起的作用又有所不同,主效基因的遗传效应较大,对某一数量性状的表现起着主要作用,一般由若干个基因共同控制该性状的遗传;修饰基因的遗传效应微小,主要是对主效基因起修饰作用,起增强或减弱主基因对表现型的作用;而微效基因是指控制数量性状表现的基因较多,而这些基因的遗传效应较小,它们的效应是累加的,无显隐性关系,对环境条件的变化较敏感,且具有一定的多效性,对其它性状有时也可能产生一定的修饰作用。

6. 什么是基因的加性效应、显性效应及上位性效应?它们对数量性状的遗传改良有何作用?

基因的加性效应(A):是指基因位点内等位基因的累加效应,是上下代遗传可以固定的分量,又称为"育种值"。

显性效应(D):是指基因位点内等位基因之间的互作效应,是可以遗传但不能固定的遗传因素,是产生杂种优势的主要部分。

上位性效应(I):是指不同基因位点的非等位基因之间相互作用所产生的效应。

上述遗传效应在数量性状遗传改良中的作用:由于加性效应部分可以在上下代得以传递,选择过程中可以累加,且具有较快的纯合速度,具有较高加性效应的数量性状在低世代选择时较易取得育种效果。显性相关则与杂种优势的表现有着密切关系,杂交一代中表现尤为强烈,在杂交稻等作物的组合选配中可以加以利用。但这种显性效应会随着世代的递增和基因的纯合而消失, 且会影响选择育种中早代选择的效果, 故对于显性效应为主的数量性状应以高代选择为主。上位性效应是由非等位基因间互作产生的,也是控制数量性状表现的重要遗传分量。其中加性×加性上位性效应部分也可在上下代遗传,并经选择而被固定;而加性×显性上位性效应和显性×显性上位性效应则与杂种优势的表现有关,在低世代时会在一定程度上影响数量性状的选择效果。

7. 什么是QTL?如何确定QTL的存在?

1,QTL是quantitative trait locus的简称,指的是控制数量性状的基因在基因组中的位置.

2,QTL定位步骤:检测、筛选亲本并构建遗传群体;检测群体的分子标记基因型并构建分子标记连锁图谱;应用根据相应的统计模型和方法编写的计算机软件处理分析实验数据,确定分子标记与QTL的连锁关系及QTL在染色体上区域.

3,原理:当分子标记与某一性状QTL连锁时,不同标记基因型所对应表现性均值将存在显著差异.目前,用于作物数量性状QTL定位的分子标记主要有:限制性片段长度多态性(RFLP)、随机扩增多态性DNA(RAPD)、简单序列长度多态性(SSR)和扩增片段长度多态性(AFLP).

第九章近亲繁殖和杂种优势

1.杂合体通过自交,其后代将有哪些遗传表现?

(1)导致杂合基因型的纯合

每自交一代,杂合体减少1/2纯合的后代,纯合体增加1/2。连续自交r代(即F r+1),其后代杂合体逐步减少,而纯合体相应地逐步增加。

(2)淘汰有害隐性纯合体

杂合体通过自交,必然导致等位基因的纯合而使隐性有害性状表现出来,从而可以淘汰隐性有害个体,改良群体的遗传组成。

(3)获取不同纯合基因型

杂合体通过自交遗传性状分离和重组,使同一群体内出现多个不同的纯合基因型。

2.回交和自交在基因型纯合的内容和进度上有何差异?

版本一:回交虽然和自交纯合率的公式相同,但在基因纯合的内容和进度上则有重要区别,主要表现在以下两方面:

(1)自交情况下纯合不定向,事先不能控制;

回交情况下纯合定向,事先可控制(纯合为轮回亲本)。

(2)自交后代的纯合率是各种纯合基因型的累加值,而回交后代的纯合率是轮回亲本一种基因型的数值。可见在基因纯合的进度上,回交大大高于自交

版本二:基因的分离与重组和基因型的逐渐结合、性状的分离和稳定、隐性性状得以表达等,是自交与回交在遗传上相同的效应。二者的不同点是:自交后代的基因型向着多个不同方向逐渐纯合,而回交后代的基因型是向着轮回亲本这一个方向逐渐纯合,因而逐代恢复轮回亲本的性状;同时,仅就具有轮回亲本基因型的个体在后代出现的概率而言,回交时基因型纯合的进程比较快。

3.假设有3对独立遗传的异质基因,自交5代后群体中3对基因全杂合的比例是多少?2对基因杂合1对基因纯合的比例是多少?3对基因均为纯合的比例是多少

4.为什么可以在推广多年的小麦品种中进行单株选择?

(1)所谓的纯系实际上是暂时的,局部的,相对的,不纯才是纯对的,由于种种因素的影响,总有一定程度的天然杂交,引起基因重组,同时也可以发生各种基因突变,而且大多数经济性状属于数量性状,受多基因控制,所以纯对纯系是没有的

(2)纯系内选择无效是不纯在的,由于天然杂交和基因突变,会引起基因的分离和重组,所以纯系内的遗传基础不可能是完全准确的。

5.纯系学说的内容是什么?有何重要意义?

纯系是指从一个基因型纯合个体自交产生的后代。

纯系学说:1)自花授粉植物天然混杂群体,可以(选择)分离出许多纯系。因此,在一个混杂群体内选择是有效的。2)纯系内个体间差异由环境影响造成,不能遗传。所以在纯系内继续选择是无效的。

意义:1)区分了遗传的变异和不遗传的变异,指出选择遗传的变异的重要性。

2)说明了在自花授粉作物的天然混杂群体中进行单株选择是有效的,但是在一个经过选择分离而基因型纯合的纯系里,继续选择是无效的。

6.什么是杂种优势?影响杂种优势大小的因素有哪些?

杂种优势是指两个遗传组成不同的亲本杂交产生的杂种一代,在生长势、生活力、繁殖力、产量和品质上比其双亲优越的现象。

杂种优势的大小与诸多因素有关。一般来说:

(1)异花授粉植物比常异花授粉植物和自花授粉植物的杂种优势强;

(2)在一定范围内,亲缘关系远、遗传差异大、双亲优缺点互补的组合,其杂种优势强,反之较弱;

(3)双亲基因型纯合程度高的杂种优势较高;

(4)杂种在适宜的环境条件下种植比在不适宜的环境条件下种植的优势大。

7.为什么自交系间杂交种的优势在F2代比品种间杂交种的F2代表现的衰退更严重?

10.A、B、C、D是4个高粱自交系,其中A和D是姊妹自交系,B和C是姊妹自交系。四个自交系可配成6个单交种,为了使双杂种的杂种优势最强,你将选哪两个单交种进行杂交,为什么?

[答案] 影响杂种优势最主要的因素是双亲间基因型差异,双亲间基因型差异越大,杂种的杂合程度

越高,杂种优势越强;同时,亲本的纯合度越高,杂种群体的整齐度越高,杂种优势最明显。单交种A×D与单交种B×C均由姊妹自交系产生,具有较高的纯合度;同时两个单交种间的遗传差异最大;因此双交种

(A×D)×(B×C)的杂种优势最强。

第十章细菌和病毒的遗传

1.试用实验的方法区分转化、接合和转导。

1)采用U形管,左右两臂分别放入两菌株,底部中间用滤片将两培养物机械隔开

2)将A、B品系分别放入U形管的两臂中,一臂塞上棉塞,另一臂接上注射器

3)当两种细菌培养物都增生到饱和状态时,用注射器轻轻地把培养液从一臂经过滤器洗到另一臂,再轻轻压过去,让培养液充分混匀,但两种品系的细胞无法接触,然后将两臂的A、B菌株离心洗涤后分别涂布到基本培养基上

4)均不产生原养型细菌,即为接合

5)若产生原养型细菌,则再加入DNA降解酶,产生菌落为转导,不产生为转化

2.细菌中通过接合形成的“部分合子”,与真核生物中通过受精形成的合子有何区别?

答:①真核生物中通过受精作用结合在一起的细胞一般只限于雌雄配子,它们通过减数分裂产生。细菌接合中的两个细胞并不是通过减数分裂产生的,它们就是一般的营养细胞。

②真核生物的单倍体雌雄配子通过受精作用融合成为一个合子细胞。细菌接合过程中两个细胞只是暂时沟通而不融合。

③真核生物的合子中包含来自雌雄配子的两套染色体,细菌接合后所形成的是部分合子,这里面包含受体(雌性)细菌的完整的染色体和供体(雄性)细菌的染色体片段。

④真核生物的减数分裂过程中任何一个染色体的任何一个部分都有可能发生重组,细菌的部分合子中发生重组的部分只限于进入受体细菌的染色体片段。

⑤高等动植物的基因重组通过染色体交换。细菌接合过程中的基因重组通过不同的方式进行,不出现联会丝复合物和交叉。

3.质粒R100携带有抗联霉素基因(strR)。携带有R100的大肠杆菌F+菌株通过接合将R100转移到F-菌株中。试设计一个实验验证R100是否真正被转移了。

4.利用噬菌体,你怎样将不能利用半乳糖的大肠杆菌(gal-)转变成能利用半乳糖的大肠杆菌(gal+)?

答:由于在能利用半乳糖的大肠杆菌中λ噬菌体与半乳糖基因( gal + )紧密连锁,因此,当此供体菌受紫外线照射后产生裂解反应,噬菌体被诱发释放,以一定的比例形成带有半乳糖基因的转导噬菌体。当这种转导噬菌体与不能利用半乳糖的大肠杆菌混合接触时,带有供体菌 gal + 基因的转导噬菌体能以一定的频率整合到受体菌上,从而使不能利用半乳糖的 gal ˉ受体菌转变成了能利用半乳糖的 gal + 细菌。

5.在大肠杆菌接合实验中,假如Hfr菌株对链霉素敏感,能发酵甘露醇,F-菌株抗联霉素,不能发生甘露醇。试问将它们接合后,应先培养在有链霉素还是无链霉素的培养基上?为什么?

答:先培养在有链霉素的培养基上。因为在含链霉素的培养基上,供体均被杀死,留下来的只有F-菌和重组体,然后再从中选择重组体。

6.在接合实验中,Hfr菌株应带有一个敏感的位点(如azis或strs),这样,在发生接合后可用选择培养基消除Hfr 供体。试问这个位点距离Hfr染色体的转移起点(O)应该远还是近,为什么?

答:这个位点距离Hfr染色体的转移起点(O)应该是远。

因为如这个敏感位点距转移起点(O)近情况下,Hfr菌株的基因从原点处开始进入受体菌,使得敏感位点较早地重组进受体菌中,在中断杂交后,除去Hfr菌株的同时也除去了重组有敏感位点的重组个体,这样就无法检测敏感位点之后的基因重组距离了。

7.对两对基因的噬菌体杂交所测定的重组频率如下:

a-b+×a+b- 3.0 %

a-c+×a+c- 2.0%

b-c+×b+c- 1.5%

试问:

(1) a、b、c三个突变在连锁图上的次序如何?为什么它们之间的距离不是累加的?

(2) 假定三因子杂交,ab+c×a+bc+,你预期哪两种类型的重组体频率最低?

(3)计算从(2)所假定的三因子杂交中出现的各种重组类型的频率。

解:噬菌体杂交能够在寄主中形成完整的二倍染色体,可以完全配对,所以噬菌体杂交中的基因重组与高等生物的遗传重组的分析方法完全相同。本题相当于三个两点测验结果。

(1)3个相互连锁的基因a,b,c,重组频率越高,基因之间的距离越远,比较它们两两重组频率可知:a与b 之间的遗传距离最大,c则是位于ab之间。由于两点测验忽略了双交换,所以它们之间的距离不是累加的。

(2)ab+c×a+bc+是三点测验,双交换型重组型的频率最低,由于c位于ab之间,所以ab+c+和a+b c应该最少。

(3)首先对照两点测验结果推算双交换值:对于acb+×a+c+b产生的6种重组型为:单交换I 单交换II 双交换a c+b a cb ac+b+a+c b+a+c+b+a+cb 当对ac进行两点测验时:则a c+b,a+c b+,ac+b+,a+cb都是重组类型,所以两点测验与三点测验的结果相同;同样对cb进行两点测验时:a cb、a+c+b+、ac+b+、a+cb都是重组类型,与两点测验与三点测验的结果相同;对ab进行两点测验时:只包括了a c+b、a+c b+、a cb、a+c+b+四种重组类型,而双交换ac+b+和a+cb却不是重组型。已知ac重组值=2.0%,cb重组值=1.5%,根据三点测验,ab之间的重组值应该=2.0 %+1.5 %=3.5 %,它与两点测验所得非 3.0 %相差两个双交换值,即2×双交换值=0.5%双交换值为0.25%。然后,计算各种重组类型的频率:双交换型:ac+b+=a+cb=0.25%2=0.125 %单交换I型:a c+b=a+c b+=(2%-0.25%)2=0.875%单交换II型:a cb=a+c+b+=(1.5%-0.25)2=0.625%

8.噬菌体三基因杂交产生以下种类和数目的后代:

+++ 235 pqr 270

Pq+ 62 p++ 7

+q+ 40 p+r 48

+qr 4 ++r 60 共:726

试问:(1)这一杂交中亲本噬菌体的基因型是什么?

(2)基因次序如何?

(3)基因之间的图距如何?

解:这是一个三点测验的分析题,正如上题指出:可以完全按照高等植物的三点测验分析方法进行:由于噬菌体是单倍体,所以单倍体各种基因型个体及其比例相当于高等生物配子的基因型及其比例。

(1)杂交后代个体最多的基因型分别是+++(235)和pqr(270)所以亲本的噬菌体基因型分别是+++和pqr。

(2)本型比较可知p位于qr之间。

9.供体菌株为Hfr arg- leu+ aziS strS,受体菌株F- arg+ leu- aziRstrS。为了检出和收集重组体F- arg+leu+aziR,应用下列哪一种培养基可以完成这一任务,为什么其他的培养基不可以?

(1)基本培养基加链霉素

(2)基本培养基加叠氮化钠和亮氨酸

(3)基本培养基加叠氮化钠

(4)在选择培养基中不加精氨酸和亮氨酸,加链霉素

(5)基本培养基加链霉素和叠氮化钠.

解:用排除法。

(1) 基本培养基加链霉素:不可以,因为供体受体都有strS基因,培养基加入链霉素,供体、受体、重组

体都被杀死。

(2) 基本培养基加叠氮化钠和亮氨酸:不可以,加入亮氨酸检出的重组体中既有arg+ leu+ azR也有arg+ leu

-aziR.

(3) 基本培养基加叠氮化钠:可以

(4)在选择培养基中不加精氨酸和亮氨酸,加链霉素:不可以,理由同(1)

(5)基本培养基加链霉素和叠氮化钠:不可以理由同(1)

10.大肠杆菌三个Hfr菌株利用中断交配技术,分别与营养缺陷型F-菌株交配,获得下表结果:

试利用上述资料建立一个大肠杆菌染色体图,包括以分钟表示的图距。并标出各Hfr菌株F因子的插入位点及转移方向。

解:首先,根据表格做出各个Hfr菌株的直线连锁图:

然后,整合直线连锁图做环形连锁图:从直线连锁图可以看出,三个不同的Hfr菌株接合做图,所得到的基因之间的遗传距离是一致的。从HfrP4X和HfrP4Kl98两个菌系的做图结果即可得知这7个基因是环形连锁的,而且可以得知lac和thr之间的距离为8。HfrRa-2的做图结果证实了上述结论。因此,该细菌的染色体全长=9+27+24+11+4+17+8=100分钟。根据基因之间的距离可以整合得到如下环状连锁图。

11.Hfr met+ thi+ pur+×F- met- thi- pur- 杂交。中断杂交试验表明,met- 最后进入受体,所以只在含thi和pur的培养基上选择met+接合后体。检验这些接合后体存在的thi+和pur+,发现各基因型个体数如下:

met+ thi+ pur+ 280 met+ t hi+ pur- 0

met+ thi- pur+ 6 met+ thi- pur- 52

试问:

(1) 选择培养基中为什么不考虑met?

(2) 基因次序是什么?

(3) 重组单位的图距有多大?

(4) 这里为什么不出现基因型met+thi+pur–的个体?

答:(1)由于met距离原点最远,因此选择培养基这不考虑met,这样选择的重组体全部是met+,也就是保证了包含三个基因的染色体长度已经全部进入受体细胞中,这样所有的基因都可以经过交换而发生重组。

根据重组做图法,可以分别计算met-thi以及met-pur之间的重组值:

因此:

(2)基因的次序为thi-pur-met

(3)met与pur间的距离为 15.38 met与thi间的距离为17.16 pur与thi间的距离为17.16-15.38=1.78

(4)由于pur位于met和thi之间,要获得met+ thi+ pur–需要两个双交换同时发生,这种频率极小,故本

题中由于群体较小没有出现。

12.大肠杆菌中三个位点ara、leu和ilvH是在1/2分钟的图距内,为了确定三者之间的正确顺序及图距,用转导噬菌体P1侵染原养型菌株ara+ leu+ilvH+,然后使裂解物侵染营养缺陷型菌株ara- leu- livH- ,对每个有选择标记基因进行实验,确定其未选择标记基因的频率,获下表结果:

根据上表三个实验结果,试说明:(1)三个基因间的连锁顺序如何?(2)这个转导片段的大小。

13.大肠杆菌Hfr gal+ lac+(A)与F- gal- lac- (B)杂交,A向B转移gal+比较早而且频率高,但是转移lac+迟而且效率低。菌株B的gal+重组体仍旧是F- 。从菌株A可以分离出一个变体叫做菌株C,菌株C向B转移lac+早而且频率高,但不转移gal+。在C×B的杂交中,B菌株的lac+重组体一般是F+。问菌株C的性质是什么?答:由于C×B可以发生基因重组,故C只能是F-或者Hfr,题中指出重组体是F+,因为一般来说Hfr很难把整条染色体转移到受体中,因此不能将完整的F因子转移到受体中,所以只能是F-菌株。由于C只转移lac不转移gal,所以该F-因子包含了lac基因及其附近的染色体片断。

14.用不同的Hfr菌株进行一系列的中断杂交试验,得到下列基因连锁图。

(1)AJFC (2)DHEB (3)IBEH (4)JFCI (5)AGDH

试描绘该细菌的环状染色体图。

第十一章细胞质遗传

1、什么叫细胞质遗传?它有哪些特点?试举例说明之。

答:细胞质遗传指由细胞质内的遗传物质即细胞质基因所决定的遗传现象和规律,又称非染色体遗传、非孟德尔遗传、染色体外遗传、核外遗传、母体遗传。

细胞质遗传的特点:⑴. 遗传方式是非孟德尔式的;杂交后一般不表现一定比例的分离。⑵. 正交和反交的遗传表现不同;F1通常只表现母体的性状,故又称母性遗传。⑶. 通过连续回交能将母本的核基因几乎全部置换掉,但母本的细胞质基因及其所控制的性状仍不消失。⑷. 由附加体或共生体决定的性状,其表现往往类似病毒的转导或感染。

举例:罗兹(Rhoades M. M.)报道玉米的第7染色体上有一个控制白色条纹的基因(ij),纯合的ijij植株叶片表现为白色和绿色相间的条纹。以这种条纹株与正常绿色进行正反杂交,并将F1自交其结果如下:当以绿色株为母本时,F1全部表现正常绿色与非绿色为一对基因的差别,纯合隐性(ijij)个体表现白化或条纹,但以条纹株为母本时,F1却出现正常绿色、条纹和白化三类植株,并且没有一定的比例,如果将F1的条纹株与正常绿色株回交,后代仍然出现比例不定的三类植株,继续用正常绿色株做父本与条纹株回交,直至ij基因被全部取代,仍然没有发现父本对这个性状的影响,可见是叶绿体变异之后的细胞质遗传方式。

2、何谓母性影响?试举例说明它与母性遗传的区别。

答:由于母本基因型的影响,使子代表现母本性状的现象叫做母性影响,又叫前定作用。

母性影响所表现的遗传现象与母性遗传十分相似,但并不是由于细胞质基因组所决定的,而是由于核基因的产物在卵细胞中积累所决定的,故不属于母性遗传的范畴。

举例:如椎实螺外壳的旋转方向有左旋和右旋,这对相对性状是母性影响。把这两种椎实螺进行正反交,F1

外壳的旋转方向都与各自的母体相似,成为右旋或为左旋,但其F2却都有全部为右旋,到F3世代才出现右旋和左旋的分离。这是由一对基因差别决定的,右旋(S+)对左旋(S)为显性,某个体的表现型并不由本身的基因型直接决定,而是由母体卵细胞的状态所决定,母本卵细胞的状态又由母本的基因型所决定。F1的基因型(S+S)决定了F2均为右旋,而F2的三种基因型决定了F3的二种类型的分离,其中S+S+和S+S的后代为右旋,SS后代为左旋。

3、如果正反交试验获得的F1表现不同,这可能是由于⑴. 性连锁;⑵. 细胞质遗传;⑶. 母性影响。你如何用试验方法确定它属于哪一种情况?

答:正反杂交获得的F1分别进行自交或近亲交配,分析F1和F2性状分离与性别的关系,如群体中性状分离符合分离规律,但雌雄群体间性状分离比例不同者为性连锁;若正交F1表现与母本相同,反交不同,正交F1与其它任何亲本回交仍表现为母本性状者,并通过连续回交将母本的核基因置换掉,但该性状仍保留在母本中,则为细胞质遗传。若F1表现与母本相似,而自交后F2表现相同,继续自交其F3表现分离,且符合分离规律,则为母性影响。

8、植物雄性不育主要有几种类型?其遗传基础如何?

答:植物雄性不育主要有核不育性、质核不育性、质不育性三种类型:

⑴.核不育型是一种由核内染色体上基因所决定的雄性不育类型,一般受简单的1-2对隐性基因所控制,纯合体表现雄性不育。也发现由显性雄性不育基因所控制的显性核不育,它只能恢复不育性,但不能保持不育性。

⑵.质核不育型是由细胞质基因和核基因互作控制的不育类型,由不育的细胞质基因和相对应的核基因所决定的。当胞质不育基因S存在时,核内必须有相对应的一对(或一对以上)隐性基因rr存在时,个体才能表现不育,只有细胞质或细胞核存在可育基因时能够表现为可育。根据不育性的败育发生的过程可分为:孢子体不育,指花粉的育性受孢子体(植株)基因型所控制,与花粉本身所含基因无关;配子体不育,指花粉育性直接受雄配子体(花粉)本身的基因所决定。不同类型需特定的恢复基因。

⑶.质不育型是由细胞质基因所控制的不育类型,只能保持不育性,但不能恢复育性。如IRRI运用远缘杂交培育的雄性不育系IR66707A (Oryza perennis细胞质,1995) 和IR69700A (Oryza glumaepatula细胞质,1996)均具有异种细胞质源,其细胞质完全不同于目前所有的水稻雄性不育系。这两个不育系属于细胞质型不育系,故其不育性都只能被保持而不能被恢复。

10、试比较线粒体DNA、叶绿体DNA和核DNA的异同?

答:与核DNA相比,线粒体DNA和叶绿体DNA具有某些特点,其中:线粒体DNA的特点:⑴. 线粒体DNA是裸露的双链分子,一般为闭合环状结构,但也有线性的;⑵. 线粒体DNA分子量为60×106,长度为10~30mm;⑶. 线粒体DNA与原核生物的DNA一样,没有重复序列;⑷. 线粒体DNA浮力密度比较低;⑸. 线粒体DNA碱基成分中G 和C有含量比A和T少;⑹. 线粒体DNA两条单链的密度不同,一条称重链(H链),另一条称轻链(L链);⑺. 线粒体DNA单个拷贝非常小,在细胞总DNA中占的比例非常小。

叶绿体DNA的特点:⑴. 叶绿体DNA也是双链分子,呈裸露的闭合环状结构;⑵.叶绿体DNA约为150kb;⑶. 叶绿体DNA一般是多拷贝的;⑷. 叶绿体DNA浮力密度因物种而异,但与核DNA有不同程度的差异;⑸. 叶绿体DNA 碱基成分因物种不同而不同,高等植物叶绿体DNA与核DNA相同,但藻类植物中的CG含量较核DNA低;⑹. 与核DNA相比,叶绿体DNA缺少5-甲基胞嘧啶。

相同之处:三者都是遗传物质(DNA),能稳定遗传给子代,且以半保留方式复制,表达方式一样,也能发生突变,诱变因素相同。

11、一般认为细胞质的雄性不育基因存在于线粒体DNA上,为什么?

答:⑴.在20世纪60年代已发现玉米不育株的线粒体亚显微结构与保持系有明显的不同,从而推断雄性不育性可能与线粒体的变异有关;

⑵.分子生物学上发现,玉米的4种类型的细胞质,正常可育型N和不育型T、C、S。它们的线粒体DNA分子组成有明显的区别,而叶绿体DNA并没有明显的差别,且以这4种类型线粒体DNA作模板,在体外合成蛋白质,N型合成的蛋白质与其它3种均不相同,也推断存在于线粒体的基因组中;

⑶.已完成的玉米N型和T型的mt DNA限制性内切酶图谱表明,N型mt DNA分别含有6组和5组重复序列,但只有其中的2组是两种mt DNA所共有的。就限制性位点的分布及Southern杂交的结果看,N型和T型所特有的碱基序列分别为70kb(N)和40kb(T),其余500kb的序列相同,且已从T型mt DNA中分离出一个专化玉米T型胞

质不育基因Furf13。

⑷.Northern blot ting 分析表明,玉米正常株与C型不育株的mt DNA基因atpa,atpb和 ckx*的转录产物的长度和数目不同,可能与C型雄性不育型的表现有直接关系。

⑸.除玉米外,在甜菜,矮牵牛,水稻等植物中,也发现不育系与可育系在叶绿体DNA的结构上没有差异,但在线粒体上有明显差别。

12、如果你发现了一株雄性不育植株,你如何确定它究竟是单倍体、远缘杂交F1、生理不育、核不育还是细胞质不育?

答:如果这植株是单倍体,那么这植株矮小,并伴有其它不良性状,雌雄均为不育,PMC减数分裂中期大多数染色体为单价体;而如果这是远缘杂交F1植株就较高大,营养生长旺盛,PMC减数分裂中期染色体配对异常,雌雄配子均不育但雌性的育性强于雄性。生理不育是不可遗传的。核不育和细胞质不育均为雄性不育,雌配子正常可育,但核不育材料与其它材料杂交的F1一般为可育,F2的育性分离呈现出明显的规律性;而细胞质不育的杂交后代可以保持不育(父本为保持系)或恢复可育(父本为纯合恢复系)。因此,可以从植株性状的遗传、植株形态、花粉母细胞镜检和杂交试验进行确定和区分。

13、用某不育系与恢复系杂交,得到F1全部正常可育。将F1的花粉再给不育系亲本授粉,后代中出现90株可育株和270株不育株。试分析该不育系的类型及遗传基础。

答:该不育系类型为孢子体不育S(r1r1r2r2)

S(r1r1r2r2)×N(R1R1R2R2)→F1S(R1r1R2r2)全部正常可育

S(r1r1r2r2)×S(R1r1R2r2)→F1 1可育(S(R1r1R2r2))+ 3不育(S(r1r1r2r2) + S(r1r1R2r2) + S(R1r1r2r2)) 该不育系的不育类型的遗传基础为:其恢复基因有两个,存在基因互作。无论是杂交还是回交后代中,个体基因型中只有同时存在两个显性恢复基因时,才能起到恢复育性的作用。因此,在回交后代中出现1:3可育株与不育株的分离。

14、现有一个不育材料,找不到它的恢复系。一般的杂交后代都是不育的。但有的F1不育株也能产生极少量F2花粉,自交得到少数后代,呈3:1不育株与可育株分离,将F1不育株与可育亲本回交,后代呈1:1不育株与可育株的分离,试分析该不育材料的遗传基础。

答:该不育材料是由单显性基因控制的不育系,其基因型为(MSMS)。该材料与可育材料(msms)杂交,其杂合体后代均为不育。一旦F1个体中出现少量可育花粉,自交后代即产生3:1的不育株与可育株的育性分离。F1

不育株与可育亲本回交,即产生1:1的育性分离。至于F1不育株出现少量可育花粉可能是该材料的育性表现受环境条件(日照和温度等)的影响,在某一特定条件下,杂合体表现为可育。

第十二章基因工程

1.什么是基因工程?它包括哪些主要步骤?

基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。

基因工程的主要操作步骤包括:⑴目的基因的制备,所谓目的基因就是按照设计所需要转移的具有遗传效应的DNA 片段.目的基因可以人工合成,也可以用限制性核酸内切酶从基因组中直接切割得到.⑵目的基因与克隆载体的重组,所谓克隆载体就是承载和保护目的基因带入受体细胞的运载者,如质粒,λ噬菌体,病毒等.⑶重组体转入受体细胞,所谓受体细胞就是接受外源目的基因的细胞,大肠杆菌是用得最多的原核细胞受体,另外,动物细胞、植物细胞都可作为受体细胞,把带有目的基因的重组体转入受体细胞要用到各种物理的、化学的和生物的方法.⑷克隆子的筛选和鉴定,带有目的基因的克隆子有没有组合到受体细胞的基因组中去,目的基因有没有在宿主细胞中通过转录、翻译表达出预先设计中想要得到的产物和表达产物如何分离、纯化等技术内容.

2.基因工程常用的工具酶有哪些?它们的工作原理是什么?

一、限制性核酸内切酶

Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。

Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。同工异

源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。显而易见,由同尾酶所产生的DNA 片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。

Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。

二、T4 DNA连接酶(T4 DNA ligase)

从T4噬菌体感染的大肠杆菌中分离的。能催化两个DNA片段的3′-OH和5′-磷酸形成3′,5′-磷酸二酯键,将两个片段连接成为一个共价结合的DNA分子。

三、逆转录酶(reverse transcriptase)

又称依赖RNA的DNA聚合酶(RNA dependent DNA polymerase,RDDP)。属于多功能性酶。

1.RDDP:以mRNA为模板,以带3′-OH的DNA片段为引物合成cDNA。

2.外切RNA酶活性:底物是RNA-DNA杂化分子中的RNA链。从RNA链5′-端外切者称为5′→3′外切RNA酶;从RNA链3′-端外切者称为3′→5′外切RNA酶,也称RNA酶H。

3.依赖DNA的DNA聚合酶:以单链DNA为模板,以带3′-OH的DNA片段为引物,从5′→3′方向合成dsDNA。

4. 重组DNA技术包括哪些主要步骤?基因克隆对载体有什么要求?

步骤:①从细胞或组织获得DNA并纯化。②用限制酶切割DNA。③将获得的限制片段连接到载体上。外源DNA片段与载体连接后形成的杂种DNA分子就成为重组DNA分子。④重组DNA导入宿主细胞,在宿主细胞内重组DNA 分子复制,产生大量相同拷贝的重组DNA分子,成为克隆。⑤克隆的DNA分子可以从宿主细胞中回收,纯化。⑥克隆的DNA可以转录和翻译,其产品可以被分离出来用于研究和商业开发。

基因克隆的载体一般要求如下:①在宿主细胞中能独立复制,即本身为复制子,有独立的复制起始位点。②载体DNA分子中有一段不影响其复制的非必需区域,既有限制酶切位点,允许外源基因插入且插入后随载体DNA分子一同进行复制和扩增。③有选择标记,便于选择含重组DNA分子的寄主细胞。④分子质量小,多拷贝,易于操作。除了上述特点外,一般还要求载体载荷外源DNA的幅度要宽,具有安全性等。

4.什么叫基因文库和基因组文库?简述cDNA文库构建的原理和过程。

基因文库是由单一来源的特定组织或器官的DNA或cDNA片段汇总形成的克隆群体。

基因组文库是使用与切割质粒相同的限制性内切酶,将供体生物体的基因组DNA切成许多片段,然后将这些片段连接到载体上而构建的一个重组DNA群体。在这个群体中包含有全部基因组DNA信息。

cDNA 文库是指某生物某发育时期所转录的全部mRNA 经反转录形成的cDNA 片段与某种载体连接而形成的克隆的集合.其基本步骤包括:RNA 的提取,要构建一个高质量的cDNA 文库,获得高质量的mRNA 是至关重要的.由于RNA 酶存在所有的生物中,并且能抵抗诸如煮沸这样的物理环境,因此建立一个无RNA 酶的环境对于制备优质RNA 很重要.在获得高质量的mRNA 后,用反转录酶引导下合成cDNA ,将双链DNA 克隆到载体中去、分析cDNA 插入片断,扩增cDNA 文库、对建立的cDNA 文库进行鉴定.这里强调的是对载体的选择,常规用的是λ噬菌体,这是因为λ DNA 两端具有由12个核苷酸的粘性末端,可用来构建柯斯质粒,这种质粒能容纳大片段的外源DNA.

5.简述T-DNA标签克隆基因的原理和技术流程。

6.农杆菌介导的遗传转化需要具备哪些条件?简述其技术流程。影响转化效率的因素有哪些?

成功转化需要具备如下条件:①高效的植物再生体系。选择容易从体细胞再生植株的受体基因型是获得转化成功的关键。②受体植物细胞对农杆菌要有很高的亲和力。③应具有有效的选择系统。④稳定的转化技术和基因表达。

流程:过夜的农杆菌(25~28℃)→稀释菌液→浸泡叶圆片或下胚轴切段(3~5min)→取出植物材料,用无菌纸吸干植物表面的菌液→共培养1~3天→转到加有选择剂和头孢菌素或羧苄青霉素(500mg/L)的培养基上→约一个月后将抗性愈伤组织转入新鲜培养基上繁殖(→抗性愈伤组织的分化与植株再生→再生植株分子检测)&(→初步分子检测)

影响转化因素:农杆菌介导的遗传转化有严格的寄主限制,比较易于转化双子叶植物,对单子叶植物转化较难,同一种植物的不同基因型转化效率也会有所不同。农杆菌菌株、菌液浓度、植物材料的生理状态、预培养处理等都对

转化效率有影响。大量实验表明,培养基中加入微量的乙酰丁香酮能明显提高转化率。

7. 简述转基因生物检测与鉴定方法的工作原理。

(1)分子检测

①PCR检测:根据被转移的外源基因设计引物,扩增外源基因片段,如果扩增出的片段与设计的一对引物之间的实际片段在长度上相吻合,说明外源基因已转入受体细胞。

②Southern杂交:一种DNA-DNA杂交,将转基因材料的DNA抽提出来,用限制性酶酶切,然后将经过酶切的DNA 片段进行琼脂凝胶电泳,经变性处理后,将DNA转移到一种膜上,再用经过放射性同位素或非放射性同位素标记的探针与膜上的DNA片段杂交,洗去膜上非特异性结合的探针后,用X光片放射自显影检测同位素杂交信号。在X 光片上有杂交带的说明是转基因植株。

③Northern杂交:一种RNA-DNA杂交。整合到植物染色体上的外源基因如果能正常表达,则转化植株细胞内有其转录产物——特异mRNA生成。

④Western杂交:为了证明外源基因表达出的mRNA能否翻译出特异的蛋白质。导入植物的外源基因正常表达时,转基因植物细胞总蛋白中应含有目的基因翻译的蛋白质。

(2)生物学性状鉴定

转移目的基因是否表达出目标性状,选择标记基因是否表达出标记性状,转基因生物是否发生其他性状变异。

8. 人们对转基因食品安全性的争议主要体现在哪些方面

(1)外源基因的毒性

(2)潜在过敏反应问题

(3)抗生素抗性风险问题

(4)营养品质改变问题

(5)“超级杂草”及生物多样性

9.综合所学知识,结合实际谈一下基因工程的应用价值及发展趋势

基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。,它克服了远缘杂交的不亲和障碍。

基因工程的应用

农牧业、食品工业

运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。

环境保护

基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。

医学

基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。

前景

科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它。

人教版四年级上册语文课后习题答案

四年级上册语文课后习题答案 1、《观潮》 1.让我们一起来想象“潮来前”、“潮来时”、“潮头过后”的景象,在交 流读后的感受。 答:“潮来前”的景象:江面上很平静,观潮人的心情急切。闷雷滚动、一条白线“潮来时”的景象:潮的声大,浪高,声如“山崩地裂”,形如“白色城墙”、“白色战马”。横贯江面 “潮头过后”的景象:潮头汹涌,漫天卷地,余威犹在,恢复平静,水位上涨。 2.我发现课文许多语句写得具体形象。找出来读一读,并谈谈对这些描 写的体会,在抄下来。 A 、宽阔的钱塘江横卧在眼前。 “横卧”一词具体形象地写出了钱塘江的宽阔。 B、再近些,只见白浪翻滚,形成一道两丈多高的白色城墙。 这句话把白浪比作白色城墙,从这个比喻中,我体会到大浪的浪潮很高、很宽、很壮观。 C、浪潮越来越近,犹如千万匹白色战马齐头并进,浩浩荡荡地飞奔而来。 这句话用比喻的修辞手法写出了大浪发出的巨响和浩大的声势。 4、《鸟的天堂》 1课文里五次提到鸟的天堂,为什么有的加了引号,有的没有加呢? 答:加引号的:引用别人说的话。 不加引号的:确实是的鸟的天堂、乐园。表明了作者对鸟的天堂的认同和赞叹. 2、读读下面的句子,体会画线部分: 我有机会看清它的真面目,真是一株大树,枝干的数目不可计数。 答:一株:说榕树只有“一株”,而不是“我”说的“许多株”,也不是“另一个朋友”说的“两株”。 枝干的数目不可计数:大榕树的枝干多,根多,“不可计数”是“没有办法清点、无法计算”的意思。“枝干的数目不可计数”的原因,是“枝上又生根,有许多根直垂到地上,伸进泥土里”。 那么多的绿叶,一簇堆在另一簇上面,不留一点儿缝隙。那翠绿的颜色,明亮的照耀着我们的眼睛,似乎每一片绿叶上都有一个新的生命在颤动。答:一簇堆在另一簇上面: 用堆可以表示出绿叶的茂盛,显出绿叶的多。 似乎每一片绿叶上都有一个新的生命在颤动: 作者从绿色中感受到有一种生命力在涌动,赞美榕树充满活力的蓬勃生机。 “起初周围是静寂的。后来忽然起了一声鸟叫。我们把手一拍,便看见一只大鸟飞了起来。接着又看见第二只,第三只。我们继续拍掌,树上就变得热闹了,到处都是鸟声,到处都是鸟影。大的,小的,花的,黑的,有的站在树枝上叫,有的飞起来,有的在扑翅膀。”

普通遗传学(第2版)杨业华课后习题及答案

1 复习题 1. 什么是遗传学?为什么说遗传学诞生于1900年? 2. 什么是基因型和表达,它们有何区别和联系? 3. 在达尔文以前有哪些思想与达尔文理论有联系? 4. 在遗传学的4个主要分支学科中,其研究手段各有什么特点? 5. 什么是遗传工程,它在动、植物育种及医学方面的应用各有什么特点? 2 复习题 1. 某合子,有两对同源染色体A和a及B和b,你预期在它们生长时期体细胞的染色体组成应该是下列哪一种:AaBb,AABb,AABB,aabb;还是其他组合吗? 2. 某物种细胞染色体数为2n=24,分别指出下列各细胞分裂时期中的有关数据: (1)有丝分裂后期染色体的着丝点数 (2)减数分裂后期I染色体着丝点数 (3)减数分裂中期I染色体着丝点数 (4)减数分裂末期II的染色体数 3. 假定某杂合体细胞内含有3对染色体,其中A、B、C来自母体,A′、B′、C′来自父本。经减数分裂该杂种能形成几种配子,其染色体组成如何?其中同时含有全部母亲本或全部父本染色体的配子分别是多少? 4. 下列事件是发生在有丝分裂,还是减数分裂?或是两者都发生,还是都不发生? (1)子细胞染色体数与母细胞相同 (2)染色体复制 (3)染色体联会 (4)染色体发生向两极运动 (5)子细胞中含有一对同源染色体中的一个 (6)子细胞中含有一对同源染色体的两个成员 (7)着丝点分裂 5. 人的染色体数为2n=46,写出下列各时期的染色体数目和染色单体数。 (1)初级精母细胞(2)精细胞(3)次级卵母细胞(4)第一级体(5)后期I (6)末期II (7)前期II (8)有丝分裂前期(9)前期I (10)有丝分裂后期 6. 玉米体细胞中有10对染色体,写出下列各组织的细胞中染色体数目。 (1)叶(2)根(3)胚(4)胚乳(5)大孢子母细胞

遗传学课后习题答案

遗传学复习资料 第一章绪论 1、遗传学:是研究生物遗传和变异的科学 遗传:亲代与子代相似的现象就是遗传。如“种瓜得瓜、种豆得豆” 变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。 2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗 传和变异。遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。遗传、变异和选择是生物进化和新品种选育的三大因素。 3、1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构 模式理念,这是遗传学发展史上一个重大的转折点。 第二章遗传的细胞学基础 原核细胞:各种细菌、蓝藻等低等生物有原核细胞构成,统称为原核生物。 真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。 染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。 染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA 双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。 染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。 着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。 细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。其中有丝分裂过程分为: (1)DNA合成前期(G1期);(2)DNA合成期(S期); (3)DNA合成后期(G2期);(4)有丝分裂期(M期)。 同源染色体:生物体中,形态和结构相同的一对染色体。 异源染色体:生物体中,形态和结构不相同的各对染色体互称为异源染色体。 无丝分裂:也称直接分裂,只是细胞核拉长,缢裂成两部分,接着细胞质也分裂,从而成为两个细胞,整个分裂过程看不到纺锤丝的出现。在细胞分裂的整个过程中,不象有丝分裂那样经过染色体有规律和准确的分裂。 有丝分裂:包含两个紧密相连的过程:核分裂和质分裂。即细胞分裂为二,各含有一个核。分裂过程包括四个时期:前期、中期、后期、末期。在分裂过程中经过染色体有规律的和准确的分裂,而且在分裂中有纺锤丝的出现,故称有丝分裂。

刘祖洞遗传学课后题答案

第二章 孟德尔定律 1、 为什么分离现象比显、隐性现象有更重要的意义 答:因为 (1) 分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的; (2) 只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 9、真实遗传的紫茎、缺刻叶植株(AACC )与真实遗传的绿茎、马铃薯叶植株(aacc )杂交,F2结果如下: 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃薯叶 247 90 83 34 (1)在总共454株F2中,计算4种表型的预期数。 (2)进行2 测验。 (3)问这两对基因是否是自由组合的 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃 薯叶 观测值(O ) 247 90 83 34 预测值(e ) (四舍五入) 255 85 85 29 454 .129 )2934(85)85583(85)8590(255)255247()(2 22 222 =-+ -+-+ -=-=∑e e o χ 当df = 3时,查表求得:<P <。这里也可以将与临界值81.72 05.0.3=χ比较。 可见该杂交结果符合F 2的预期分离比,因此结论,这两对基因是自由组合的。 11、如果一个植株有4对显性基因是纯合的。另一植株有相应的4对隐性基因是纯合的,把这两个植株相互杂交,问F2中:(1)基因型,(2)表型全然象亲代父母本的各有多少 解:(1) 上述杂交结果,F 1为4对基因的杂合体。于是,F2的类型和比例可以图示如下: 也就是说,基因型象显性亲本和隐性亲本的各是1/28 。 (2) 因为,当一对基因的杂合子自交时,表型同于显性亲本的占3/4,象隐性亲 本的占1/4。所以,当4对基因杂合的F 1自交时,象显性亲本的为(3/4)4 ,象隐性亲本的 为(1/4)4 = 1/28 。 第三章 遗传的染色体学说

遗传学课后答案

一) 名词解释: 遗传学:研究生物遗传和变异的科学。 遗传:亲代与子代相似的现象。 变异:亲代与子代之间、子代个体之间存在的差异. (二)选择题: 1.1900年(2))规律的重新发现标志着遗传学的诞生。 (1)达尔文(2)孟德尔(3)拉马克(4)克里克 2.建立在细胞染色体的基因理论之上的遗传学称之(4) (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)经典遗传学 3.遗传学中研究基因化学本质及性状表达的内容称( 1 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)细胞遗传学 4.通常认为遗传学诞生于(3)年。 (1)1859 (2)1865 (3)1900 (4)1910 5.公认遗传学的奠基人是(3): (1)J·Lamarck (2)T·H·Morgan (3)G·J·Mendel (4)C·R·Darwin 6.公认细胞遗传学的奠基人是(2): (1)J·Lamarck (2)T·H·Morgan (3)G·J·Mendel (4)C·R·Darwin 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。 答:有丝分裂和减数分裂的区别列于下表: 有丝分裂的遗传意义: 首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。 减数分裂的遗传学意义: 首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色(n)雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体2n。保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。 其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n对染色体,就可能有2n种自由组合方式。 例如,水稻n=12,其非同源染色体分离时的可能组合数为212 = 4096。各个子细胞之间在染色体组成上将可能出现多种多样的组合。 此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。为生物的变异提供了重要的物质基础。 2. 水稻的正常的孢子体组织,染色体数目是12对,问下列各组织染色体数是多少? 答:(1)胚乳:32;(2)花粉管的管核:12;(3)胚囊:12;(4)叶:24;(5)根端:24;(6)种子的胚:24;(7)颖片:24。 3. 用基因型Aabb的玉米花粉给基因型AaBb的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例为何? 答:胚乳是三倍体,是精子与两个极核结合的结果。预期下一代胚乳的基因型和比例为下列所示 4. 某生物有两对同源染色体,一对是中间着丝粒,另一对是端部着丝粒,以模式图方式画出:

部编版四年级下册语文课后习题参考答案

部编版四年级下册语文课后习题参考答案第1课古诗词三首 2.读下面的诗句,说说你眼前浮现出了怎样的情景。 〔答案〕“儿童急走追黄蝶,飞入菜花无处寻。”描绘了儿童捕蝶的欢快场景。 “日长篱落无人过,惟有蜻蜓蛱蝶飞。”让我们看到农民早出晚归的场景,蛱蝶飞又让我们感受到静中有动的情景。 “大儿锄豆溪东,中儿正织鸡笼。最喜小儿亡赖,溪头卧剥莲蓬。”大儿子在溪东豆地里锄草,二儿子在家里编织鸡笼,三儿子只知任意地调皮玩耍,躺卧在溪边剥莲蓬吃。 第2课乡下人家 1.朗读课文,想象画面。如果给课文配画,你觉得可以画几幅?试着给每幅画取个名字。 〔答案〕7幅,屋前搭瓜架、门前种鲜花、屋后春笋冒、院里鸡觅食、河中鸭嬉戏、门前吃晚饭、夜静催眠曲。 2.你对课文描写的哪一处景致最感兴趣?和同学交流。 〔答案〕描写门前五颜六色的花和雨后春笋的景致我最感兴趣,本来是朴素的乡下,可是门前这些五彩缤纷的花朵、雨后的春笋又给本来朴素的乡下带来了勃勃生机,读完以后让我也向往乡下这样恬静安逸的生活。 3.读句子,再从课文中找出像这样写得生动形象的句子,抄写下来。

〔答案〕他们的屋后倘若有一条小河,那么在石桥旁边,在绿树荫下,会见到一群鸭子游戏水中,不时地把头扎到水下去觅食。天边的红霞,向晚的微风,头上飞过的归巢的鸟儿,都是他们的好友,它们和乡下人家一起,绘成了一幅自然、和谐的田园风景画。秋天到了,纺织娘寄住在他们屋前的瓜架上。月明人静的夜里,它们便唱起歌来:“织,织,织,织啊!织,织,织,织啊!”那歌声真好听,赛过催眠曲,让那些辛苦一天的人们,甜甜蜜蜜地进入梦乡。 选做 你眼里的乡村景致是怎样的?用一段话写下来。 〔答案〕大树也绿,小草也茂盛,花朵也艳丽,田园的风光真是美。近处,一棵棵大杨树挺直身板,抬起头,密密麻麻的绿叶里闪过一丝丝日影。远远地看去,这些杨树就像一名名威武的保卫者。小草又嫩又绿,茂密的草地就像一大块碧绿的地毯,躺在软软的绿地上,比躺在沙发上还要舒服。那的野花不是一般的香,在千里之外都可以闻到。每一朵花都神气十足地仰起头。每个人家的门前都有一块可爱的菜地,种有茄子、黄瓜、辣子、豇豆、草莓等蔬菜水果。从高处往下看,那些蔬菜水果就像一个个精英士兵,你就像那位大将军,准备率领十万精英去攻打敌人的城池。晚上,无数颗星星眨着眼睛,等我们睡着,星星才肯离开…… 乡下的田园风光真是美不胜收,哪里的景色都比不上田园风光的美丽。

【精品】部编版四年级语文上册课后习题参考答案

部编版四年级语文上册课后习题参考答案 第一课《观潮》 一、说说课文是按照什么顺序描写钱塘江大潮的,你的头脑中浮现出怎样的画面,选择印象最深和同学交流。 答:课文按潮前,潮时,潮过后的顺序观察描写钱塘江大潮。 “潮前”的景象:江面上很平静,观潮人的心情急切。闷雷滚动、一条白线“潮时”的景象:潮的声大,潮头有数丈之高,声如“山崩地裂”,形如“白色城墙”、“白色战马”,横贯江面。给人的印象就是如巨雷般的大潮像千军万马席地而卷,在呐喊、嘶鸣中奔。狂潮拍石,如同几里岸边同时金钟齐鸣。 “潮头过后”的景象:潮头汹涌,漫天卷地,余威犹在,恢复平静,水位上涨。 我印象最深的是“潮时”的景象:那条白线很快地向我们移,逐渐拉长,变粗,横贯江面。再近些,只见白浪翻滚,形成一堵两丈多高的水墙。浪潮越越近,犹如千万匹白色战马齐头并进,浩浩荡荡地飞奔而;那声音如同山崩地裂,好像大地都被震得颤动起。霎时,潮头奔腾西去,可是余波还在漫天卷地般涌,江面上依旧风号浪吼。 二、读下面这首诗,从课文中找出与诗的内容相关的句子。 浪淘沙唐·刘禹锡

八月涛声吼地,头高数丈触山回。 须臾却入海门去,卷起沙堆似雪堆。 与诗的内容相关的句子: 那条白线很快地向我们移,逐渐拉长,变粗,横贯江面。再近些,只见白浪翻滚,形成一堵两丈多高的水墙。 浪潮越越近,犹如千万匹白色战马齐头并进,浩浩荡荡地飞奔而;那声音如同山崩地裂,好像大地都被震得颤动起。 第二课《走月亮》 一、阿妈牵着我“我”走过“月光闪闪的溪岸”,“细细的溪水,流着山草和野花的香味,流着月光……”你的头脑中浮出了怎样的画面?课文中还有哪些画面给你留下了深刻的印象?和同学交流。 提示:山草、野花、月光倒映在溪水里,随着溪水流动着,就像是“流着山草、野花的香味,流着月光”。这里用了暗喻的手法,把阿妈比作美丽的月亮,牵着那些闪闪烁烁的小星星,也就是“我”在天上走着。这样写形象生动,写出阿妈对我的种种启示和引导,让读者更具体地了解我和阿妈走月亮的含义。 画面:迷人的秋夜,阿妈牵着“我”,在月光下,沿着乡间的小路,沿着小溪走着走着……人和美丽的月光、潺潺的流水、芳香的山草、野花,构成了一幅美妙的乡村夜景图。 给我留下了深刻印象的画面还有:“秋虫唱着,夜鸟拍打着翅膀,鱼儿跃出水面,泼剌声里银光一闪…….从果园那边飘了果子的甜香。是雪梨,还是火把梨?还是紫葡萄?都有,月光下,在坡头上那片果园里,这些好吃的果子挂满枝头。沟水汩汩,很满意的响着。是啊,旁边就是它浇灌过的田地。在这片地里我们种过油菜,种过蚕豆。我在豆田里找过兔草。我把蒲公英吹得飞啊,飞,飞得

遗传学课后习题及答案解析

Chapter 1 An Introduction to Genetics (一) 名词解释: 遗传学:研究生物遗传和变异的科学。 遗传:亲代与子代相似的现象。 变异:亲代与子代之间、子代个体之间存在的差异. (二)选择题: 1.1900年(2))规律的重新发现标志着遗传学的诞生。 (1)达尔文(2)孟德尔(3)拉马克(4)克里克 2.建立在细胞染色体的基因理论之上的遗传学, 称之( 4 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)经典遗传学 3.遗传学中研究基因化学本质及性状表达的容称( 1 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)细胞遗传学 4.通常认为遗传学诞生于(3)年。 (1)1859(2)1865(3)1900(4)1910 5.公认遗传学的奠基人是(3): (1)J·Lamarck(2)T·H·Morgan(3)G·J·Mendel(4)C·R·Darwin 6.公认细胞遗传学的奠基人是(2): (1)J·Lamarck(2)T·H·Morgan(3)G·J·Mendel(4)C·R·Darwin Chapter 2 Mitosis and Meiosis 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。 答:有丝分裂和减数分裂的区别列于下表:

有丝分裂的遗传意义: 首先:核每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。 减数分裂的遗传学意义 首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色体(n )雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体 2n 。保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。 其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n 对染色体,就可能有2n 种自由组合方式。 例如,水稻n =12,其非同源染色体分离时的可能组合数为212 = 4096。各个子细胞之间在染色体组成上将可能出现多种多样的组合。 此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。为生物的变异提供了重要的物质基础。 2. 水稻的正常的孢子体组织,染色体数目是12对,问下列各组织染色体数是多少? 答:(1)胚乳:32;(2)花粉管的管核:12;(3)胚囊:12;(4)叶:24;(5)根端:24;(6)种子的胚:24;(7)颖片:24。 3. 用基因型Aabb 的玉米花粉给基因型AaBb 的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例为何? 答:胚乳是三倍体,是精子与两个极核结合的结果。预期下一代胚乳的基因型和比例为下列所示:

人教版四年级数学上册练习题及答案

人教版四年级数学上册练习题及答案 一、直接写出下面各题得数. 8×8+52÷4 160+40÷ ×125 ×6×8÷26×8 二、把下面运算中不正确的地方改过来. 1.÷25×2.600× =800÷25× =600× ==24000 三、把下面各组式子列成综合算式. 1.3280÷16=202.23×16=368 205×10=2050625-368=257 6000-2050=3950 1028÷257=4 四、计算下面各题. 1.280+840÷24×5 2.85× 3.58870÷ 4.80400- 五、装订车间每人每小时装订课本640册,照这样计算,12人8小时装订课本多少册? 六、汽车队开展节约用油活动,12辆车一年共节约汽油7200千克,平均每辆车每个月节约汽油多少千克?

七、一部电话机售价320元,一台“彩电”的售价是电话机售价的8倍,一台电脑的售价比“彩电”售价的3倍还多1000元,一台电脑多少元? 八、两个车间生产零件,5天后甲车间生产1520个零件,乙车间生产1280个零件,若每天工作8小时,乙车间比甲车间每小时少生产多少个零件? 参考答案 三、1.6000-3280÷16×10 2.1028÷ 四、1.45.2975 3.40.76042 五、640×12×8=1440 六、7200÷12÷12=50 七、320×8×3+1000=8680 八、÷=6 综合能力训练 一、填空. 1.学校有足球24个,是篮球的3倍,学校有足球,篮球共个. 2.甲数是15,乙数比甲数的2倍多3,乙数比甲数多..甲、乙两数的平均数是14,乙、丙两数的平均数是18,甲、丙两数的平均数是16.甲、乙、丙三数的平均数是.

遗传学课后习题与答案

第二章孟德尔定律 1、为什么分离现象比显、隐性现象有更重要的意义? 答:因为1、分离规律就是生物界普遍存在的一种遗传现象,而显性现象的表现就是相对的、有条件的;2、只有遗传因子的分离与重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 2、在番茄中,红果色(R)对黄果色(r)就是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr (2)Rr×rr (3)Rr×Rr (4) Rr×RR (5)rr×rr 3、下面就是紫茉莉的几组杂交,基因型与表型已写明。问它们产生哪些配子?杂种后代的基因型与表型怎样?(1)Rr × RR (2)rr × Rr (3)Rr × Rr 粉红 红色白色粉红粉红粉红 合的。问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd (2)XwDd×wwdd(3)Wwdd×wwDd (4)Wwdd×WwDd 5、在豌豆中,蔓茎(T)对矮茎(t)就是显性,绿豆荚(G)对黄豆荚(g)就是显性,圆种子(R)对皱种子(r)就是显性。

现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr (2)TtGgrr×ttGgrr解:杂交组合TTGgRr × ttGgrr: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr ×ttGgrr: 即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。 6、在番茄中,缺刻叶与马铃薯叶就是一对相对性状,显性基因C控制缺刻叶,基因型cc就是马铃薯叶。紫茎与绿茎就是另一对相对性状,显性基因A控制紫茎,基因型aa的植株就是绿茎。把紫茎、马铃薯叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比。如果把F1:(1)与紫茎、马铃薯叶亲本回交;(2)与绿茎、缺刻叶亲本回交;以及(3)用双隐性植株测交时,下代表型比例各如何? 解:题中F2分离比提示:番茄叶形与茎色为孟德尔式遗传。所以对三种交配可作如下分析: (1) 紫茎马铃暮叶对F1的回交:

新部编四年级下册语文课后习题参考答案(全册)

部编版四年级语文下册课后习题参考答案 第1课古诗词三首 2.读下面的诗句,说说你眼前浮现出了怎样的情景。 〔答案大家找〕“儿童急走追黄蝶,飞入菜花无处寻。”描绘了儿童捕蝶的欢快场景。 “日长篱落无人过,惟有蜻蜓蛱蝶飞。”让我们看到农民早出晚归的场景,蛱蝶飞又让我们感受到静中有动的情景。 “大儿锄豆溪东,中儿正织鸡笼。最喜小儿亡赖,溪头卧剥莲蓬。”大儿子在溪东豆地里锄草,二儿子在家里编织鸡笼,三儿子只知任意地调皮玩耍,躺卧在溪边剥莲蓬吃。 第2课乡下人家 1.朗读课文,想象画面。如果给课文配画,你觉得可以画几幅?试着给每幅画取个名字。 〔答案大家找〕 7幅,屋前搭瓜架、门前种鲜花、屋后春笋冒、院里鸡觅食、河中鸭嬉戏、门前吃晚饭、夜静催眠曲。 2.你对课文描写的哪一处景致最感兴趣?和同学交流。 〔答案大家找〕描写门前五颜六色的花和雨后春笋的景致我最感兴趣,本来是朴素的乡下,可是门前这些五彩缤纷的花朵、雨后的春笋又给本来朴素的乡下带来了勃勃生机,读完以后让我也向往乡下这样恬静安逸的生活。 3.读句子,再从课文中找出像这样写得生动形象的句子,抄写下来。 〔答案大家找〕他们的屋后倘若有一条小河,那么在石桥旁边,在绿树荫下,会见到一群鸭子游戏水中,不时地把头扎到水下去觅食。天边的红霞,向晚的微风,头上飞过的归巢的鸟儿,都是他们的好友,它们和乡下人家一起,绘成了一幅自然、和谐的田园风景画。秋天到了,纺织娘寄住在他们屋前的瓜架上。月明人静的夜里,它们便唱起歌来:“织,织,织,织啊!织,织,织,织啊!”那歌声真好听,赛过催眠曲,让那些辛苦一天的人们,甜甜蜜蜜地进入梦乡。 选做 你眼里的乡村景致是怎样的?用一段话写下来。 〔答案大家找〕大树也绿,小草也茂盛,花朵也艳丽,田园的风光真是美。近处,一棵棵大杨树挺直身板,抬起头,密密麻麻的绿叶里闪过一丝丝日影。远远地看去,这些杨树就像一名名威武的保卫者。小草又嫩又绿,茂密的草地就像一大块碧绿的地毯,躺在软软的绿地上,比躺在沙发上还要舒服。那的野花不是一般的香,在千里之外都可以闻到。每一朵花都神气十足地仰起头。每个人家的门前都有一块可爱的菜地,种有茄子、黄瓜、辣子、豇豆、草莓等蔬菜水果。从高处往下看,

遗传学课后题答案章

遗传学课后题答案章

————————————————————————————————作者:————————————————————————————————日期:

第二章孟德尔定律 1、答:因为 (1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;(2)只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 2、解: 序号杂交基因型表现型 1 RR×rr Rr 红果色 2 Rr×rr 1/2Rr,1/2rr 1/2红果色,1/2黄果色 3 Rr×Rr 1/4RR,2/4Rr,1/4rr 3/4红果色,1/4黄果色 4 Rr×RR 1/2RR,1/2Rr 红果色 5 rr×rr rr 黄果色 3、解: 序号杂交配子类型基因型表现型 1 Rr × RR R,r;R 1/2RR,1/2Rr 1/2红色,1/2粉红 2 rr × Rr r;R,r 1/2Rr,1/2rr 1/2粉红,1/2白色 3 Rr × Rr R,r 1/4RR,2/4Rr,1/4rr 1/4红色,2/4粉色,1/4白色 4、解: 序号杂交基因型表现型 1 WWDD×wwdd WwDd 白色、盘状果实 2 WwDd×wwdd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状 2 wwDd×wwdd 1/2wwDd,1/2wwdd 1/2黄色、盘状,1/2黄色、球状 3 Wwdd×wwDd 1/4WwDd,1/4Wwdd,1/4wwDd,1/4wwdd,1/4白色、盘状,1/4白色、球状,1/4黄色、盘状,1/4黄色、球状 4 Wwdd×WwDd 1/8WWDd,1/8WWdd,2/8WwDd,2/8Wwdd,1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状 5.解:杂交组合TTGgRr × ttGgrr: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr ×ttGgrr: 即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。 6.解:题中F2分离比提示:番茄叶形和茎色为孟德尔式遗传。所以对三种交配可作如下分析: (1) 紫茎马铃暮叶对F1的回交: AaCc×AAc c→AACc、AAcc、AaCc、Aacc 表型二种,比例为1:1 (2) 绿茎缺刻叶对F1的回交: AaCc×aaC C→AaCC、AaCc、aaCC、aaCc 表型二种,比例为1:1 (3)双隐性植株对Fl测交: AaCc×aacc AaCc Aacc aaCc aacc 1紫缺:1紫马:1绿缺:1绿马

最新部编统编版四年级下册语文课后习题参考答案

统编版语文四年级下册教材课后题参考答案 第1课古诗词三首 2.读下面的诗句,说说你眼前浮现出了怎样的情景。 〔答案大家找〕“儿童急走追黄蝶,飞入菜花无处寻。”描绘了儿童捕蝶的欢快场景。 “日长篱落无人过,惟有蜻蜓蛱蝶飞。”让我们看到农民早出晚归的场景,蛱蝶飞又让我们感受到静中有动的情景。 “大儿锄豆溪东,中儿正织鸡笼。最喜小儿亡赖,溪头卧剥莲蓬。”大儿子在溪东豆地里锄草,二儿子在家里编织鸡笼,三儿子只知任意地调皮玩耍,躺卧在溪边剥莲蓬吃。 第2课乡下人家 1.朗读课文,想象画面。如果给课文配画,你觉得可以画几幅?试着给每幅画取个名字。 〔答案大家找〕 7幅,屋前搭瓜架、门前种鲜花、屋后春笋冒、院里鸡觅食、河中鸭嬉戏、门前吃晚饭、夜静催眠曲。 2.你对课文描写的哪一处景致最感兴趣?和同学交流。 〔答案大家找〕描写门前五颜六色的花和雨后春笋的景致我最感兴趣,本来是朴素的乡下,可是门前这些五彩缤纷的花朵、雨后的春笋又给本来朴素的乡下带来了勃勃生机,读完以后让我也向往乡下这样恬静安逸的生活。 3.读句子,再从课文中找出像这样写得生动形象的句子,抄写下来。 〔答案大家找〕他们的屋后倘若有一条小河,那么在石桥旁边,在绿树荫下,会见到一群鸭子游戏水中,不时地把头扎到水下去觅食。天边的红霞,向晚的微风,头上飞过的归巢的鸟儿,都是他们的好友,它们和乡下人家一起,绘成了一幅自然、和谐的田园风景画。秋天到了,纺织娘寄住在他们屋前的瓜架上。月明人静的夜里,它们便唱起歌来:“织,织,织,织啊!织,织,织,织啊!”那歌声真好听,赛过催眠曲,让那些辛苦一天的人们,甜甜蜜蜜地进入梦乡。

选做 你眼里的乡村景致是怎样的?用一段话写下来。 〔答案大家找〕大树也绿,小草也茂盛,花朵也艳丽,田园的风光真是美。近处,一棵棵大杨树挺直身板,抬起头,密密麻麻的绿叶里闪过一丝丝日影。远远地看去,这些杨树就像一名名威武的保卫者。小草又嫩又绿,茂密的草地就像一大块碧绿的地毯,躺在软软的绿地上,比躺在沙发上还要舒服。那的野花不是一般的香,在千里之外都可以闻到。每一朵花都神气十足地仰起头。每个人家的门前都有一块可爱的菜地,种有茄子、黄瓜、辣子、豇豆、草莓等蔬菜水果。从高处往下看,那些蔬菜水果就像一个个精英士兵,你就像那位大将军,准备率领十万精英去攻打敌人的城池。晚上,无数颗星星眨着眼睛,等我们睡着,星星才肯离开…… 乡下的田园风光真是美不胜收,哪里的景色都比不上田园风光的美丽。 第3课天窗 1.默读课文。说说天窗在哪儿,为什么要开天窗。 〔答案大家找〕大人们在屋顶开一个小方洞,装一块玻璃板,这就是天窗了。为的是在大风大雨,北风呼呼的冬天可以让屋子里有光亮不会像地洞那样黑了。 2.在什么样的情况下,小小的天窗成了孩子们“唯一的慰藉”?找出相关句子体会体会,再有感情地读一读。 〔答案大家找〕夏天阵雨来了时,孩子们顶喜欢在雨里跑跳,仰着脸看闪电,然而大人们偏就不许。“到屋里来啊!”跟着木板窗的关闭,孩子们也就被关在地洞似的屋里了。晚上,当你被逼着上床去“休息”的时候,也许你还忘不了月光下的草地河滩。在这些情况下天窗就是唯一的慰藉了。 3.读句子,回答括号里的问题。 〔答案大家找〕 (1)“扫荡”让我们感受到外面风雨的猛烈。因为我们可以透过这小小的天窗发挥无穷的想象,想象着外面猛烈的风雨,这要比真实的感受大十倍百倍。 (2) 从那小小的天窗,孩子们可以想象卜落卜落跳的雨滴,还能想象会唱歌的夜莺,霸气十足的猫头鹰,这些从“无”到“有”,从“虚”到“实”都是孩子们从无穷的想象中得来的。

遗传学课后习题及答案

Chapter 1 AnIntroduction toGenetics (一)名词解释: 遗传学:研究生物遗传和变异的科学。 遗传:亲代与子代相似的现象。 变异:亲代与子代之间、子代个体之间存在的差异. (二)选择题:?1.1900年(2))规律的重新发现标志着遗传学的诞生. ?(1)达尔文(2)孟德尔(3) 拉马克(4)克里克 2.建立在细胞染色体的基因理论之上的遗传学, 称之( 4 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学(4)经典遗传学?3.遗传学中研究基因化学本质及性状表达的内容称(1 )。 (1)分子遗传学(2)个体遗传学(3)群体遗传学 (4)细胞遗传学 4. 通常认为遗传学诞生于(3)年。?(1)1859 (2)1865 (3) 1900 (4)1910?5.公认遗传学的奠基人是(3): (1)J·Lamarck (2)T·H·Morgan(3)G·J·Mendel (4)C·R·Darwin?6.公认细胞遗传学的奠基人是(2):?(1)J·Lamarck (2)T·H·Morgan(3)G·J·Mendel(4)C·R·Darwin Chapter2Mitosisand Meiosis 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。 答:有丝分裂和减数分裂的区别列于下表:

有丝分裂的遗传意义: 首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。 减数分裂的遗传学意义 首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色体(n)雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体2n。保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。 其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n对染色体,就可能有2n种自由组合方式。 例如,水稻n=12,其非同源染色体分离时的可能组合数为212 =4096。各个子细胞之间在染色体组成上将可能出现多种多样的组合。 此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。为生物的变异提供了重要的物质基础。 2。水稻的正常的孢子体组织,染色体数目是12对,问下列各组织染色体数是多少? 答:(1)胚乳:32;(2)花粉管的管核:12;(3)胚囊:12;(4)叶:24;(5)根端:24;(6)种子的胚:24;(7)颖片:24。 3。用基因型Aabb的玉米花粉给基因型AaBb的玉米雌花授粉,你预期下一代胚乳的基因型是什么类型,比例为何? 答:胚乳是三倍体,是精子与两个极核结合的结果。预期下一代胚乳的基因型和比例为下列所示: 4. 某生物有两对同源染色体,一对是中间着丝粒,另一对是端部着丝粒,以模式图方式画出:(1)减数第一次分裂的中期图; (2)减数第二次分裂的中期图。

刘祖洞遗传学习题答案

1、在番茄中,圆形(O )对长形(o )是显性,单一花序(S )对复状花序(s )是显性。这两对基因是连锁的,现有一杂交 得到下面4种植株: 圆形、单一花序(OS )23 长形、单一花序(oS )83 圆形、复状花序(Os )85 长形、复状花序(os )19 问O —s 间的交换值是多少? 解:在这一杂交中,圆形、单一花序(OS )和长形、复状花序(os )为重组型,故O —s 间的交换值为:%20%10019 85832319 23=?++++= r 2、根据上一题求得的O —S 间的交换值,你预期 杂交结果,下一代4种表型的比例如何? O_S_ :O_ss :ooS_ :ooss = 51% :24% :24% :1%, 即4种表型的比例为: 圆形、单一花序(51%), 圆形、复状花序(24%), 长形、单一花序(24%), 长形、复状花序(1%)。 3、在家鸡中,白色由于隐性基因c 与o 的两者或任何一个处于纯合态有色要有两个显性基因C 与O 的同时存在,今有下列的交配: ♀CCoo 白色 × ♂ccOO 白色 ↓ 子一代有色 子一代用双隐性个体ccoo 测交。做了很多这样的交配,得到的后代中,有色68只,白色204只。问o —c 之间有连锁吗?如有连锁,交换值是多少? 解:根据题意,上述交配: ♀ CCoo 白色 ccOO 白色 ♂

↓ 有色CcOo ccoo 白色 ↓ 有色C_O_ 白色(O_cc ,ooC_,ccoo ) 416820468=+ 4 3 68204204=+ 此为自由组合时双杂合个体之测交分离比。 可见,c —o 间无连锁。 (若有连锁,交换值应为50%,即被测交之F1形成Co :cO :CO :co =1 :1 :1 :1的配子;如果这样,那么c 与o 在连锁图上相距很远,一般依该二基因是不能直接测出重组图距来的)。 4、双杂合体产生的配子比例可以用测交来估算。现有一交配如下: 问:(1)独立分配时,P=? (2)完全连锁时,P=? (3)有一定程度连锁时,p=? 解:题目有误,改为:)2 1( )21 (aabb aaBb Aabb AaBb p p p p -- (1)独立分配时,P = 1/4; (2)完全连锁时,P = 0; (3)有一定程度连锁时,p = r /2,其中r 为重组值。 5、在家鸡中,px 和al 是引起阵发性痉挛和白化的伴性隐性基因。今有一双因子杂种公鸡 al Px Al px 与正常母鸡交配,孵出74只小鸡,其中16只是白化。假定小鸡没有一只早期死亡,而px 与al 之间的交换值是10%,那么在小鸡4周龄时,显出阵发性痉挛时,(1)在白化小鸡中有多少数目显出这种症状,(2)在非白化小鸡中有多少数目显出这种症状? 解:上述交配子代小鸡预期频率图示如下: ♀W Al Px al Px Al px ♂

遗传学课后答案

第四章连锁遗传和性连锁 1.试述交换值、连锁强度和基因之间距离三者的关系。 答:交换值是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频 率,或等于交换型配子占总配子数的百分率。交换值的幅度经常变动在0~50%之间。交换值越接近0%,说明连锁强度越大,两个连锁的非等位基因之间发生交换的孢母细胞 数越少。当交换值越接近50%,连锁强度越小,两个连锁的非等位基因之间发生交换的孢母细胞数越多。由于交换值具有相对的稳定性,所以通常以这个数值表示两个基因在同一染色体上的相对距离,或称遗传距离。交换值越大,连锁基因间的距离越远;交换值越小,连锁基因间的距离越近。 2.在大麦中,带壳(N)对裸粒(n)、散穗(L)对密穗(l)为显性。今以带壳、散穗与 裸粒、密穗的纯种杂交,F1表现如何?让F1与双隐纯合体测交,其后代为: 带壳、散穗201株裸粒、散穗18株 带壳、密穗20株裸粒、密穗203株 试问,这2对基因是否连锁?交换值是多少?要使F2出现纯合的裸粒散穗20株,至少应中多少株? 答:F1表现为带壳散穗(NnLl)。 测交后代不符合1:1:1:1的分离比例,亲本组合数目多,而重组类型数目少,所以这两对基因为不完全连锁。 交换值%=((18+20)/(201+18+20+203))×100%=8.6% F1的两种重组配子Nl和nL各为8.6%/2=4.3%,亲本型配子NL和nl各为(1-8.6%)/2=45.7%; 在F2群体中出现纯合类型nnLL基因型的比例为: 4.3%×4.3%=18.49/10000, 因此,根据方程18.49/10000=20/X计算出,X=10817,故要使F2出现纯合的裸粒散穗20株,至少应种10817株。 3.在杂合体ABy/abY,a和b之间的交换值为6%,b和y之间的交换值为10%。在没有 干扰的条件下,这个杂合体自交,能产生几种类型的配子;在符合系数为0.26时,配子的比例如何? 答:这个杂合体自交,能产生ABy、abY、aBy、AbY、ABY、aby、Aby、aBY8种类型 的配子。 在符合系数为0.26时,其实际双交换值为:0.26×0.06×0.1×100=0.156%,故其配子的比例为:ABy42.078:abY42.078:aBy2.922:AbY2.922:ABY4.922:aby4.922:Aby0.078:aBY0.078。 3.设某植物的3个基因t、h、f依次位于同一染色体上,已知t-h相距14cM,现有如下杂 交:+++/thf×thf/thf。问:①符合系数为1时,后代基因型为thf/thf的比例是多少?②符合系数为0时,后代基因型为thf/thf的比例是多少? 答:①1/8②1/2 5.a、b、c3个基因都位于同一染色体上,让其杂合体与纯隐性亲本测交,得到下列结果: +++74 ++c382 +b+3 +bc98 a++106

遗传学(王亚馥,戴灼华主编)课后习题答案知识讲解

第2章孟德尔式遗传分析: 习题解 1 题解a:(1) 他们第一个孩子为无尝味能力的女儿的概率是1/8; (2) 他们第一个孩子为有尝味能力的孩子的概率是3/4; (3) 他们第一个孩子为有尝味能力儿子的概率是3/8。 b:他们的头两个孩子均为品尝者的概率为9/16。 2 题解:已知半乳糖血症是常染色体隐性遗传。因为甲的哥哥有半乳糖症,甲的父母必然是致病基因携带者,而甲表现正常,所以甲有2/3的可能为杂合体。乙的外祖母患有半乳糖血症,乙的母亲必为杂合体,乙有1/2的可能为杂合体,二人结婚,每个孩子都有1/12的可能患病。 3 题解: a:该病是常染色体显性遗传病。 因为该系谱具有常显性遗传病的所有特点: (1)患者的双亲之一是患者; (2)患者同胞中约1/2是患者,男女机会相等; (3)表现连代遗传。 b:设致病基因为A,正常基因a,则该家系各成员的可能基因型如图中所示 c:1/2 4 题解a:系谱中各成员基因型见下图 b:1/4X1/3X1/4=1/48 c:1/48 d:3/4 5题解:将红色、双子房、矮蔓纯合体(RRDDtt)与黄色、单子房、高蔓纯合体(rrddTT)杂交,在F2中只选黄、双、高植株((rrD-T-))。而且,在F2中至少要选9株表现黄、双高的植株。分株收获F3的种子。次年,分株行播种选择无性状分离的株行。便是所需黄、双、高的纯合体。 6 题解:正常情况:YY褐色(显性);yy黄色(隐性)。用含银盐饲料饲养:YY褐色→黄色(发生表型模写)因为表型模写是环境条件的影响,是不遗传的。将该未知基因型的黄色与正常黄色在不用含银盐饲料饲养的条件下,进行杂交,根据子代表型进行判断。如果子代全是褐色,说明所测黄色果蝇的基因型是YY。表现黄色是表型模写的结果。如果子代全为黄色,说明所测黄色果蝇的基因型是yy。无表型模写。 7 题解: a:设计一个有效方案。用基因型分别为aaBBCC、AAbbCC、AABBcc的三个纯合体杂交,培育优良纯合体aabbcc。由于三对隐性基因分散在三个亲本中。其方法是第一年将两个亲本作杂交。第二年将杂合体与另一纯合亲本杂交。第三年,将杂种自交,分株收获。第四年将自交种子分株行播种。一些株行中可分离出aabbcc植株。 b:第一年将两个亲本作杂交。子代全为两对基因杂合体(AaBbCC或AaBBCc或AABbCc),表现三显性。第二年将杂合体与另一纯合亲本杂交,杂交子代有4种基因型,其

相关主题
文本预览
相关文档 最新文档