当前位置:文档之家› 继电器控制实验

继电器控制实验

继电器控制实验
继电器控制实验

电气工程学院课程设计说明书

设计题目:继电器控制实验

系别:

年级专业:

学号:

学生姓名:

指导教师:

教师职称:

电气工程学院《课程设计》任务书课程名称:单片机原理及应用课程设计

2、学生那份任务书要求装订到课程设计报告前面。

电气工程学院教务科

目录

摘要 (1)

绪论 (2)

第一章基本原理 (3)

1.1电磁继电器 (3)

1.2电磁继电器的驱动 (4)

1.3单片机基本功能原理 (5)

第三章硬件设计电路 (7)

第四章程序设计 (9)

4.1设计流程图 (9)

4.2汇编程序 (9)

4.3改进后汇编程序 (9)

4.4程序分析 (10)

第五章课设总结 (11)

参考文献 (12)

摘要

现代自动控制设备中,都存在一个电子电路与电气电路的互相连接问题,一方面要使电子电路的控制信号能够控制电气电路的执行元件(电动机,电磁铁,电灯等),另一方面又要为电子线路的电气电路提供良好的电气隔离,以保护电子电路和人身的安全。继电器便能完成这一桥梁作用。

继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”,故在电路中起着自动调节、安全保护、转换电路等作用。

本课设采用的继电器其控制电压是5V。本电路的控制端为高电平时,继电器工作常开触点吸合,连触点的LED灯被点亮。当控制端为低电平时,继电器不工作。执行时,对应的LED将随继电器的开关而亮灭。

关键字:自动开关继电器

绪论

在现代工业中,人员和电子电路安全保障一直是首要考虑的问题,尤其在一些高危恶劣环境下,如高温高压等,如何在保障操作人员和电子电路安全的前提下对电路进行良好地控制便成为了工业进步不可回避的问题。一方面要使电子电路的控制信号能够控制电气电路的执行元件(电动机,电磁铁,电灯等),另一方面又要为电子线路的电气电路提供良好的电气隔离,以保护电子电路和人身的安全,符合这种需求的元件便是继电器。

继电器是一种能自动执行断续控制的部件,当其输入量达到一定值时,能使其输出的被控制量发生预计的状态变化,如触点打开、闭合或电平由高变低、由低变高等,具有对控制电路实现“通”、“断”控制作用。因此在现代工业系统中得到了广泛的应用,例如遥控、遥测、通讯、自动控制、机电一体化及电力电子设备等,具有动作快、工作稳定、使用寿命长、体积小等优点,是最重要的控制元件之一。

继电器的种类很多,比如常用的电磁继电器、热敏干簧继电器、固态继电器、磁簧继电器以及光继电器等,在本课设中,我选用了电磁继电器,介绍电磁继电器的基本工作原理,并在其基础上设计程序,连接硬件电路,实现各种功能。

第一章基本原理

1.1电磁继电器

电磁继电器是有触点电磁电器的一种,一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。这样吸合、释放,从而达到了在电路中的导通、切断的目的。

在各种自动控制设备中,都要求用一个低压电路控制一个高压的电气电路。这样不仅可以为电子线路和电气电路提供良好的电隔离,还可以保护电子电路和人员安全,而电磁继电器一般有两股电路,低压控制电路和高压工作电路。它利用电磁效应实现电路开、关控制作用,很好地实现了低压控制高压这一功能,因此广泛应用在电子设备、仪器仪表及自动化设备中。

1.2电磁继电器的驱动

图1-2 电磁继电器驱动电路

单片机是一个弱电器件,一般情况下它们大都工作在5V甚至更低。驱动电流在mA级以下。而要把它用于一些大功率场合,比如控制电动机,显然是不行的。所以,就要有一个环节来衔接,这个环节就是所谓的“功率驱动”。

继电器驱动就是一个典型的、简单的功率驱动环节。它包括:对继电器进行驱动,因为继电器本身对于单片机来说就是一个功率器件;还有就是继电器去驱动其他负载,比如继电器可以驱动中间继电器,可以直接驱动接触器,所以,继电器驱动就是单片机与其他大功率负载接口。在电磁继电器驱动电路中,三极管是很重要的一个元件,它有两个作用,一个是放大作用,一个是开关作用。其次,二极管D也有着重要作用,它是用于

保护三极管的,当继电器K处于吸合状态时,二极管D截止,不会对电路产生影响。当继电器释放时,由于继电器线圈存在电感,会产生很强的感应电压,该感应电压的正极加在三极管上。如果电压过大,就有可能使处于截止状态的三极管损坏。加入二极管D后,当感应电压出现时,将使二极管导通,所以不会产生过高的的感应电压,保护了三极管。

1.3单片机基本功能原理

(1)时钟电路

单片机的时钟可以有内部方式或外部方式产生,本课设选用内部时钟电路,如图所示,利用内部的振荡电路,并在XTAL1和XTAL2两引脚间外接晶体及电容CX1和CX2构成的并联谐振电路,使内部振荡器产生自激振荡。组成时钟电路的晶体振荡器的频率大小决定单片机系统的工作频率,既决定了单片机系统的工作频率,可以在1.2MHz~12MHz之间。晶体电容CX1和CX2可以在20pF~100pF之间选择,电容的大小对振荡频率有微小的影响,可起频率微调的作用。本课设所选用的单片机晶振频率为6MHz。

图1-1单片机内部时钟电路

(2)单片机复位电路

单片机在开机时都需要复位,以便中央处理器CPU以及其他功能部件

都处于一个确定的初始状态,并从这个状态开始工作。51的RST 引脚是复位信号的输入端。复位电平是高电平有效持续时间要有24个时钟周期以上。本系统中单片机时钟频率为6MHz 则复位脉冲至少应为4us 。

本课程设计单片机采用外部上电与按钮复位电路,如图2-1。典型的上电外部复位电路是既具有上电复位又具有外部复位电路,上电瞬间,C 与Rx 构成充电电路,RST 引脚出现正脉冲,只要RST 端保持10ms 以上的高电平,就能使单片机有效复位。

图2-1 外部上电与按钮复位

一般取C=22uF ,R=200,Rx=1k,此时τ=22?106-?1?103=22ms ,满足单片机复位要求。在需要手动复位情况下,Rs 取200欧姆,Rk 取1k ,RST 端出现1200

1000

?5=4.2V (出现高电平),使可靠地实现单片机复位。

第三章硬件设计电路

如图,该电路由8051、74LS373、27256、6264、8255A和继电器组成。单片机8051采用内部方式时钟电路,复位电路采用上点自动复位电路。

单片机的数据总线为8位,由P0口组成。在扩展时P0口用于数据总线完成单片机与外部存储单元或者I/O端口之间的数据传递。

单片机的控制总线有两个功能,一是传送单片机对外部扩展系统的控制信号,另一个是传送外部扩展系统对单片机的控制信号。

单片机的地址总线为16位,由P2口作为地址的高8位,而P0口作为

地址的低8位,所以可寻址范围最大为64KB。由于P0口还要作为数据总线口使用,因此需要对P0口进行分时复用,分时输出地址和数据。为了把地址信息分离保存,使用一个外部地址锁存器74LS373将地址信号锁存起来。P0口首先将输出的低8位地址由锁存器锁存起来,这样使P0口能再次发送出数据信号。以保证P0口线作数据总线使用时所选外部存储器单元的16位地址不丢失。

在图中,程序存储器27256由8051的P2.7作为片选信号。寻址范围为0000H~7FFFH,共32KB。数据存储器6264由8051的P2.5端口作为片选信号,寻址范围为0C000H~0DFFFH,共8KB。8255A由8051的P2.4作为片选信号,寻址范围为0EFFCH~0EFFFH。

具体计算过程如下表

第四章 程序设计

4.1设计流程图

4.2汇编程序

OUTPUT EQU P1.0 ; P1.0 PORT LOOP:

CLR C

MOV OUTPUT,C CALL DELAY SETB C

MOV OUTPUT,C CALL DELAY LJMP LOOP DELAY:

MOV R6, #0 MOV R7, #0 DLOOP:

DJNZ R7, DLOOP DJNZ R6, DLOOP RET END

4.3改进后汇编程序

演示程序才有T0方式1定时,晶振频率MHz f osc 6=

H CB T f x osc n

03155361.012

1062122616

==??-=?-=

ORG 0000H

MOV DPTR,#0EFFFH ;指向8255A的控制口

MOV A,#80H ;方式字,A、B和C口均以方式0输出

MOVX @DPTR,A ;8255A初始化

MOV DPTR,#0EFFCH ;指向8255A的PA端口

LOOP:

MOV A,#01H ;输出数据#01H传入累加器A

MOVX @DPTR,A ;向PA端口写入数据

CALL DELAY ;调用延时子程序DELAY 2s

MOV A,#00H ;输出数据#01H传入累加器A

MOVX @DPTR,A ;向PA端口写入数据

CALL DELAY ;调用延时子程序DELAY 2s

SJMP LOOP ;转移到LOOP 程序循环

DELAY:

MOV R7,#20 ;设置循环次数存入R7

LOOP1:

MOV TMOD,#01H ;设置定时器T0为定时方式1

MOV TH0,#3CH ;设置计数初值

MOV TL0,#0B0H

SETB TR0 ;启动定时

LOOP2:

JBC TF0,LOOP3 ;判断定时是否到

SJMP LOOP2

LOOP3:

DJNZ R7,LOOP1 ;定时循环

RET ;返回主程序

END

4.4程序分析

原程序直接对P0.1口输出一个循环置1清零的数,以此高低电平来引发继电器的吸合与断开,进而控制LED灯的点亮熄灭。在对8031进行外扩以后,通过8255的PA口输出来控制继电器,并修改了延时程序,原始延时程序存在误差,且不容易调控,通过选用8031内部定时器,极大地提高了延时的精度,并且很容易调整延时时间。

第五章课设总结

通过这次继电器程序设计的课程设计和测试,我学到了很多。通过对该课题的了解,收集资料,研究其可行性,前期做了很多准备工作,查看了很多资料,但这都是值得的,为后面程序的编写和调试打下了基础,不仅学到了编程,还加深了对电路的了解,比如继电器工作原理、延时定时、外扩芯片等等,虽然都是一些已经学习过的知识,但结合起来还是有一定的难度。对于该课题,改进地方主要是重新设计电路和程序,通过扩展I/O 口8255PA口输出,计算地址,编写程序,我对于单片机实际的应用也加深了理解。

最后谢谢张淑清老师和我的同学们在课设过程中给我的指导与帮助。

实验十二继电器控制

实验十二继电器控制 一、实验目的 掌握用继电器控制的基本方法和编程。 二、实验内容 1、利用8255 的PA0 输出高/ 低电平,控制继电器的开合,以实现对 外部装置的控制。 2、实验预备知识:现代自动化控制设备中都存在一个电子与电气电 路的互相联结问题。一方面要使电子电路的控制信号能够控制电气电 路的执行元件(电动机、电磁铁、电灯等), 一方面又要为电子电路 的电气提供良好的电隔离, 以保护电子电路和人身的安全。电子继电 器便能完成这一桥 梁作用。 三、实验接线图 四、实验步骤 (1)脱机实验 ①在系统处于命令 提示符“P.”下, 按SCAL键。 ②在系统处于命令提示符“P.”下,输入1810,按EXEC键。 ③继电器应循环吸合。 (2)联机实验 ①断电连接导线, 连8255 的PA0 到JIN 插孔;继电器常开触点JK 接L2, 常闭触点JB接Ll ,中心抽头JZ 接地。 ②打开JDQ.ASM ③编译下载 ④全速运行,运行程序。 五、实验程序清单 CODE SEGMENT ;JDQ.ASM ASSUME CS:CODE IOCONPT EQU 0FF2BH IOBPT EQU 0FF29H IOAPT EQU 0FF28H ORG 1810H START: MOV AL,88H MOV DX,IOCONPT OUT DX,AL ;写命令字 NOP

NOP NOP IOLED1: MOV DX,IOAPT ;PA口 IODE2: MOV AL,01H OUT DX,AL ;PA0 置1 CALL DELAY ; 延时 MOV AL,00H OUT DX,AL ;PA0 置0 CALL DELAY ;延时 JMP IODE2 ;循环 DELAY: MOV CX,0FFFFH DELY: LOOP DELY RET CODE ENDS END START 六实验结果 拨动开关,两个灯依次点亮。 本次实验练习并掌握用继电器控制的基本方法和编程。通过利用 8255 的PA口输出高/ 低电平,控制继电器的开合,可以实现对外部 装置的控制。

差动继电器实验报告

竭诚为您提供优质文档/双击可除差动继电器实验报告 篇一:变压器差动保护实验 实验内容实验二变压器差动保护实验 (一)实验目的 1.熟悉变压器纵差保护的组成原理及整定值的调整方法。 2.了解Y∕Δ接线的变压器,其电流互感器二次接线方式对减少不平衡电流的影响。 3.了解差动保护制动特性的特点。 (二)变压器纵联差动保护的基本原理1.变压器保护的配置 变压器是十分重要和贵重的电力设备,电力部门中使用相当普遍。变压器如发生故障将给供电的可靠性带来严重的后果,因此在变压器上应装设灵敏、快速、可靠和选择性好的保护装置。 变压器上装设的保护一般有两类:一种为主保护,如瓦斯保护,差动保护;另一种称后备保护,如过电流保护、低

电压起动的过流保护等。 本试验台的主保护采用二次谐波制动原理的比率制动 差动保护。 2.变压器纵联差动保护基本原理 如图7-1所示为双绕组纵联差动保护的单相原理说明图,元件两侧的电流互感器的接线应使在正常和外部故障时流 入继电器的电流为两侧电流之差,其值接近于零,继电器不动作;内部故障时流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。但是,由于变压器高压侧和低压侧的额定电流不同,为了保证正常和外部故障时,变压器两侧的两个电流相等,从而使流入继电器的电流为零。即: 式中:KTAY、KTA△——分别为变压器Y侧和△侧电流 互感器变比;KT——变压器变比。 显然要使正常和外部故障时流入继电器的电流为零,就必须适当选择两侧互感器的变比,使其比值等于变压器变比。但是,实际上正常或外部故障时流入继电器的电流不会为零,即有不平衡电流出现。原因是:(1)各侧电流互感器的磁化特性不可能一致。 (2)为满足(7-1)式要求,计算出的电流互感器的变比,与选用的标准化变比不可能相同; (3)当采用带负荷调压的变压器时,由于运行的需要

《电力系统继电保护》 实验报告要点

网络高等教育《电力系统继电保护》实验报告 学习中心:山西临汾奥鹏学习中心 层次:专升本 专业:电气工程及其自动化 年级:2013年春季 学号:131326309943 学生姓名:李建明

实验一电磁型电流继电器和电压继电器实验 一、实验目的 1. 熟悉DL型电流继电器和DY型电压继电器的实际结构、工作原理、基本特性; 2. 学习动作电流、动作电压参数的整定方法; 3. 总结实验的体会和心得。 二、实验电路 1.过流继电器实验接线图 2.低压继电器实验接线图

三、预习题 1.过流继电器线圈采用并联接法时,电流动作值可由转动刻度盘上的指针所对应的电流值读出;低压继电器线圈采用串联接法时,电压动作值可由转动刻度盘上的指针所对应的电压值读出。(串联,并联) 2. 动作电流(压),返回电流(压)和返回系数的定义是什么? 动作电流:由于产生动作电位的结果而流动的微弱电流。 返回电流:电流低于那个值时电流继电器就不再吸合了。 返回系数:对于继电保护定值整定的保护,例如按最大负荷电流整定的过电流保护和最低运行电压整定的低电压保护,在受到故障量的作用时,当故障消失后保护不能返回到正常位置将发生误动。因此,整定公式中引入返回系数,返回系数用Kf表示。对于按故障量值和按自起动量值整定的保护,则可不考虑返回系数。 四、实验内容 1.电流继电器的动作电流和返回电流测试 表一过流继电器实验结果记录表 2.低压继电器的动作电压和返回电压测试 表二低压继电器实验结果记录表

五、实验仪器设备 六、问题与思考 1.电流继电器的返回系数为什么恒小于1? 电流继电器是过流动作,小于整定值后返回;为了避免电流在整定值附近时导致继电器频繁启动返回,一般要设一个返回值,例如0.97,电流小于0.97才返回。因此返回值要小于1 。 2.返回系数在设计继电保护装置中有何重要用途? 确保保护选择性的重要指标,让不该动作的继电器及时返回,使正常运行的部分系统不被切除。在出现故障后,可以保护继电器。

实验: 继电器接触器控制电路

实验:继电器接触器控制电路 一、实验目的 (一)了解三相异步电动机的结构,熟悉其使用方法。 (二)了解基本控制电器的主要结构和动作原理,掌握其在控制电路中的作用。 (三)掌握几种典型控制环节。 (四)培养联接、检查和操作简单控制电路的能力。 二、实验仪器设备 (一)三相异步电动机 (二)交流接触器,热继电器,时间继电器,按钮,行程开关。 (三)万用表 图8.1 按钮图8.2 接触器图8.3 电子式时间继电器图8.4 三相异步电机 三、预习内容 阅读各项实验内容,看懂有关原理,明确实验目的。 四、实验内容 (一)三相异步电动机的认识与检查 1.从外观上熟悉三相异步电动机的基本结构形式;观察电动机上的铭牌数据;根据实验室电源电压等级,判断电动机的额定接线方法应是?接法还是Y接法。 2.用万用表检查电动机三相绕组有无断线故障,测量并记录各相绕组的电阻值。 (二)观察和熟悉接触器、热继电器、时间继电器、按钮及行程开关等电器的主要结构;分清各种触头、控制线圈、发热元件的接线端钮及面板符号;用万用表测量并记录接触器和时间继电器的线圈电阻。 (三)实现三相异步电动机的直接起动控制 1.按图8.5接线:先接主回路,电动机采用?接法。后接控制电路,注意按节点编号顺序联接。 2.检查接线是否有误 (1)直观检查:对照原理图,按接线顺序复查一遍。 (2)用万用表检查控制电路:根据接触器线圈的电阻值,选好量程,分别测量控

制电路中各相邻节点编号之间的电阻值,判断是否与原理图状态相符合。 3.检查无误后,合上电源刀闸Q,按下起动按钮SB2,待电机达到稳定转速后,按动SB1停车,观察接触器和电机的工作情况。如果发现电机或接触器声音异常,请立即关闭总电源,然后判断故障原因。 图8.5 电机的直接起动线路 (四)实现三相异步电动机的正、反转控制 按图8.6接线,接线及检查方法同前。特别要确保主电路正确无误。然后可合闸实验。依次按下正转、停止、反转、停止按钮,观察电动机转向的变化。 图8.6 电机的正反转控制 (五)实验三相异步电动机的Y-?起动控制。 1.主电路按图8.7接线,控制电路按图8.8接线。要认真复查,特别要注意KM Y、KM?两互琐触点是否正确接入。控制电路的接线方法和复查方法同实验内容(三)。

(完整word版)继电保护三段电流保护实验实验报告

北京交通大学Beijing Jiaotong University 继电保护三段电流保护实验实验报告 姓名: **** 学号: *******(1005班) 指导老师:倪** 课程老师:和*** 实验日期: 2013.5.29(8--10)

目录 一、实验预习 (1) 二、实验目的 (1) 三、实验电路 (1) 四、实验注意问题 (2) 五、保护动作参数的整定 (2) 六、模拟故障观察保护的动作情况 (2) 七、思考题 (3)

一、实验前预习: 三段电流保护包括: Ⅰ段:无时限电流速断保护 Ⅱ段:限时电流速断保护 Ⅲ段:定时限过电流保护 三段保护都是反应于电流增大而动作的保护,它们之间的区别主要在于按照不同的原则来整定动作电流。 三段式保护整定计算内容及顺序:1 动作电流:选取可靠系数,计算短路电流和继电器动作电流;2 动作时间的整定;3灵敏度校验。 对继电保护的评价,主要是从选择性、速动性、灵敏性和可靠性四个方面评价。 二、实验目的 1、熟悉三段电流保护的接线; 2、掌握三段电流保护的整定计算原则和保护的性能 三、实验电路 实验电路如下图: 其中继电器的接线法有: (1)三相三继电器的完全星形接线(2)两相两继电器的不完全星形接线

另外还有两种继电器的接法如下: (3)两相三继电器接线法(4)两相继电器接线法 对三相继电保护的评价: 由I段、II段或III段而组成的阶段式电流保护,其最主要的优点就是简单、可靠,并且在一般情况下能满足快速切除故障的要求,因此在电网中特别是在35kV及以下的单侧电源辐射形电网中得到广泛的应用。其缺点是受电网的接线及电力系统运行方式变化的影响,使其灵敏性和保护范围不能满足要求。 四、实验注意问题 1、交流电流回路用允许大于5A的导线; 2、接好线后请老师检查。 五、保护动作参数的整定 1、要求整定参数如下: 保护I段动作电流为4.8A,动作时间为0秒; 保护III段动作电流为1.4A,动作时间为2秒。 2、按上述要求进行电流继电器和时间继电器的整定。 时间继电器的整定:将时间继电器整定把手调整到要求的刻度位置。 电流继电器的整定:按图接线。先合交流电源开关,但直流电源先不投入,按下模拟断路器手合按钮,调节单相调压器改变电流,分别整定电流I、III段的动作电流,要求电流继电器的动作电流与整定值的误差不超过5%。将实际整定结果填入表13-1。 表 六、模拟故障观察保护的动作情况 1、电流I段 通入5A电流(模拟I段区内故障):先合交流电源开关,但直流电源先不投入,按下模拟断路器手合按钮,调节调压器使电流为5A,再按下模拟断路器手分按钮,投入直流电源,按下模拟断路器手合按钮(模拟手合I段区内故障),观察各继电器的动作。

单片机控制继电器实验

$%&'

驱动原理: 1、当AT89S51单片机的P3.6引脚输出低电平时,三极管T5饱和导通,+5V 电源加到继电器线圈两端,继电器吸合,同时状态指示的发光二极管也点亮,继电器的常开触点闭合,相当于开关闭合。 2、当AT89S51单片机的P3.6引脚输出高电平时,三极管T5截止,继电器线圈两端没有电位差,继电器衔铁释放,同时状态指示的发光二极管也熄灭,继电器的常开触点释放,相当于开关断开。注:在三极管截止的瞬间,由于线圈中的电流不能突变为零,继电器线圈两端会产生一个较高电压的感应电动势,线圈产生的感应电动势则可以通过二极管IN4148释放,从而保护了三极管免被击穿,也消除了感应电动势对其他电路的干扰,这就是二极管D1的保护作用。 二、继电器驱动程序 下面给出了一个简单的继电器控制实验源程序,控制继电器不停地吸合、释放动作,程序很简单。 图 2 注: 上面图中所示,CN2的1、2、3为继电器输出接线端子,其中1接到继电器的常开接点,2接到继电器的动接点,3接到继电器的常闭接点。当继电器吸合的时候,1-2将接通,相当于开关闭合。因此我们就可以在端子1-2上接线来控制其他电路了。 程序流程图 继电器控制ASM 源程序: ORG 0000H AJMP START ;跳转到初始化程序 ORG 0033H START: MOV SP,#50H ;SP 初始化 MOV P3,#0FFH ;端口初始化 MAIN: CLR P3.6 ;P3.6输出低电平,继电器吸合 ACALL DELAY ;延时保持一段时间 SETB P3.6 ;P3.6输出高电平,继电器释放 ACALL DELAY ;延时保持一段时间 AJMP MAIN ;返回重复循环 DELAY: MOV R1,#20 ;延时子程序 Y1: MOV R2,#100 Y2: MOV R3,#228 DJNZ R3,$ DJNZ R2,Y2 DJNZ R1,Y1 RET ;延时子程序返回

继保实验报告

实验一 电磁型电压电流继电器特性实验 1.实验目的 1)了解继电器基本分类方法及其结构。 2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。 3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。 4)测量继电器的基本特性。 2.实验内容 1)电流继电器特性实验 电流继电器动作、返回电流值测试实验。 实验电路原理图如图1所示: 图1 电流继电器动作电流值测试实验原理图 实验步骤如下: (1)按图接线,将电流继电器的动作值整定为1A ,使调压器输出指示为0V ,滑线电阻的滑动触头放在中间位置。 (2)查线路无误后,先合上三相电源开关(对应指示灯亮),再合上单相电源开关和直流电源开关。 (3)慢慢调节调压器使电流表读数缓慢升高,记下继电器刚动作(动作信号灯XD1亮)时的最小电流值,即为动作值。 (4)继电器动作后,再调节调压器使电流值平滑下降,记下继电器返回时(指示灯XD1灭)的最大电流值,即为返回值。 (5)重复步骤(2)至(4),测三组数据。 (6)实验完成后,使调压器输出为0V ,断开所有电源开关。 -

(7)分别计算动作值和返回值的平均值即为电流继电器的动作电流值和返回电流值。(8)计算整定值的误差、变差及返回系数。 误差=[动作最小值-整定值 ]/整定值 变差=[动作最大值-动作最小值]/动作平均值 100% 返回系数=返回平均值/动作平均值 表1 电流继电器动作值、返回值测试实验数据记录表 2)电流继电器动作时间测试实验 电流继电器动作时间测试实验原理图如图2所示: 图2 电流继电器动作时间测试实验电路原理图 实验步骤如下: (1)按图接线,将电流继电器的常开触点接在多功能表的“输出2”和“公共线”,将开关BK的一条支路接在多功能表的“输入1”和“公共线”,使调压器输出为0V,将电流继电器动作值整定为1.2A,滑线电阻的滑动触头置于其中间位置。 (2)检查线路无误后,先合上三相电源开关,再合上单相电源开关。

继电器控制电路图

继电器控制电路图 [日期:2008-12-07 ] [来源:东哥单片机学习网https://www.doczj.com/doc/e57412772.html, 作者:佚名] [字体:大中小] (投递新闻) 继电器控制电路图在人们的习惯中,总认为CMOS集成块不能直接带动继电器工作,但实验证明,部分CMOS集成块不仅能直接带动继电器工作,而且工作稳定可靠。实验中所用继电器的型号为JRC5M-DC12V微型密封继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: 电路中,继电器线圈两端均反相并联了一只二极管,它是用于保护集成块的,切不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施 常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。

制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。V2、C1、C3的耐压视电源电压的高低选取。C2耐压最好不低于电源电压的两倍。 继电器的三种附加电路 继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。继电器的附加电路主要有如下三种形式: 1.继电器串联RC电路:电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。电源稳定之后电容C不起作用,电阻R起限流作用。 2.继电器并联RC电路:电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。 3.继电器并联二极管电路:电路形式见图3,主要是为了保护晶体管等驱动元器件。当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源电压叠加后加在VT的c、e两极间,会使晶体管击穿,并联上二极管后,即可将线圈的自感电动势钳位于二极管的正向导通电压,此值硅管约0.7V,锗管约0.2V,从而避免击穿晶体管等驱动元器件。并联二极管时一定要注意二极管的极性不可接反,否则容易损坏晶体管等驱动元器件。 无电感式模拟继电器 本文介绍一种无电感式模拟继电器,其电路原理如下图所示。

电力系统继电保护实验报告

实验一电流继电器特性实验 一、实验目的 1、了解继电器的結构及工作原理。 2、掌握继电器的调试方法。 二、构造原理及用途 继电器由电磁铁、线圈、Z型舌片、弹簧、动触点、静触点、整定把手、刻度盘、轴承、限制螺杆等组成。 继电器动作的原理:当继电器线圈中的电流增加到一定值时,该电流产生的电磁力矩能够克服弹簧反作用力矩和摩擦力矩,使Z型舌片沿顺时针方向转动,动静接点接通,继电器动作。当线圈的电流中断或减小到一定值时,弹簧的反作用力矩使继电器返回。 利用连接片可将继电器的线圈串联或并联,再加上改变调整把手的位置可使其动作值的调整范围变更四倍。 继电器的内部接线图如下:图一为动合触点,图二为动断触点,图三为一动合一动断触点。 电流继电器用于发电机、变压器、线路及电动机等的过负荷和短路保护装置。 三、实验内容 1. 外部检查 2. 内部及机械部分的检查

3. 绝缘检查 4. 刻度值检查 5. 接点工作可靠性检查 四、实验步骤 1、外部检查 检查外壳与底座间的接合应牢固、紧密;外罩应完好,继电器端子接线应牢固可靠。 1. 内部和机械部分的检查 a. 检查转轴纵向和横向的活动范围,该范围不得大于0.15~0.2mm,检查舌片与极间的间隙,舌片动作时不应与磁极相碰,且上下间隙应尽量相同,舌片上下端部弯曲的程度亦相同,舌片的起始和终止位置应合适,舌片活动范围约为7度左右。 b. 检查刻度盘把手固定可靠性,当把手放在某一刻度值时,应不能自由活动。 c. 检查继电器的螺旋弹簧:弹簧的平面应与转轴严格垂直,弹簧由起始位置转至刻度最大位置时,其层间不应彼此接触且应保持相同的间隙。 d. 检查接点:动接点桥与静接点桥接触时所交的角度应为55~65度,且应在距静接点首端约1/3处开始接触,并在其中心线上以不大的摩擦阻力滑行,其终点距接点末端应小于1/3。接点间的距离不得小于2mm,两静接点片的倾斜应一致,并与动接点同时接触,动接点容许在其本身的转轴上旋转10~15度,并沿轴向移动0.2~0.3mm,继电器的静接点片装有一限制振动的防振片,防振片与静接点片刚能接触或两者之间有一不大于0.1~0.2mm的间隙。 2、电气特性的检验及调整 (1)实验接线图如下:

实验三 继电器控制

实验三继电器控制 一、实验目的 1.了解微机控制直流继电器的一般方法。 2.熟练掌握8255、8253的编程应用。 二、实验内容 1.微机控制继电器工作原理 继电器是自动控制环境里的一个重要部件,它处在电子电路的控制信号与电气电路的执行元件(如电动机等)之间,既有桥梁作用又起到电气隔离作用。 利用8255PC0输出高低电平控制三极管T2的导通与截止,从而给继电器线圈通电,产生磁场,吸合动铁心,常开触点闭合,接通继电器控制回路,以实现对外接装置的控制。 2.硬件电路图 如图3-1所示,利用8253计数器0和计数器1串联使用,CLK0接1MHz 时钟,从OUT1输出方波信号作为开关量,由8255的PA0输入,PC0口输出控制实验盒上的继电器动作。编程使用8253定时,让继电器周而复始的闭合5秒钟(指示灯亮),断开5秒钟(指示灯灭)。 图3-1 继电器控制示意图 3.硬件连线 按图3-1连接实验电路。CLK0接1MHz,GATE0,GATE1接+5V,OUT0接CLK1,OUT1接PA0,PC0接继电器驱动电路的开关输入端IK。继电器输出接口J4接实验盒上的继电器插座。

8253的CS 接280H~287H ,8255的CS 接288H~28FH 。 4.编程提示 图3-2(a )主程序 (b )延时子程序 (1)将8253计数器0设置为方式3、计数器1设置为方式0串联使用,两个计数器的初置乘积为5 000 000,启动计数器工作后,经过5秒钟OUT1输出高电平。通过8255的A 口查询OUT1的输出电平,从C 口的PC0输出开关量控制继电器动作。 (2)程序框图如图3-2。 (3)参考程序 程序清单:JDQ.ASM CODE SEGMENT ASSUME CS :CODE START : MOV DX ,28BH ;向8255写控制字 MOV AL ,90H ;设A 口输入,C 口输出 DKCT : OUT DX ,AL MOV AL ,01 ;将PC0置位 OUT DX ,AL CALL DELAY ;延时5S MOV AL ,0 ;将PC0复位 OUT DX ,AL CALL DELAY ;延时5S

差动继电器实验报告

差动继电器实验报告 篇一:继电保护实验报告 继电保护实验报告 学院: 专业:电气工程及其自动化 班级: XX级电气3班 学号: 姓名: 指导老师 : 实验二:常规继电器特性实验 (一)电磁型电压、电流继电器的特性实验 1.实验目的 1)了解继电器基本分类方法及其结构。 2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。 3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。

4)测量继电器的基本特性。 5)学习和设计多种继电器配合实验。 2.继电器的类型与原理 继电器是电力系统常规继电保护的主要元件,它的种类繁多,原理与作用各异。 1)继电器的分类 继电器按所反应的物理量的不同可分为电量与非电量的两种。属于非电量的有瓦斯继电器、速度继电器等;反应电量的种类比较多,一般分类如下: (1)按结构原理分为:电磁型、感应型、整流型、晶体管 型、微机型等。 (2)按继电器所反应的电量性质可分为:电流继电器、电压继电器、功率继电器、阻抗继电器、频率继电器等。 (3)按继电器的作用分为:起动动作继电器、中间继电器、时间继电器、信号继电器等。近年来电力系统中已大量使用微机保护,整流型和晶体管型继电器以及感应型、电磁型继电器使用量已有减少。 2)电磁型继电器的构成原理

继电保护中常用的有电流继电器、电压继电器、中间继电器、信号继电器、阻抗继电器、功率方向继电器、差动继电器等。下面仅就常用的电磁继电器的构成及原理作要介绍。信号继电器在保护装置中,作为整组装置或个别元件的动作指示器。按电磁原理构成的信号继电器,当线圈通电时,衔铁被吸引,信号掉牌(指示灯亮)且触点闭合。失去电源时,有的需手动复归,有的电动复归。信号继电器有电压起动和电流起动两种。 3.实验内容 1)电流继电器特性实验 电流继电器动作、返回电流值测试实验。 实验步骤如下: (l)按图接线,将电流继电器的动作值整定为1.2A,使调压器输出指示为OV,滑线电阻的滑动触头放在中间位置。 (2)查线路无误后,先合上三相电源开关(对应指示灯亮),再合上单相电源开关和直流电源开关。 (3)慢慢调节调压器使电流表读数缓慢升高,记下继电器刚动作(动作信号灯XDI亮)时的最小电流值,即为动作值。

实验4 继电器接触器控制电路

实验四继电器接触器控制电路 一、实验目的 1、了解三相异步电动机的结构,熟悉其使用方法; 2、了解基本控制电器的的主要结构和动作原理,掌握其在控制电路中的作用; 3、掌握几种典型控制环节。 4、培养连接、检查和操作控制电路的能力。 二、预习要求 1、预习有关低压电器和继电接触控制的有关知识。 2、看懂电动机的正反转控制电路,了解各触点及其它元件的作用。 3、了解实验设备、低压电器型号及使用方法。 三、实验内容及步骤 1、三相异步电动机的认识与检查 (1)从外观上熟悉三相异步电动机的基本结构形式;观察电动机上的铭牌数据;根据实验室电源等级,判断电动机的额定接线方法应是△形接法还是Y形接法。 (2)观察和熟悉接触器、热继电器、时间继电器、按钮等电器的主要结构,分清各种触点、控制线圈、发热元件的接线插孔及面板符号。 2、三相异步电动机的直接启动控制 (1)图5-1为电动机直接启动电路图,按图接线。先接主回路,后接控制电路。 (2)检查接线是否有误,对照原理图,按接线顺序复查一遍。检查无误后,合上电源刀闸开关Q,按下启动按钮SB2,待电机达到稳定转速后,按动SB1停车,观察接触器和电机的工作情况。如果发现电动机或接触器声音异常,应立即关闭总电源,然后分析故障原因。 3、三相异步电动机的正、反转控制 按图5-2所示接好实验控制线路图,检查方法同上。一定要确保主电路正确无误,然后才可合闸实验。依次按下正转、停止、反转、停止按钮,观察接触器的工作情况和电动机转向的变化。

4、设计型实验(选做)——三相异步电动机的周期性往复启停控制 画出主电路和控制电路,交与老师审查后方可进行实验。 控制功能要求:一台三相异步电动机,按启动按钮电机启动,转动5s后自动停止,停止7s后又自动启动,如此反复运行,直到手动停止为止。用一个60W/220V的灯泡指示电机的运行。 四、注意事项 1、首先要认清接线板上线圈、触点的符号和端子,再进行接线,以防短路; 2、必须遵守“先接线,后合闸”和“先拉闸,后接线”的安全操作规则; 3、启动电动机时,密切注视电动机工作是否正常,若发现电动机有“嗡嗡”声或不转等异常现象,应马上拉闸,排除故障。 五、实验报告要求 1、画好三相异步电动机正反转控制线路图,并简述工作原理。 2、简述交流接触器及热继电器的工作原理。 3、画出实验中故障现象的原理图,并分析故障原因及排除方法。 六、预习思考题 1、主电路的短路、过载和失压三种保护功能是如何得到的,在实际运行中这三种保护功能有什么意义? 2、主电路中熔断器、热继电器是否可以采用任一种就能起到短路及过载保护作用,为什么? 3、在电路中,如果缺少一个作自锁作用的触头,你能想法代替吗?画出这时的控制电路图,但需指出它存在的缺点。

继电器控制实验报告

继电器控制实验报告 篇一:继电保护实验报告 实验一电磁型电流继电器和电压继电器实验 一.实验目的 1.熟悉DL型电流继电器和DY 型电压继电器的实际结构,工作原理、基本特性。 2.掌握动作电流、动作电压参数的整定。 二.实验原理 线圈导通时,衔铁克服游丝的反作用力矩而动作,使动合触点闭合。转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。改变线圈的串联并联,可获得不同的额定值。 三.实验设备 四.实验内容 1. 整定点的动作值、返回值及返回系数测试(1)电流继电器的动作电流和返回电流测试: 返回系数是返回与动作电流的比值,用Kf表示:Kf? IfjIdj 1 (2)低压继电器的动作电压和返回电压测试: 返回系数Kf为 Kf? UfjUdj

五.思考题 1、电流继电器的返回系数为什么恒小于1? 电流继电器的返回系数是返回与动作电流的比值,电流继电器动作电流大于返回电流,所以电流继电器的返回系数为什么恒小于1。 2、返回系数在设计继电保护装置中有何重要用途? 对于继电保护定值整定的保护,例如按最大负荷电流整定的过电流保护和最低运行电压整定的低电压保护,在受到故障量的作用时,当故障消失后保护不能返回到正常位置将发生误动。因此,整定公式中引入返回系数,可使故障消失后继电器可靠返回。 2 实验二电磁型时间继电器实验 一.实验目的 熟悉DS-20C系列时间继电器的实际结构,工作原理,基本特性,掌握时限的整定和试验调整方法, 二.原理说明 当电压加在时间继电器线圈两端时,铁芯被吸入,瞬时动合触点闭合,瞬时动断触点断开,同时延时机构开始起动。在延时机构拉力弹簧作用下,经过整定时间后,滑动触点闭合。再经过一定时间后,终止触点闭合。从电压加到线圈的瞬间起,到延时动合触点闭合止的这一段时间,可借移动静

继电保护实验报告-实验四

《电力系统继电保护实验》实验报告 实验名称实验四输电线路距离保护阻抗特 性测定实验 学号 日期2018-5-18 地点动力楼306 教师陈歆技蒋莉 电气工程学院 东南大学

1.实验目的: (1)熟悉和掌握智能变电站综合自动化系统输电线路距离保护装置定值配置方法、模拟电网故障设置及继电保护测试仪的操作方法。 (2)通过输电线路的短路故障实验,记录和观察故障电压、电流数值,理解输电线路故障动作过程及接地距离与相间距离阻抗特性的测试原理。 (3)通过输电线路故障电压、电流数值分析及保护装置动作行为的分析,学会阻抗特性曲线的绘制方法,理解和掌握短路类型、故障点阻抗及保护定值对输电线路距离保护阻抗特性的影响。 2.实验内容: 1)相间、接地距离I段保护阻抗特性曲线的测定 该实验项目分别搜索和测试相间、接地距离I段保护动作边界,绘制PSL 603U 保护装置相间、接地距离I段实际阻抗特性曲线图,根据保护定值及保护算法计算并绘制PSL 603U装置相间、接地距离I段保护的理论阻抗特性曲线,比较两者的误差,并校验阻抗特性的正确性。 2)相间、接地距离Ⅱ段保护阻抗特性曲线的测定 该实验项目分别搜索和测试相间、接地距离Ⅱ段保护动作边界,绘制PSL 603U保护装置相间、接地距离Ⅱ段保护实际阻抗特性曲线,根据保护定值及保护算法计算并绘制PSL 603U装置相间、接地距离Ⅱ段保护的理论阻抗特性曲线,比较两者的误差,并校验阻抗特性的正确性。 3)相间、接地距离Ⅲ段保护阻抗特性曲线的测定 该实验项目分别搜索和测试相间、接地距离Ⅲ段保护动作边界,绘制PSL 603U保护装置相间、接地距离Ⅲ段保护实际阻抗特性曲线,根据保护定值及保护算法计算并绘制PSL 603U装置相间、接地距离Ⅲ段保护的理论阻抗特性曲线,比较两者的误差,并校验阻抗特性的正确性。 3.实验原理(实验的理论基础): 本实验以智能变电站综合自动化实验系统所装设的PSL 603U线路保护装置为基础,变电站的线路一次主接线图如图-1所示。图中Zk为所装设的PSL 603U 线路保护装置,其电压与电流输入量与实验一一样,均来自220KV母线与断路器2201之间所装设的电压互感器EPT与电流互感器ECT的测量量,即基于IEC 61850标准的SMV信号量。 F1 实验线路距离保护模拟一次主接线图 根据电力系统继电保护相关原理,及PSL 603U线路保护装置说明书所述工作原理,可知PSL 603U线路距离保护主要有三段式相间距离继电器、接地距离继电器及辅助阻抗元件组成,相间、接地距离继电器主要有偏移阻抗元件、全阻

三段电流保护实验报告

BeijingJiaotongUniversity 电力系统继电保护实验报告三段电流保护实验 姓名: 学号: 班级:电气1103 实验指导老师:倪平浩

一、电力系统继电保护实验要求 ①认真预习实验,保证在进实验室前,要掌握继电保护实验基础知识,熟悉继电保护实验环境。 要有一份详细的预习报告,预习报告必须认真写,须包含自己设计的实验电路。不得有相同的或者复印的预习报告。如果没有预习报告、预习报告雷同或者复印预习报告,则报告相同的同学都不得进入实验室做实验,回去重新预习,以后约时间做实验。 ②实验过程中要认真记录数据和实验中出现的问题,积极思考实验中的问题,可以讨论,但不能大声喧哗,不得做与实验无关的事情。 ③实验报告要认真写,要写出调试过程的问题,分析问题原因,和如何解决问题,不得抄袭。 ④保持实验室卫生,不得在实验室里乱丢弃垃圾。实验结束后,把实验桌周围的垃圾打扫干净。 二、电力系统继电保护常用继电器 1、电流继电器 电流继电器装设于电流互感器二次回路中,当电流大于继电器动作电流时动作,经跳闸回路作用于断路器跳闸。 结构图内部接线图 1.电磁铁2.线圈3.Z型舌片 4.弹簧5.动触点6.静触点 7.整定值调整把手8.刻度盘9.舌片行程限制杆 10.轴承 图13-1 DL-11型电流继电器结构图 动作原理: 如图13-1,当继电器线圈回路(图中2)中有电流通过时,产生电磁力矩,使舌片(图中3)向磁极靠近,但由于舌片转动时必须克服弹簧(图中4)的反作用力,因此通过线圈的电流必须足够大,当大于整定的电流值时(图中7、8),产生的电磁力矩使得舌片足以克服弹簧阻力转动,使继电器动作,接点闭合(图中5、6)。 电流继电器动作电流、返回电流、返回系数:

继电保护试验报告标准格式

C S L101B线路保护全部定期检验调试报告 1.绝缘试验 以开路电压为1000V的摇表按下表对各回路进行绝缘试验,绝缘电阻应不小于10兆欧。试验结果填入表1。 2.直流稳压电源检查 2.1 经检查,本装置电源的自启动性能良好,失电告警继电器工作正常()。 2.2各级输出电压值测试结果见表2。 4.经检查,本装置CPU及MMI所使用的软件版本号正确(),记录见附表1。 5.经检查,本装置主网1、主网2及本装置所附带的打印卡、打印电缆线全部完好,打印功能正常()。 6.开入量检查 6.1 保护压板开入量检查全部正确(),记录于表3。

7.开出传动试验 a. 保护开出传动试验 对CPU1、CPU2、CPU3进行开出传动试验,注意观察灯光信号应指示正确,并在装置端子上用万用表检查相应接点的通断(),试验结果记录于表5 。

b. 重合闸开出传动试验 对CPU4进行开出传动试验(),结果记录于表6。 c. 经检查,起动元件三取二闭锁功能正确()。

8.1 零漂调整打印结果记录于附表4,要求允许范围为±0.1()。 8.2 电流、电压刻度调整打印结果记录于附表5,要求误差小于±2%()。 8.3 经检查,电流、电压回路极性完全正确()。 9.模拟短路试验 9.1 各保护动作值检验 a.经检查,高频距离保护在0.95倍定值时可靠动作,在1.05倍定值时 可靠不动作(); b.经检查,高频零序保护在0.95倍定值时可靠不动作,在1.05倍定值 时可靠动作(); c.经检查,相间、接地距离I段保护在0.95倍定值时可靠动作,在1.05 倍定值时可靠不动作(); d.经检查,相间、接地距离II段、III段保护在0.95倍定值时可靠动 作,在1.05倍定值时可靠不动作(); e.经检查,零序I段保护在0.95倍定值时可靠不动作,在1.05倍定值 时可靠动作(); f. 经检查,零序II段、III段、IV段保护在0.95倍定值时可靠不动 作,在1.05倍定值时可靠动作(); g. 经检查,保护装置在单相接地短路和两相短路时可靠不动作,在三相

电磁型电压继电器实验报告

一、实验目的 熟悉DY型电压继电器的实际结构、工作原理、基本特性;掌握动作电流值及其相关参数的整定方法。 二、预习与思考 1、动作电流(压)、返回电流(压)和返回系数的定义是什么 过电流继电器中,动作电流是使继电器动作的最小电流I dj;返回电流是使继电器返回的最大电流I fj;返回系数则定义为:I fj与I dj之比。 2、实验结果如返回系数不符合要求,你能正确地进行调整吗 3、返回系数在设计继电保护装置中有何重要用途 因继电特性,使得输入值在整定值附近小幅变化时,继电器输出则保持恒定,可有效地避免输出值来回跳变。 三、原理说明 DY—20c系列电压继电器用于反映发电机、变压器及输电线路的电压升高(过电压保护)或电压降低(低电压起动)的继电保护装置中。 上述继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态。 过电压继电器:当电压升高至整定值(或大于整定值)时,继电器立即动作,其常开触点闭合,常闭触点断开。 低电压继电器:当电压降低至整定电压时,继电器立即动作,常开触点断开,常闭触点闭合。继电器的铭牌刻度值是按电流继电器两线圈串联,若继电器两线圈分别作并联和串联时,则整定值为指示值的2倍。 转动刻度盘上指针,以改变游丝的作用力矩,从而改变继电器动作值。 四、实验设备

表1—1实验设备表 五、实验步骤和要求 实验参数电压值可用单相自耦调压器、变流器、变阻器等设备进行调节。实验中每位学生要注意培养自己的实践操作能力,调节中要注意使参数平滑变化。 1. 过电压继电器的动作电压和返回电压测试 a、选择ZB15型继电器组件中的DY—28c/160型过电压继电器,确定动作值为倍的额定电压,即实验参数取150V并进行初步整定。 b、根据整定值要求确定继电器线圈的接线方式 c、接线。检查无误后,调节自耦调压器,分别读取能使继电器动作的最小电压U dj及使继电器返回的最高电压U fj,记入表1-3并计算返回系数K f。返回系数的含义与电流继电器的相同。返回系数不应小于,当大于时,也应进行调整。 2.低电压继电器的动作电压和返回电压测试 a、选择ZB15继电器组件中的DY—28c/160型低电压继电器,确定动作值为倍的额定电压,即实验参数取70V并进行初步整定。 b、根据整定值要求确定继电器线圈的接线方式 c、接线,调节自耦调压器,增大输出电压,先对继电器加100伏电压,然后逐步降低电压,至继电器舌片开始跌落时的电压称为动作电压U dj,再升高电压至舌片开始被吸上时的电压称为返回电压U fj,将所取得的数值记入表1-3并计算返回系数。返回系数K f为: U fj K f =----- U dj

继电器控制继电器形成自锁互锁电路怎么完成

继电器控制继电器形成自锁互锁电路怎么完成 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

继电器控制继电器形成自锁互锁电路怎么完成. 实现自锁和互锁都要用继电器的辅助触点来完成的,首先你要明白什么叫做自锁,什么叫做互锁,自锁就是用自己的触头将本接触器线圈回路的按钮开关给短接掉,在按钮开关松开以后使得线圈回路不断开,这就是自锁。这样你就可以利用继电器的常开触点并联在按钮开关上,这样当按钮按下时继电器线圈得电,继电器动作,常开触点闭合,这样在松开按钮以后由于继电器的常开触点已经比合了,即使松开按钮,继电器一样得电,这就完成了自锁,互锁:互锁就是由两个或者两个以上的接触器完成的相互有逻辑关系的控制电路,比如继电器2的线圈通过继电器1的常闭触电以后才接通电源,那么如果接触器1一旦动作,那么接触器2就永远不会动作,这就是互锁,这是最简单的互锁,就是由一个控制另一个或着很多个的动作与否!!! 自锁是用继电器常开触点并联到启动按钮上,按下启动按钮接触器吸合,常开触头导通这时松开按钮电流从触点导通,能够实现自锁。 互锁是把A线圈串连到B的常闭触头上。B吸合时常闭触头断开,A线圈是不可能再吸合。只有B断开了,它的常闭触头复位导通后A线圈才有可能导通。 自锁:是继电器的常开触点控制自己的线圈,能在点动后继续工作,而有一个停止按键可以将它停止。 互锁:是继电器A的常闭点控制这继电器B的线圈。A工作,B不能工作。反之依然。 自锁:继电器自身的常开触电和控制继电器线圈的开关并联; 互锁:两个继电器各自的常闭触点和另外一个继电器的线圈串联 继电器自锁可以通过把继电器常开触点与控制线圈串连解决。

实验十二 三相异步电动机能耗制动控制线路

实验十二三相异步电动机能耗制动控制线路 一、无变压器半波整流能耗制动线路 1.实验元件 代号名称型号规格数量备注QS 低压断路器DZ47 5A/3P 1 FU1 螺旋式熔断器RL1-15 配熔体3A 3 FU2 瓷插式熔断器RC1-5A 2A 2 KM1 KM2 交流接触器CJX2-9/380 AC380V 2 SB1 SB2 实验按钮LAY3-11 一常开一常闭自动 复位 2 SB1绿 SB2红 KT 通电延时时间继电器JS7-1A AC380V 1 R 电阻90Ω0.3A 1 D 二极管2CZ 1000V5A 1 FR 热继电器JR-36 整定电流0.63A 1 M 三相鼠笼式异步电动机380V 0.45A120W 1 2.实验电路图

3.实验特点 该控制线路适用于10KW以下电动机,可以采用半波整流能耗制动自动控 制电路,这种线路结构简单,附加设备较少,体积小,采用一只二极管半波整流 器作为直流电源。 4.检测与调试 经检查安装牢固与接线无误后,操作者可接通交流电源自行操作,若出现 不正常故障,则应分析原因并排除使之正常工作。 二、有变压器全波整流能耗制动控制线路 1.实验元件 代号名称型号规格数量备注QS 低压断路器DZ47 5A\3P 1 FU1 螺旋式熔断器RL1-15 配熔体3A 3 FU2 瓷插式熔断器RC1-5A 2A 2 KM1 KM2 交流接触器CJX2-9/380 AC380 2 SB1 SB2 实验按钮LAY3-11 一常开一常闭 自动复位 2 SB1绿 SB2红 KT 通电延时 时间继电器 JS7-1A AC380V 1 R 可调电阻BX7D-1/3 180Ω1.3A 1 TC 变压器B-300-8 380V/110V 1 厂编VC 桥堆KBPC1510 15A 1 FR 热继电器JR-36 整定电流0.63A 1 M 三相鼠笼式异步 电动机 380V 0.53A160W 1

继电器控制电路模块及原理讲解

继电器控制电路模块及原理讲解 发布: 2011-9-8 | 作者: —— | 来源:huangguohai| 查看: 564次| 用户关注: 能直接带动继电器工作的CMOS集成块电路在电子爱好者认识电路知识的的习惯中,总认为CMOS 集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下:CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的 能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-D C12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SC R2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施

相关主题
文本预览
相关文档 最新文档