当前位置:文档之家› ansys—solid45单元

ansys—solid45单元

ansys—solid45单元
ansys—solid45单元

地基采用层状地基模型,依据地质勘察资料及土工常规试验所测定的土性指标,将地基土分为3层,每层厚度与实际厚度一致,在水平面上的长度和宽度取塔底换算半径的5倍,该塔横截面为正方形,换算半径在此取为边长的一半,并约束地基边界面的各自由度,竖向深度取地基土的勘察深度。在土中成孔及土体的软化依据图 3.5,所建模型地基内部的构造见图 3.7。

数值计算模型

计算单元采用空间8结点六面体单元(图 3.8),该单元亦可退化为无中间结点的空间四面体单元和三棱柱单元,各结点沿其坐标x,y,:共三个平移自由度,分布式荷载可作用于单元的各个侧面,采用该单元可分析大变形、大应变、塑性和屈服等问题。

若假定单元的材料为各向同性,则其弹性刚度矩阵为:

图3.9 有限元模型

SOLID45

3-D结构实体单元

产品:MP ME ST <> <> PR <> <> <> PP ED

SOLID45单元说明

solid45单元用于构造三维实体结构.单元通过8个节点来定义,每个节点有3个沿着xyz方向平移的自由度.

单元具有塑性,蠕变,膨胀,应力强化,大变形和大应变能力。有用于沙漏控制的

缩减积分选项。有关该单元的细节参看ANSYS, 理论参考中的SOLID45部分。类似的单元有适用于各向异性材料的solid64单元。Solid45单元的更高阶单元是solid95。

图 45.1 SOLID45几何描述

SOLID45输入数据

该单元的几何形状、结点位置、坐标系如图45.1: "SOLID45 几何描述"所示。该单元可定义8个结点和正交各向异性材料。正交各向异性材料方向对应于单元坐标方向。单元坐标系方向参见坐标系部分。

单元荷载参见结点和单元荷载部分。压力可以作为表面荷载施加在单元各个表面上,如图45.1: "SOLID45 几何描述"所示。正压力指向单元内部。可以输入温度和流量作为单元节点处的体载荷。节点 I 处的温度 T(I) 默认为 TUNIF。如果不给出其它节点处的温度,则默认等于 T(I)。对于任何其它的输入方式,未给定的温度默认为 TUNIF。对于流量的输入与此类似,只是默认值用零代替了TUNIF。

KEYOPT(1)用于指定包括或不包括附加的位移形函数。KEYOPT(5)和KEYOPT(6)提供不同的单元输出选项(参见单元输出部分)。

当KEYOPT(2)=1时,该单元也支持用于沙漏控制的均匀缩减(1点)积分。均匀缩减积分在进行非线性分析时有如下好处:

?相对于完全积分选项而言,单元刚度集成和应力(应变)计算需要更少的CPU时间,而仍能获得足够精确的结果。

?当单元数量相同时,单元历史存储记录(.ESAV 和 .OSAV)的长度约为完全积分(2×2×2)的1/7。

?非线性分析的收敛性通常远比采用额外位移形状的完全积分要好;即,KEYOPT(1) = 0, KEYOPT(2) = 0。

?分析结果不会受(由塑性或其它不可压缩材性引起的)体积锁死的影响。采用均匀缩减积分有以下缺点:

?当采用相同网格进行弹性分析时,结果显然不如完全积分方法精确。

?采用单层单元时不能很好的得到结构的弯曲特性(例如,一根悬臂梁,受横向集中力,采用单层单元)。建议采用4层单元。

当采用均匀缩减积分选项时(KEYOPT(2) = 1 –这和SOLID185用KEYOPT(2) = 1是一样的),应对总能量 (ETABLE命令,SENE 标识符)和沙漏造成的伪能量 (ETABLE命令,AENE 标识符) 进行比较以检查结果的精度。如果沙漏能与总能量之比小于 5%,结果一般是可以接受的。如果该比值超过5%,则需细化网格。也可以在求解阶段用OUTPR,VENG 命令控制总能量和沙漏能。更多说明见ANSYS理论手册。

可用ISTRESS或者ISFILE命令给单元施加初始应力状态。更多信息参见ANSYS基础分析纸指南中的施加初始应力部分。你也可以用KEYOPT(9) = 1来从用户子程序中读取初应力USTRESS。关于用户子程序的细节,参见《ANSYS UPF 指南》。

在进行几何非线性分析时,可以使用SOLCONTROL,,,INCP 命令来包含压力的影响。在线性特征值屈曲分析中自动包括压力载荷刚度效应。如果需要非对称的压力载荷刚度效应矩阵,使用NROPT,UNSYM 命令。

该单元的输入概要参见"SOLID45 输入数据摘要". 单元输入数据的一般性描述参见单元输入部分。

SOLID45单元输入数据摘要

节点

I,J,K,L,M,N,O,P

自由度

UX,UY,UZ

实常数

HGSTF-沙漏控制因子,仅当KEYOPT(2) = 1时需要设置。

注:

有效值为任意正数,默认为1.0。建议值为1到10之间。

材料参数

EX, EY, EZ, PRXY, PRYZ, PRXZ (或NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (或CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP

表面载荷

压力—

表面1(J-I-L-K),表面2(I-J-N-M),表面3(J-K-O-N),表面4(K-L-P-O),表面5(L-I-M-P),表面6(M-N-O-P)

体载荷

温度—

T(I),T(J),T(K),T(L),T(M),T(N),T(O),T(P);

流量—

FL(I),FL(J),FL(K),FL(L),FL(M),FL(N),FL(O)FL(P)特殊功能

塑性

蠕变

膨胀

应力刚化

大变形

大应变

单元死活

自适应下降

初始应力输入

KEYOPT (1)

0 —包括附加的位移形函数

1 —不包括附加的位移形函数

KEYOPT (2)

积分选项

0 —依据KEYOPT(1)带或者不带附加位移形函数,执行完全积分

1 —带砂漏控制的均匀缩减积分,不带附加的位移形函数(KEYOPT(1)自动设

置为1)

KEYOPT(4)

单元坐标系

0—单元坐标系平行于整体坐标系

1—单元坐标系基于单元I-J边

KEYOPT(5)

额外单元输出

0 ——基本单元解

1 ——在所有积分点上重复基本解

2——节点应力解

KEYOPT(6)

额外表面输出

0—基本单元解

1—附带表面I-J-N-M的表面解

2—表面I-J-N-M和表面K-L-P-O的表面解(表面解只对线性材料可用)

3—附带每个积分点的非线性解

4—非零压力表面的表面解

KEYOPT(9)

初始应力子程序选项(仅适用于直接用KEYOPT命令输入时)

0—没有用户子程序提供初应力(默认)

1—从用户子程序USTRESS中读入初始应力数据(有关用户子程序参见

《ANSYS UPF指南》)

SOLID45输出数据

与单元结果相联系的结果输出主要有两种方式:

●节点位移和所有节点结果。

●附加的单元输出,如表45.1: "SOLID45 单元输出定义"所示。

图 45.2: "SOLID45应力输出"显示了几项结果。单元应力方向平行于单元坐标系。表面应力输出在表面坐标系上,各面上的结果都可得到(KEYOPT(6))。面IJNM和KLPO的坐标系如图45.1: "SOLID45几何描述"所示。其他的表面坐标系遵从类似的定位,即由受压面结点关系确定。表面应力输出仅当满足单元输出的条件时可用。一般性的描述参见结果输出。关于如何查看结果,参见ANSYS 基础分析指南。

图45.2: "SOLID45应力输出"

(这里显示的应力方向相应于 KEYOPT(4) = 0)

当KEYOPT(2)=1(单元采用均匀缩减积分),单元积分点上所有的输出和完全积分方法的输出形式相同。为保证输出的一致性,在相同单元类型中完全积分方法的点号。

单元输出定义表使用如下标记:

在名称列中的冒号(:) 表示该项可以用分量名方法[ETABLE, ESOL] 处理;O 列表示该项可用于Jobname.OUT 文件;R 列表示该项可用于结果文件。无论O列或R 列,Y 表示该项总是可用的,一个数字表示表的一个注解,其中说明了使用该项的条件;而减号"-" 表示该项不可用。

表45.1 SOLID45单元的结果输出定义

2 表面输出(如果KEYPOINT(6)是1、2或者4) 。

3 用*GET可以获得质心位置的结果.。

4等效应变用一个等效泊松比来计算:对于弹性和热问题,这个值由(MP,PRXY)输入;对于塑性和蠕变问题,这个值取0.5

表45.2 SOLID45综合单元输出

1.若单元有非线性材料且KEYOPT(6)=3,在8个积分点处输出结果。

2.若KEYOPT(5)=1,在每个积分点输出结果。

3.若KEYOPT(5)=2,在每个结点输出结果。

表45.3 "SOLID45 输出项和序列号"列出了可以通过ETABLE 命令,用序列号方法输出的内容列表。更多信息见"ANSYS基本分析指南"中一般后处理(POST1)部分和本手册中"输出项和序列号表"部分。在表45.3 "SOLID45 输出项和序列号" 中使用如下标识符:

Name

与表45.1: "SOLID45 单元输出定义"中相同定义的输出量;

Item

用于ETABLE命令的预先定义的输出项;

E

对于单值或常数型单元数据的序列号;

I,J,…,P

节点I,J,...,P处数据的序列号;

有关适用ETABLE命令的表面结果输出参见本手册的表面输出部分。SOLID45假定和限制

?体积等于0的单元是不允许的。

?单元结点编号可参照图45.1: "SOLID45几何描述",面IJKL和 MNOP也可互换。

?单元不能扭曲,这样单元就会有两个独立的体。这通常发生在当单元结点编号不当时。

?所有单元都必须有8个结点。

?可以通过定义重合的K和L、O和P来形成棱柱形单元(参见三角形、棱柱形和四面体单元)。

?四面体形状也是允许的。对四面体单元,额外形状被自动删除。SOLID45产品限制

对于以下产品,将在上述一般假设和限制的基础上再增加一定的限制:。ANSYS Professional.

?不允许有DAMP材性。

?不能施加流量体荷载。

?唯一允许的特殊性能是应力钢化。?KEYOPT(6)=3不可用。

ansys各种结构单元介绍

一、单元分类 MP - ANSYS/Multiphysics DY - ANSYS/LS-Dyna3D FL - ANSYS/Flotran ME - ANSYS/Mechanical PR - ANSYS/Professional PP - ANSYS/PrepPost ST - ANSYS/Structural EM - ANSYS/Emag 3D ED - ANSYS/ED

LINK1 —二维杆单元 单元描述: LINK1单元有着广泛的工程应用,比如:桁架、连杆、弹簧等等。这种二维杆单元是杆轴方向的拉压单元,每个节点有2个自由度:沿节点坐标系x、y方向的平动。就象在铰接结构中的表现一样,本单元不承受弯矩。单元的详细特性请参考理论手册。三维杆单元的描述参见LINK8。 下图是本单元的示意图。 PLANE2 —二维6节点三角形结构实体单元 单元描述: PLANE2是与8节点PLANE82单元对应的6节点三角形单元。单元的位移特性是二次曲线,适合于模拟不规则的网格(比如由不同的CAD/CAM系统得到的网格)。 本单元由六个节点定义,每个节点有2个自由度:沿节点坐标系x、y 方向的平动。本单元可作为平面单元(平面应力或平面应变)或者作为轴对称单元使用。本单元还具有塑性、蠕变、膨胀、应力刚化、大变形、大应变等功能。详细特性请参考理论手册。 下图是本单元的示意图。

BEAM3二维弹性梁单元 BEAM3是一个轴向拉压和弯曲单元,每个节点有3个自由度:沿节点坐标系x、y方向的平动和绕z轴的转动。单元的详细特性请参考理论手册。其它的二维梁单元是塑性梁单元(BEAM23)和变截面非对称梁单元(BEAM54)。 下图是本单元的示意图。 BEAM4三维弹性梁单元 单元描述: BEAM4是一个轴向拉压、扭转和弯曲单元,每个节点有6个自由度:沿节点坐标系的x、y、z方向的平动和绕x、y、z轴的转动。本单元具有应力刚化和大变形功能。在大变形(有限转动)分析中允许使用一致切线刚度矩阵选项。本单元的详细特性请参考理论手册。变截面非对称弹性梁单元的描述参见BEAM44,三维塑性梁单元的描述参见BEAM24。

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则 ANSYS中单元类型的选择 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)、beam3是2D的梁单元,只能解决2维的问题。 2)、beam4是3D的梁单元,可以解决3维的空间梁问题。 3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构) 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,

Ansys的热载荷及热单元类型

Ansys的热载荷及热单元类型 Ansys的6种热载荷 ANSYS共提供了6种载荷,可以施加在实体模型或单元模型上,包括:温度、热流率、对流、热流密度、生热率和热辐射率。 1. 温度 作为第一类边界条件,温度可以施加在有限元模型的节点上,也可以施加在实体模型的关键点、线段及面上。 2. 热流率 热流率(Heal Flow)—种节点集中载荷,只能施加在节点或关键点上,主要用于线单元模型。提示:如果温度与热流率同时施加在某一节点上,則ANSYS读取温度值进行计算。 3.对流 对流(Convection)是一种面载荷,用于计算流体与实体的热交换。它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。 4.热流密度 热流密度,又称热通量(Heat Flux),单位为W/m2。热流密度是一种面载荷,表示通过单位面积的热流率。当通过单位面积的热流率己知时,可在模型相应的外表面施加热流密度。若输入值为正,则表示热流流入单元:反之,则表示热流流出单元。它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。 提示:热流密度与对流可以施加在同一外表面,但ANSYS将读取最后施加的面载荷进行计算。 5. 生热率 如前所述,生热率既可看成是材料的一种基本属性,又可作为载荷施加在单元上,它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的关键点、线段、面及体上。 6. 热辐射率 热辐射率也是一种面载荷,通常施加于实体的外表面。它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。

Ansys的热单元类型 ANSYS 10.0热分析共提供了 40余种单元,其中包括辐射单元、对流单元、特殊单元以及前面所介绍的耦合场中-元等。其中常见的用于热分析的单元有16种: 下面一次对各单元进行介绍●MASS71 维度:1D、2D、3D 节点数:1 自由度:温度 性质:质量单元 几何形状 ●LINK31 维度:2D、3D 节点数:2 自由度:温度 性质:热辐射单元 几何形状

ANSYS选择正确的单元类型

初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)beam3是2D的梁单元,只能解决2维的问题。 2)beam4是3D的梁单元,可以解决3维的空间梁问题。 3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell 单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63 就足够了。除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。通常情况下,shell63单元就够用了。 3.实体单元的选择。 实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。常用的实体单元类型有solid45, solid92,solid185,solid187这几种。其中把 solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。 实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢?如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。

(仅供参考)ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型 一、单元 (1)link(杆)系列: link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。 link10用来模拟拉索,注意要加初应变,一根索可多分单元。 link180是link10的加强版,一般用来模拟拉索。 (2)beam(梁)系列: beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。该单元需要手工在实常数中输入Iyy和Izz,注意方向。 beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。 beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。可见188单元已经很完善,建议使用。beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。 (3)shell(板壳)系列 shell41一般用来模拟膜。 shell63可针对一般的板壳,注意仅限弹性分析。它的塑性版本是shell43。加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。 (4)solid(体)系列 土木中常用的就solid45、solid46、solid65、solid95等。 solid45就不用多说了,solid95是它的带中结点版本。

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)、beam3是2D的梁单元,只能解决2维的问题。 2)、beam4是3D的梁单元,可以解决3维的空间梁问题。 3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构) 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。

最新ansys单元类型汇总

a n s y s单元类型

在结构分析中,“结构”一般指结构分析的力学模型。 按几何特征和单元种类,结构可分为杆系结构、板 壳结构和实体结构。 杆系结构:其杆件特征是一个方向的尺度远大于其它两个方向的尺度,例如长度远大于截面高度和宽度的 梁。单元类型有杆、梁和管单元(一般称为线单元)板壳结构:是一个方向的尺度远小于其它两个方向尺度的结构,如平板结构和壳结构。单元为壳单元 实体结构:则是指三个方向的尺度约为同量级的结构,例如挡土墙、堤坝、基础等。单元为3D实体单元和2D 实体单元 杆系结构: ①当构件15>L/h≥4时,采用考虑剪切变形的梁单元。 ②当构件L/h≥15时, 采用不考虑剪切变形的梁单元。 ③BEAM18X系列可不必考虑的上限,但在使用时必须 达到一定程度的网格密度。 对于薄壁杆件结构,由于剪切变形影响很大,所以必 须考虑剪切变形的影响。 板壳结构: 当L/h<5~8时为厚板,应采用实体单元。 当5~8<L/h<80~100时为薄板,选2D体元或壳元 当L/h>80~100时,采用薄膜单元。 对于壳类结构,一般R/h≥20为薄壳结构,可选择薄 壳单元,否则选择中厚壳单元。 对于既非梁亦非板壳结构,可选择3D实体单元。 杆单元适用于模拟桁架、缆索、链杆、弹簧等构件。该类单元只承受杆轴向的拉压,不承受弯矩,节点只有 平动自由度。不同的单元具有弹性、塑性、蠕变、膨胀、 大转动、大挠度(也称大变形)、大应变(也称有限应变)、应力刚化(也称几何刚度、初始应力刚度等)等 功能 ⑴杆单元均为均质直杆,面积和长度不能为零(LINK11 无面积参数)。仅承受杆端荷载,温度沿杆元长线性变 化。杆元中的应力相同,可考虑初应变。 ⑵LINK10属非线性单元,需迭代求解。LINK11可作用线 荷载;仅有集中质量方式。 ⑶LINK180无实常数型初应变,但可输入初应力文件, 可考虑附加质量;大变形分析时,横截面面积可以是变 化的,即可为轴向伸长的函数或刚性的。 ⑷通常用LINK1和LINK8模拟桁架结构,如屋架、网架、 网壳、桁架桥、桅杆、塔架等结构,以及吊桥的吊杆、 拱桥的系杆等构件,必须注意线性静力分析时,结构

Ansys单元类型设置

Ansys单元类型设置 一、单元类型选择概述: ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上; 单元类型选择方法: 1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元; 二、单元类型选择方法(续一) 2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟; 3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围; 三、单元类型选择方法(续二) 4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元; 四、单元类型选择方法(续三) 5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”; 五、单元类型选择方法(续四) 6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。 六、单元类型选择方法(续五) 7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作: 仔细阅读其单元描述,检查是否与分析问题的背景吻合、

ANSYS中单元的选择

在结构分析中,“结构”一般指结构分析的力学模型。按几何特征和单元种类,结构可分为杆系结构、板壳结构和实体结构。杆系结构:其杆件特征是一个方向的尺度远大于其它两个方向的尺度,例如长度远大于截面高度和宽度的梁。元类型有杆、梁和管单元(一般单称为线单元)。板壳结构:是一个方向的尺度远小于其它两个方向尺度的结构,如平板结构和壳结构。单元为壳单元。实体结构:则是指三个方向的尺度约为同量级的结构,例如挡土墙、堤坝、基础等。单元为3D实体单元和2D 实体单元。 杆系结构: ①当构件15>L/h≥4时,采用考虑剪切变形的梁单元。(h为杆系的高度) ②当构件L/h≥15时, 采用不考虑剪切变形的梁单元。 ③BEAM18X系列可不必考虑L/h的值,但在使用时必须达到一定程度的网格密度。对于薄壁杆件结构,由于剪切变形影响很大,所以必须考虑剪切变形的影响。 板壳结构: 当L/h<5~8时为厚板,应采用实体单元。(h为板壳的厚度)当5~880~100时,采用薄膜单元。

对于壳类结构,一般R/h≥20为薄壳结构,可选择薄壳单元,否则选择中厚壳单元。 对于既非梁亦非板壳结构,可选择3D实体单元。 杆单元适用于模拟桁架、缆索、链杆、弹簧等构件。该类单元只承受杆轴向的拉压,不承受弯矩,节点只有平动自由度。不同的单元具有弹性、塑性、蠕变、膨胀、大转动、大挠度(也称大变形)、大应变(也称有限应变)、应刚化(也称几何刚度、初始应力刚度等)等功能 ⑴杆单元均为均质直杆,面积和长度不能为零(LINK11无面积参数)。仅承受杆端荷载,温度沿杆元长线性变化。杆元中的应力相同,可考虑初应变。 ⑵LINK10属非线性单元,需迭代求解。LINK11可作用线荷载;仅有集中质量方式。 ⑶LINK180无实常数型初应变,但可输入初应力文件,可考虑附加质量;大变形分析时,横截面面积可以是变化的,即可为轴向伸长的函数或刚性的。 ⑷通常用LINK1和LINK8模拟桁架结构,如屋架、网架、网壳、桁架桥、桅杆、塔架等结构,以及吊桥的吊杆、拱桥的系杆等构件,必须注意线性静力分析时,结构不能是几何可

ansys各种单元及使用

ansys单元类型种类统计 单元名称种类单元号 LINK (共12种) 1,8,10,11,31,32,33,34,68,160,167,180 PLANE (共20种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09种)3,4,23,24,44,54,161,188,189 SOLID (共30 种)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168, 185,186,187,191,226,227 COMBIN (共05种)7,14,37,39,40 INFIN (共04种)9,47,110,111 CONTAC (共05种)12,26,48,49,52 PIPE (共06种)16,17,18,20,59,60 MASS (共03种)21,71,166 MATRIX (共02种)27,50 SHELL (共19种)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14种)29,30,38,79,80,81,116,129,130,136,138,139,141,142 SOURC (共01种)36 HYPER (共06种)56,58,74,84,86,158 VISCO (共05种)88,89,106,107,108 CIRCU (共03种)94,124,125 TRANS (共02种)109,126 INTER (共05种)115,192,193,194,195 HF (共03种)118,119,120 ROM (共01种)144 SURF (共04种)151,152,153,154 COMBI (共01种)165 TARGE (共02种)169,170 CONTA (共06种)171,172,173,174,175,178 PRETS (共01种)179 MPC (共01种)184 MESH (共01种)20

ANSYS中不同单元之间的连接问题

一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。例如: (1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。 (2)梁与壳有公共节点怒可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。 (3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。 (4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。 上面所述的不同单元之间的接连方法主要是用耦合自由度和约束方程来实现的,有一定的局限性,只适用于小位移,下面介绍一种支持大位移算法的方法,MPC法。 MPC即Multipoint Constraint,多点约束方程,其原理与前面所说的方程的技术几乎一致,将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一一对应。 MPC能够连接的模型一般有以下几种。 solid 模型-solid 模型 shell模型-shell模型 solid 模型-shell 模型 solid 模型-beam 模型 shell 模型-beam模型 在 ANSYS中,实现上述MPC技术有三种途径。 (1)通过MPC184单元定义模型的刚性或者二力杆连接关系。定义MPC184单元模型与定义杆的操作完全一致,而MPC单元的作用可以是刚性杆(三个自由度的连接关系)或者刚性梁(六个自由度的连接关系)。 (2)利用约束方程菜单路径Main Menu>preprocessor>Coupling/Ceqn>shell/solid Interface创建壳与实体模型之间的装配关系。 (3)利用ANSYS接触向导功能定义模型之间的装配关系。选择菜单路径Main

ansys关于薄板、厚板、壳单元的特性区别

一、板壳弯曲理论简介 1. 板壳分类 按板面内特征尺寸与厚度之比划分: 当L/h < (5~8) 时为厚板,应采用实体单元。 当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元 当L/h > (80~100) 时为薄膜,可采用薄膜单元。 壳类结构按曲率半径与壳厚度之比划分: 当R/h >= 20 时为薄壳结构,可选择薄壳单元。 当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。 当R/h <= 6 时为厚壳结构。 上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。2. 薄板理论的基本假定 薄板所受外力有如下三种情况: ①外力为作用于中面内的面内荷载。弹性力学平面应力问题。 ②外力为垂直于中面的侧向荷载。薄板弯曲问题。 ③面内荷载与侧向荷载共同作用。 所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。 薄板通常采用Kirchhoff-Love 基本假定: ①平行于板中面的各层互不挤压,即σz = 0。 ②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。 ③中面内各点都无平行于中面的位移。 薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。 3. 中厚板理论的基本假定 考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。 自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。 厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。 4. 薄壳理论的基本假定 也称为Kirchhoff-Love(克希霍夫-勒夫)假定: ①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。

ANSYS单元类型(详细)

ANSYS 单元类型(详细) 把收集到得ANSYS 单元类型向大家交流下。Mass21 是由6 个自由度的点元素,x,y,z 三个方向的线位移以及绕x,y,z 轴的旋转位移。每个自由度的质量和惯性矩分别定义。Link1 可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2 维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。X,y, 方向。铰接,没有弯矩。Link8 可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3 维杆元素是单轴拉压元素。每个点有3 个自由度。X,y,z 方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。Link10 3 维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41 的线形式,keyopt(1)=2, ' cloth '选如项果。分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8 和pipe59 )代替。当最终的结构是一个拉紧的结构的时候,Link10 也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在linkIO中使用‘显示动力’技术°Link1O每个节点有3 个自由度,x,y,z 方向。在拉(或压)中都没有抗弯能力,但是可

以通过在每个link1O 元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。Link11 用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3 个自由度。X,y,z 方向。没有弯扭荷载。Link18O 可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3 维杆元素是单轴拉压元素,每个节点有3 个自由度。X,y,z 方向。作为胶接结构,不考虑弯矩。具有塑性,徐变,旋转,大变形,大应变能力。link18O 在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。支持弹性,各向同性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche 非线性硬化塑性和徐变等。Beam3 单轴元素,具有拉,压,弯性能。在每个节点有3 个自由度。X,y, 方向以及绕z 轴的旋转。Beam4 是具有拉压扭弯能力的单轴元素。每个节点有6 个自由度,x,y,z, 绕x,y,z 轴。具有应力强化和大变形能力。在大变形分析中,提供了协调相切劲度矩阵选项。Beam23 单轴元素,拉压和受弯能力。每个节点有3 个自由度。该元素具有塑性,徐变,膨胀能力。如果这些影响都不需要,可使用beam3 ,2 维弹性梁。Beam24 3 维薄壁梁。单轴元素,任意截面都有拉压、弯曲和St. Venant 扭转能力。可用于任何敞开的和单元截面。该元素每个节点有6 个自由度:x,y,z 和绕x,y,z 方向。该元素在轴向和自定义的 截面方向都具有塑性,徐变和膨胀能力。若不需要这些能力,可用弹性梁beam4或beam44。Pipe20 和beam23 也具有塑性,徐变和膨胀能力。截面是通过一系列的矩形段来定义的。梁的纵轴向方向

ansys_死活单元

如果模型中加入(或删除)材料,模型中相应的单元就“存在”(或消亡)。单元生死选项就用于在这种情况下杀死或重新激活选择的单元。(可用的单元类型在表6-1中列出。)本选项主要用于钻孔(如开矿和挖通道等),建筑物施工过程(如桥的建筑过程),顺序组装(如分层的计算机芯片组装)和另外一些用户可以根据单元位置来方便的激活和不激活它们的一些应用中。单元生死功能只适用于ANSYS/Multiphysics,ANSYS/Mechanical和ANSYS/Structural产品。 Table 6-1 Elements with birth and death capability LINK1 SURF19 SHELL41 SOLID64 LANE83 SHELL143 PLANE2 IPE20 LANE42 SOLID65 SOLID87 SURF151 BEAM3 MASS21 SHELL43 LANE67 SOLID90 SURF152 BEAM4 SURF22 BEAM44 LINK68 SOLID92 SURF153 SOLID5 BEAM23 SOLID45 SOLID69 SHELL93 SURF154 LINK8 BEAM24 LANE53 SOLID70 SOLID95 SHELL157 LINK10 PLANE25 BEAM54 MASS71 SOLID96 TARGE169 LINK11 MA TRIX27 PLANE55 SOLID72 SOLID97 TARGE170 PLANE13 LINK31 SHELL57 SOLID73 SOLID98 CONTA171 COMBIN14 LINK32 PIPE59 PLANE75 SHELL99 CONTA172 PIPE16 LINK33 PIPE60 PLANE77 PLANE121 CONTA173 PIPE17 LINK34 SOLID62 PLANE78 SOLID122 CONTA174 PIPE18 PLANE35 SHELL63 PLANE82 SOLID123 在一些情况下,单元的生死状态可以根据ANSYS的计算数值决定,如温度,应力,应变等。可以用ETABLE命令(Main Menu>General Postproc>Element Table>Define Table)和ESEL命令(Utility Menu>Select>Entities)来确定选择的单元的相关数据,也可以改变单元的状态(溶和,固结,俘获等)。本过程对于由相变引起的模型效应(如焊接过程中原不生效的熔融材料变为生效的模型体的一部分),失效扩展和另外一些分析过程中的单元变化是有效的。 单元生死是如何工作的? 要激活“单元死”的效果,ANSYS程序并不是将“杀死”的单元从模型中删除,而是将其刚度(或传导,或其他分析特性)矩阵乘以一个很小的因子[ESTIF]。因子缺省值为1.0E-6,可以赋为其他数值(详见“施加载荷并求解”一章)。死单元的单元载荷将为0,从而不对载荷向量生效(但仍然在单元载荷的列表中出现)。同样,死单元的质量,阻尼,比热和其他类似效果也设为0值。死单元的质量和能量将不包括在模型求解结果中。单元的应变在“杀死”的同时也将设为0。 与上面的过程相似,如果单元“出生”,并不是将其加到模型中,而是重新激活它们。用户必须在PREP7 中生成所有单元,包括后面要被激活的单元。在求解器中不能生成新的单元。要“加入”一个单元,先杀死它,然后在合适的载荷步中重新激活它。 当一个单元被重新激活时,其刚度,质量,单元载荷等将恢复其原始的数值。重新激活的单元没有应变记录(也无热量存储等)。但是,初应变以实参形式输入(如LINK1 单元)的不为单元生死选项所影响。而且,除非是打开了大变形选项[NLGEOM,ON],一些单元类型将以它们以前的几何特性恢复(大变形效果有时用来得到合理的结果)。单元在被激活后第一个求解过程中同样可以有热应变(等于a*(T-TREF)),如果其承受热量体载荷。

ANSYS单元类型详细

把收集到得ANSYS单元类型向大家交流下。 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)beam3是2D的梁单元,只能解决2维的问题。 2)beam4是3D的梁单元,可以解决3维的空间梁问题。 3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。 除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺

ANSYS单元类型选择方法

ANSYS单元类型选择方法 最近在学习ANSYS,收集到一些资料,跟大家分享一下:还有心得体会将在后面写出来跟同行们交流! 下面是有关ANSYS分析中的单元选择方法: 一、单元类型选择概述: ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上; 单元类型选择方法: 1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元; 二、单元类型选择方法(续一) 2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟; 3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围; 三、单元类型选择方法(续二) 4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型: Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元; 四、单元类型选择方法(续三) 5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”; 五、单元类型选择方法(续四) 6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。 六、单元类型选择方法(续五)

(完整版)ANSYS命令流总结(全)

ANSYS结构分析单元功能与特性 /可以组成一一些命令,一般是一种总体命令(session),三十也有特殊,比如是处理/POST1 ! 是注释说明符号,,与其他软件的说明是一样的,ansys不作为命令读取, * 此符号一般是APDL的标识符,也就是ansys的参数化语言,如*do ,,,*enddo等等 NSEL的意思是node select,即选择节点。s就是select,选择。 DIM是定义数组的意思。array 数组。 MP命令用来定义材料参数。 K是建立关键点命令。K,关键点编号,x坐标,y坐标,z坐标。K, NPT, X, Y, Z是定义关键点,K是命令,NPT是关键点编号,XYZ是坐标。 NUMMRG, keypoint 用这个命令,要保证关键点的位置完全一样,只是关键点号不一样的才行。这个命令对于重复的线面都可以用。这个很简单,压缩关键。 Ngen 复制节点 e,节点号码:这个命令式通过节点来形成单元 NUMCMP,ALL:压缩所有编号,这样你所有的线都会按次序重新编号~你要是需要固定的线固定的标号NSUBST,100,500,50:通过指定子步数来设置载荷步的子步 LNSRCH线性搜索是求解非线性代数方程组的一种技巧,此法会在一段区间内,以一定的步长逐步搜索根,相比常用的牛顿迭代法所要耗费的计算量大得多,但它可以避免在一些情况下牛顿迭代法出现的跳跃现象。LNSRCH激活线性搜索 PRED 激活自由度求解预测 NEQIT指定一个荷载步中的最大子步数 AUTOTS 自动求解控制打开自动时间步长. KBC -指定阶段状或者用跳板装载里面一个负荷步骤。 SPLINE:P1,P2,P3,P4,P5,P6,XV1,YV1,ZV1,XV6,YV6,ZV6(生成分段样条曲线) *DIM,Par,Type,IMAX,JMAX,KMAX,Var1,Var2,Var3(定义载荷数组的名称) 【注】Par: 数组名 Type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省) char 字符串组(每个元素最多8个字符) table IMAX,JMAX,KMAX各维的最大下标号 Var1,Var2,Var3 各维变量名,缺省为row,column,plane(当type为table时) /config是设置ansys配置参数的 命令格式为/CONFIG, Lab, V ALUE Lab为参数名称value为参数值 例如:/config,MXEL,10000的意思是最大单元数为10000 杆单元:LINK1、8、10、11、180 梁单元:BEAM3、4、23、24,44,54,188,189 管单元:PIPE16,17,18,20,59,60 2D实体元:PLANE2,25,42,82,83,145,146,182,183 3D实体元:SOLID45,46,64,65,72,73,92,95,147,148,185,186,187,191 壳单元:SHELL28,41,43,51,61,63,91,93,99,143,150,181,208,209 弹簧单元:COMBIN7,14,37,39,40 质量单元:MASS21 接触单元:CONTAC12,52,TARGE169,170,CONTA171,172,173,174,175,178 矩阵单元:MATRIX27,50

Ansys 单元类型选择方法

单元类型选择方法 ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上; 单元类型选择方法: 1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元; 2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟; 3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围; 4. 确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元; 5. 根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”; 6. 根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。 7. 进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作: 仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。 Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。每个自由度的质量和惯性矩分别定义。 Link1可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。x,y,方向。铰接,没有弯矩。 Link8可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3维杆元素是单轴拉压元素。每个点有3个自由度。x,y,z方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。 Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形式,keyopt(1)=2,?cloth?选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8 和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在link10中使用…显示动力?技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。 Link11用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3个自由度。X,y,z方向。没有弯扭荷载。 Link180可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3维杆元素是单轴拉压元素,每个节点有3个自由度。X,y,z方向。作为胶接结构,不考虑弯矩。具有塑性,

相关主题
文本预览
相关文档 最新文档