当前位置:文档之家› 单自由度系统自由衰减振动及固有频率、阻尼比的测定

单自由度系统自由衰减振动及固有频率、阻尼比的测定

单自由度系统自由衰减振动及固有频率、阻尼比的测定
单自由度系统自由衰减振动及固有频率、阻尼比的测定

单自由度系统自由衰减振动 及固有频率、阻尼比的测定

一、 实验目的

1、了解单自由度系统模型的自由衰减的振动的有关概念;

2、学习用频谱分析信号的频率。

3、学习测试单自由度系统模型阻尼比的方法。

二、 实验仪器

实验仪器:INV1601B 型振动教学实验仪、INV1601T 型振动教学实验台、加速度传感器、调速电机或配重块、MSC-1力锤(橡胶头)。

软件:INV1601型DASP 软件。

三、 实验原理

单自由度系统的阻尼计算常常通过衰减振动的过程曲线振幅的衰减比例来进行计算。衰减振动波形示于图1。用衰减波形求阻尼可以通过半个周期的相邻两个振幅绝对值之比,或经过一个周期的两个同方向相邻振幅之比,这两种基准方式进行计算。通常以相隔半个周期的相邻两个振幅绝对值之比为基准来计算的较多。两个相邻振幅绝对值之比,称为波形衰减系数。

图1 衰减振动波形

1、对经过半周期为基准的阻尼计算 每经过半周期的振幅的比值为一常量,

2

12

1)2

(1

D D TD TD

t t K K e

e

Ae

Ae A A -+

--+===

=

π

εεε?

这个比例系数

? 表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数 ? 常用来表示

振幅的减小速率。

如果用衰减系数?的自然对数来表示振幅的衰减则更加方便。

2

1121ln

ln D D T A A D K K -====+πε?δ

δ称为振动的对数衰减率。可以利用来求得阻尼比D 。

2

2

δ

πδ+=

D

引入常用对数

10

10

10303.2lg ,4343.0lg lg ln lg lg δδδ?δ?δ======e

e e

e 便得

2

2

)

(lg 862.1lg )

lg 733.0(1lg 733.0????+=

+=

D

在实际阻尼波形振幅读数时,由于基线甚难处理,阻尼较大时,基线差一点, ? 就相差

很大,所以往往读取相邻两个波形的峰峰值之比,

2

11+++++K K K K A A A A

2

11

+++=

K K K K A A A A 时,

2

111

++++++=

=

K K K K K K A A A A A A ?

这样,实际阻尼波形读取数值就大为方便,求得阻尼比也更加正确。

四、 实验步骤

1. 仪器安装

2. 参照仪器安装示意图安装好配重块。加速度传感器接入INV1601B 型实验仪的第一通道。

加装配重块是为了增加集中质量,使结构更接近单自由度模型。

3. 开机进入INV1601型DASP 软件的主界面,选择“单通道”按钮。进入单通道示波状态进

行波形和频谱同时示波。

4. 在“采样参数”中设置好采样频率1000Hz 、采样点数为2K ,标定值和工程单位等参数。

5. 调节“加窗函数”旋钮为指数窗。在时域波形显示区域中出现一红色的指数曲线。

6. 用手敲击简支梁,看到响应衰减信号,这时,按下鼠标左键读数。

7. 把采到的当前数据保存到硬盘上,设置好文件名、试验号、测点号和保存路径。 8. 移动光标收取波峰值和相邻的波峰值并记录,在频谱图中读取当前波形的频率值。 9. 重复上述步骤,收取不同位置的波峰值和相邻的波谷值。

五、 实验结果和分析

测得的单自由度系统的固有频率和阻尼比分别为:

实验次数频率(Hz)阻尼(%)波峰值波谷值峰峰值波峰值波谷值峰峰值

1(2kg)112.27 -120.515

232.78

5107.603

-120.51

5

228.11

8

23.81 0.645

2(3kg)61.3712 -70.2873 131.65

85

59.6641

-70.287

3

129.95

4

20.41 0.415

3(3.5kg)63.661 -73.2239 136.88

49

62.0516

-73.223

9

135.27

55

19.61 0.376

实验次数

第一峰峰值第二峰峰值

频率(Hz)阻尼(%)波峰值波谷值峰峰值波峰值波谷值峰峰值

4(2kg)103.051 -111.216

214.26

799.4899

-111.21

6

210.70

59

23.81 0.533

5(3kg)58.7112 -68.035

126.74

62 57.4217-68.035

125.45

67

20.41 0.325

6(3.5kg)60.7578 -70.2641 131.02

19

59.5286

-70.264

1

129.79

27

19.61 0.300

实验次数

第一峰峰值第二峰峰值

频率(Hz)阻尼(%)波峰值波谷值峰峰值波峰值波谷值峰峰值

7(2kg)95.7667 -103.692 199.458

7

91.3085 -103.692

195.000

5

23.26 0.719

8(3kg)56.4412 -65.7574 122.198

6

55.0314 -65.7574

120.788

8

20.41 0.369

9(3.5kg)57.8901 -67.4566 125.346

7

56.5812 -67.4566

124.037

8

19.23 0.334

实验次数

第一峰峰值第二峰峰值

频率(Hz)阻尼(%)波峰值波谷值峰峰值波峰值波谷值峰峰值

10(2kg)86.7088 -95.2868 181.995

6

83.176 -95.2868

178.462

8

23.81 0.624

11(3kg)54.1794 -63.913 118.092

4

53.1803 -63.913

117.093

3

20.41 0.270

12(3.5kg)55.3268 -64.7458 120.072

6

53.5429 -64.7458

118.288

7

19.61 0.476

实验次数频率(Hz)阻尼(%)波峰值波谷值峰峰值波峰值波谷值峰峰值

13(2kg)79.3488 -87.9751 167.323

9

77.6435 -87.9751

165.618

6

23.81 0.326

14(3kg)51.2219 -60.5298 111.751

7

49.8073 -60.5298

110.337

1

20.41 0.

405 15(3.5kg)50.5971 -60.0356

110.632

7

48.6241 -60.0356

108.659

7

19.23 0.573

简支梁质量不能忽略时,系统固有频率

3

)

36

17

(

48

ω

L

m

M

EI

+

=

M——质量块或砝码质量

简支梁质量m=ρV=2.1352kg

L=0.68m E=206GPa I=2.13×10-9m4

计算得单自由度系统的固有频率分别为:

M1=2kg时,f1=23.64Hz;

M2=3kg时,f2=20.50Hz;

M3=3.5kg时,f3=19.34Hz。

计算结果与实验结果很接近。

由于阻尼比很小,对系统振动频率几乎没有影响。

砝码为2kg的图像

砝码为3kg的图像

砝码为3.5kg的图像

六、实验心得

此次实验,让我了解了衰减振动的相关概念,懂得了如何用频谱分析信号的频率。同时也学到了通过读取相邻两个波形的峰峰值之比来计算阻尼比的方法。

实验中,我们小组三人合作,xxx同学负责用手敲击简支梁和记录实验数据,我主要负责电脑软件的采样工作,xxx同学帮忙指导操作以及保存实验数据,最后我们三个人一起处理实验数据。小组既有分工又有合作,很快就完成了实验的内容。

单自由度有阻尼系统的受迫振动实验

5□ 5-1 单自由度系统有阻尼受迫振动 图5-1 单自由度系统有阻尼受迫振动实验原理图

单自由度系统有阻尼受迫振动□ 5-2 图5-2 单自由度系统有阻尼受迫振动实验操作界面 单自由度系统有阻尼受迫振动实验操作界面说明 主菜单 存 盘 :将测试数据存盘。按提示输入学号作为文件名。 实验指导 :激活本实验的实验指导文本。 退 出 :退出本操作界面,回到主界面(图2) 虚拟仪器 量程:指示灯为“绿色”表示信号达到半量程,为“黄色”表示信号

过载。设置量程使信号超过半量程而不过载可以减小量化误差。 示波器 :选择“显示选择”中的显示内容,可使其单独显示“加速度信号”或“激励信号”的时间历程。也可同时显示“加速度/激励信号”的时间历程。 电压表 :显示加速度信号的电压值。 频率计 :显示加速度响应信号的频率。 李萨玉图 :观察加速度信号和激振信号的李萨玉图。 信号发生器 :输出一定电压和频率的简谐信号。用“On/Off”开启或关闭信号发生器。 测试数据: 拾取数据 : 拾取电压表和频率计当前的读数到测试数据表格内。若重复拾取某一频率的数据,则当前拾取的数据将覆盖过去拾取的同频率的数据。 重新拾取 : 清除测试数据表格中的全部数据,重新拾取电压表和频率计当前的读数。 数据检验 : 将测试数据表格中的加速度信号数据绘成幅频曲线(图5-3)。 图5-3

一、实验目的 ? 了解和掌握单自由度系统在简谐激振力作用下受迫振动的一般规律及现象。 ? 掌握根据李萨育图获得结构固有频率的方法(即相位共振法)。 ? 了解和掌握机械结构加速度幅频特性曲线的测量方法以及如何由幅频特性曲线得到结构的固有频率。 二、实验仪器 ? 单自由度系统试件 1件 ? 激振器及功率放大器 1套 ? 加速度传感器(ICP式) 1只 ? ICP电源(即ICP信号调节器)4通道 1台 ? 信号发生器 1台 ? 电压表 1台 ? 频率计 1台 ? 示波器 1台 其中:信号发生器、电压表、频率计和示波器由计算机虚拟提供。 三、实验方法及步骤 1、装配实验系统 ? 按图5-1将综合实验台装配成单自由度系统。 ? 按1节所述的方法和要求安装激振器和加速度传感器。 ? 按图5-1连接各测试设备。 2、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”!打开 各设备电源。 3、从“综合振动综合实验系统”对话框(图2),进入“单自由度系统有 阻尼受迫振动”实验操作界面(图5-2)。 4、使信号发生器的输出频率约为30Hz,输出电压约为1V。调节功率放

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2 a θ=h α 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 θ F sin α 2 θα h mg θ

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2=== 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

4-单自由度系统的受迫振动

1-2单自由度体系的受迫振动 主要问题1-2-1简谐激励作用的受迫振动响应1-2-2周期激励作用的受迫振动响应1-3-3任意激励作用的受迫振动响应 1-3-5 隔振 1-3-4 等效阻尼 激励 响应 系统

1-2-1简谐激励作用的受迫振动响应 单自由度系统振动方程 t F kx x c x m ωsin 0=++ 非自治系统 t f x x x n n ωω?ωsin 202=++

t k F t k F t x t x x n n n n ωλ ωλλωωωsin 11 sin 1sin cos 2 02000-+--+= 无阻尼系统 ???? ?====+0002 )0(,)0(,0sin x x x x t t f x x n ωω方程之解 无阻尼自由振动 无阻尼受迫振动 自由伴随振动 瞬态过程 稳态过程

实际系统中,阻尼的客观存在,随着时间的推移,瞬态响应逐渐衰减,系统进入稳态振动过程 系统的瞬态振动过程是复杂的运动形式?ε λ21+=?0 →εt t f x n n ωεωε cos sin 20 -≈t t f x n n ωωcos 2 1 0-≈“拍”

无阻尼系统的稳态响应 t k F x ωλ sin 112 0-=k F st 0 = δ静变形 2 11λβ-= 动力放大因子 1<<λ?1 >>λ?1 =λ?1 →β系统表现为静态特征0 →β系统表现为动态特征∞ →β系统出现“共振”现象

θ βi e k -=1θβ 阻尼系统的稳态响应 t f x x x n n ωω?ωsin 202 =++ t i n n e f x x x ωω?ω02 2=++ 设系统的稳态响应为 t i Be x ω=B 为复振幅 )(F H B ω=H (ω)称为复频响应函数 2 2 2) 2()1(1?λλ+-= 2 12arctan λ?λ -=动力放大因子响应与激励的相位差!系统的幅频特性 !系统的相频特性 ??????+---=2222 )2()1(211)(?λλ?λλωi k H

第3章单自由度体系5(直接积分法)

第三章单自由度体系 直接积分法

主要内容 ?两种直接积分方法 (1)中心差分法 (2)Newmark—β法 ?数值积分的稳定性 ?了解算法阻尼(数值阻尼)现象

1. 数值积分概述(直接积分法,逐步积分法) (Direct Integration Methods, Step-by-Step Methods) 运动方程:In direct integration the equations of equilibrium are integrated using a numerical step-by-step procedure, the term ‘direct ’meaning that prior to the numerical integration, no transformation of equations into a different form is carried out. (K.J. Bathe, Finite Element Procedures, Prentice-Hall, 1996.)Two ideas: (1)运动方程并不在任何时间t 都得到满足,而仅仅是在以时间间隔为Δt 的离散时间点上得到满足。 (2)在时间间隔Δt 内,对位移、速度和加速度的变化作出某些假定。 ()()()mu c t u k t u p t ++=

1. 数值积分概述 常用的数值积分方法: (1)分段解析法; (2)中心差分法; (3)Runge-Kutta法; (4)Houbolt法; (5)平均加速度法; (6)线性加速度法; (7)Newmark—β法; (8)Wilson —θ法; (9)HHT法(Hilber-Hughes-Taylor method); (10)精细积分法; ……

单自由度系统.

第1章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。 1.4 求图1-33中标出参数的系统的固有频率。 1.5 求图1-34所示系统的固有频率。图中匀质轮A 半径R,重物B 的重量为P/2,弹簧刚度为k. 1.6求图1-35所示系统的固有频率。图中磙子半径为R ,质量为M ,作纯滚动。弹簧刚度为K 。 1.7求图1-36所示齿轮系统的固有频率。已知齿轮A 的质量为A m ,半径为A r ,齿轮B 的质量为B m ,半径为B r ,杆AC 的扭转刚度为A k , ,杆BD 的扭转刚度为B k 。 1.8已知图1-37所示振动系统中,匀质杆长为l ,质量为m ,两弹簧刚度皆为K ,阻尼系数 为C ,求当初始条件00 0==θθ 时

(1)t F t f ωsin )(=的稳态解; (2)t t t f )()(δ=的解; 1.9图1-38所示盒内有一弹簧振子,其质量为m ,阻尼为C ,刚度为K ,处于静止状态,方盒距地面高度为H ,求方盒自由落下与地面粘住后弹簧振子的振动历程及振动频率。 1.10汽车以速度V 在水平路面行使。其单自由度模型如图1-39。设m 、k 、c 已知。路面波动情况可以用正弦函数sin()y h at =表示。求:(1)建立汽车上下振动的数学模型;(2)汽车振动的稳态解。 1.11.若电磁激振力可写为t H t F 02sin )(ω=,求将其作用在参数为m 、 k 、 c 的弹簧振子上的稳态响应。 1.1 2.若流体的阻尼力可写为3x b F d -=,求其等效粘性阻尼。

单自由度系统自由衰减振动及固有频率、阻尼比

:单自由度系统自由衰减振动及固有频率、阻尼比的测定实验指导书 陈安远 (武汉大学力学实验教学中心) 1.实验目的 1、了解单自由度系统模型的自由衰减振动的有关概念; 2、学习用频谱分析信号的频率; 3、学习测试单自由度系统模型阻尼比的方法。 2.实验仪器及安装示意图 实验仪器:INV1601B型振动教学实验仪、INV1601T型振动教学实验台、加速度传感器、MSC-1力锤(橡胶头)、重块。 软件:INV1601型DASP软件。 图1实验系统示意图 3实验原理 单自由度系统的阻尼计算,在结构和测振仪器的分析中是很重要的。阻尼的计算常常通过衰减振动的过程曲线(波形)振幅的衰减比例来进行计算。衰减振动波形示于图2。用衰减波形求阻尼可以通过半个周期的相邻两个振幅绝对值之比,或经过一个周期的两个同方向

振幅之比,这两种基本方式进行计算。通常以一个周期的相邻两个振幅值之比为基准来计算的较多。两个相邻振幅绝对值之比,称为波形衰减系数。 图2衰减振动波形 1、对经过一个周期为基准的阻尼计算 每经过一个周期的振幅的比值为一常量: η=d nT i i e A A =+1 这个比例系数η表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数η常用来表示振幅的减小速率。叫做振幅减缩率或减幅系数。 如果用减幅系数η的自然对数来表示振幅的衰减则更加方便。 δ=ln (η)=ln d i i nT A A =+1=21ξπξ- δ称为振动的对数衰减率或对数减幅系数。可以利用δ来求得阻尼比ξ。 2、在小阻尼时,由于η很小;这样读数和计算误差较大,所以一般地取相隔若干个波峰序号的振幅比来计算对数衰减率和阻尼比。 4.实验步骤 1、仪器安装 参照仪器安装示意图安装好配重质量块,加速度传感器。 2、开机进入INV1601型DASP 软件的主界面, 进入单通道示波状态进行波形和频谱同时示波,见图2。 3400Hz 、采样点数为2K,标定值和工程单位等参数(按实际

Newmark法求解单自由度

% 单位:N/mm/s/ton function res=Newmark(alpha,C) % 系统设置; T=0.1/alpha; K=(2*3.1415926/T)^2; M=1; % C=0; % 定义参数 h=0.0002; beta=0.25; gamma=0.5; con=zeros(1,7); con(1)=1/(beta*h^2); con(2)=gamma/(beta*h); con(3)=1/(beta*h); con(4)=1/(2*beta)-1; con(5)=gamma/beta-1; con(6)=0.5*h*(gamma/beta-2); con(7)=h*(1-gamma/(2*beta)); % 有效刚度 Ke=K+con(1)*M+con(2)*C; % 定义矩形荷载 t=0:h:1; f=zeros(1,size(t,2)); for i=1:size(t,2) if t(i)==0 f(i)=0; else if t(i)>0 && t(i)<=0.1 f(i)=1000*(3.1415926)^2; else f(i)=0; end end % plot(t,f); % 系统初始条件 u0=0; du0=0; ddu0=0; U=zeros(3,size(t,2)); % 求解 for i=1:(size(t,2)-1) fe=f(i+1)+M*(con(1)*u0+con(3)*du0+con(4)*ddu0)+C*(con(2)*u0+con(5)*du 0+con(6)*ddu0); u1=fe/Ke;

du1=con(2)*(u1-u0)-con(5)*du0+con(7)*ddu0; %计算速度和加速度; ddu1=(f(i+1)-C*du1-K*u1)/M; U(:,i+1)=[u1;du1;ddu1]; u0=u1; du0=du1; ddu0=ddu1; end res=[U;t]; end

单自由度系统

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形:,同时也产生弹簧恢复力K ,当其等于重力W 时,则处于静平衡位置,即 W=K 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(+x),显然大于重力W ,由 于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m && (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x && (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x &&== (1-1-5) ()x m x k W F && =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x &x )

单自由度系统强迫振动(悬臂梁)

单自由度系统强迫振动(悬臂梁)   一、实验目的  1、 测定带有集中荷重的悬臂梁系统,在自由端部位移激励下引起的强迫振动的振幅频率特性曲线;借助幅频特性曲线,求出系统的固有频率及阻尼常数; 2、 初步了解振动测试的一些仪器设备及测试方法。 二、实验装置及原理 1、 实验装置  一个单层框架结构的悬臂梁系统,固定端固定在底板上,自由端与激振器连接,其简图如图1所示。这个系统可看作如图2所示的,有阻尼的单自由度弹簧质量系统。 其中:  m:为悬臂梁系统的等效质量;  k:为悬臂梁系统的等效弹簧常数; c:为悬臂梁系统的阻尼常数;  x(t):为激振器激振器(谐振动)位移,x(t)=Asinωt。 2、 实验原理 图3    测试系统的框图如图3所示。信号发生器可调节激振器的激振频率,激振器的激振频率由计数器读得,悬臂梁自由端的幅值由传感器经电荷放大器转换并放大,由电压表读得。    三、实验步骤 1、 开机,注意开机顺序依次为:信号发生器、功率放大器、频率计数器和测振仪。 2、 调节信号发生器(其振幅一般保持不变)和功率放大器,使激振器以较小的振幅激振; 激振器

然后调节信号发生器的频率,从10-40Hz扫频,使振幅达到最大,即找到系统的共振频率,再轻微调节功率放大器的振幅峰F0,使共振时的位移达到所需振幅。 3、 然后从低频段各点扫描,找出各点频率下对应的位移振幅,频率间隔根据不同情况选取 (最好以位移振幅选取),并把各点数据记录表中和填入方格纸中,完成幅频曲线的绘制。 4、 检查幅频曲线的正确与否,偏差较大时,重新找取相应点的数据。根据图示幅频曲线, 由如下关系式计算系统的固有频率和阻尼常数。 5、 关机,把功率放大器的振幅调至最小,然后关闭仪器的电源,关机顺序正好与开机顺序 相反。 四、实验数据记录及计算结果 序号 频率 振幅 1 2 ….        按照幅频曲线,运用半功率原理得到:  10 36 Frequency Response Function Curve A /A max f (Hz) 1 固有频率:m n f f =, 带宽:12f f f ?=? 相对阻尼系数:n f f 2?= ζ 五、实验要求  1、 实验前必须带好方格纸,在实验过程中,将所测数据填入方格纸中,画出曲线的草图,并让老师检查方可离开。  2、 实验报告中必须达到实验报告基本要求,具备基本的数据表格和曲线图,认真做好实验报告。  3、 认真完成实验,注意实验安全事项。

单自由度系统振动的基础知识

本文讨论简谐激励作用下的受迫振动 1、简谐激励下单自由度系统的振动微分方程 单自由度系统模型 F t=F0e iωt 式中:F(t)为系统的激振力,F0为简谐力的幅值,ω为激振力的频率,当m、k、c分别为系统的质量、刚度、阻尼,根据力的平衡关系可得该系统在简谐激振力作用下的振动微分方程: mx+cx+kx=F0e iωt 2、系统的响应表达式 单自由度受迫振动微分方程式二阶常系数线性非齐次常微分方程,它的解由两部分组成 x t=x1t+x2(t) 式中x1t是齐次方程mx+cx+kx=0的通解,即为单自由度系统的衰减振动,其通解表达式为 x1t=Ae?nt sin?(ωn t+α) x2t是振动微分方程的特解,其特解为 x2t=Xe iωt=|X|e i(ωt?φ) 受迫振动有两部分组成,前一部分为衰减振动,后一部分是受迫振动,

由于阻尼的存在,衰减振动经过一段时间后就会消失,在衰减振动完全消失之前,系统的振动称为暂态过程,亦称为暂态响应。在此之后是稳定的等幅受迫振动,这是受迫振动的稳态过程,亦称为稳态响应。它是一简谐振动,其频率与激励力的频率相同,与激励力相比落后一相位角φ,称为相位差,X为稳态响应的幅值。 3、频率响应函数 将稳态解代入振动微分方程中可得: ?ω2m+iωc+k Xe iωt=F0e iωt 则系统的频率响应函数可表示为: ω=X F0=1 ?ω2m+iωc+k 令ξ为阻尼比,ξ= mk,λ=ωω0,ω0为系统的固有频率,则 Hω=X F0=1 k[(1?λ2+i2ξλ)] 4、幅频特性曲线及相频特性曲线 根据频率响应函数,令X0=F0k,表示在激振力的作用下弹簧的静伸长量,称为静力偏移,频率响应函数可转变为 X X 0= 1 (1?λ2+i2ξλ) 运用平方差公式,将频率响应函数转化成标准复数形式,即 X X 0= 1 (1?λ2+i2ξλ)=1?λ2 (1?λ2)2+(2ξλ)2?i2ξλ (1?λ2)2+(2ξλ)2 将X X0表示为系统振幅与静力偏移的比值,称为放大系数或动力系数用希腊字母β表示。

单自由度体系杜哈梅积分

function y=kst(t0,t1,t2,ts,m,b0,b1,w0,c) t0=input('请输入起始时间:t0= ');t1=input('请输入荷载消失时间:t1= ');t2=input('请输入想要的时间:t2= '); ts=input('请输入时间步长:ts= '); m=input('请输入质量:m= ') ;b0=input('请输入荷载截距:b0= ');b1=input('荷载消失时的荷载:b1= ');k=input('请输入刚度:k= ') ; c=input('请输入阻尼比:c= '); w0=sqrt(k/m);w1=w0*sqrt(1-c^2); t=t0:ts:t2; for i=1:(length(t)) x=linspace(t(1),t(length(t))) p=interp1([t0 t1],[b0 b1],t); p(find(isnan(p)==1)) = 0; px=linspace(p(1),p(length(t))); a=px.*exp(c*w0*x).*cos(w1*x); A=trapz(x,a); b=px.*exp(c*w0*x).*sin(w1*x); B=trapz(x,b); y=exp(-c*w0*t).*(A.*sin(w1*t)-B.*cos(w1*t))./(m*w1) v=diff(y) a0=diff(y,2) end ymax=max(y)

figure plot(t,y); 此程序为复合梯形法计算冲击荷载作用下的杜哈梅积分。 以P(t)=-1250000*(t+0.08)的冲击荷载为例,质量:m=6.4;阻尼比c=0.05;刚度:k=34847.77 N/m.将参数输入程序得到以下结果:

1 单自由度体系的自由振动

y s y(t) s=-k(y+y s )w=mg F(t)=-m y §1 单自由度体系的自由振动 一、无阻尼的自由振动: 如下图,以单自由度体系为例,设此梁上的集中质量为m ,其重量为W mg =, 梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相 应的质量位置称为质量的静力平衡位置。若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。由于振动的方向与梁轴垂直,故称为横向振动。在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。 1、建立运动方程 建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。 今考虑在振动过程的某一瞬时t ,设质量在此瞬时离开其平衡位置的位移为y ,取质量为隔离体,则在质量上作用有三种力:质量的重量W ,杆件对质量的弹性恢复力S 和惯性力F(t)。根据达朗伯原理,这三个力应成平衡,即 W+S+F(t)=0 (1) 在弹性体系中,弹性恢复力S 为 ()s k y y s =-+

上式中的K 为一常数,称为刚度系数,代表简支梁上使质量在运动方向产生单位位移时需要加在质量上的沿质量运动方向的集中力的量值。式中负号表示s 的指向和位移的方向相反。 而 1y s W k =? 即 y s W k =? 因此,将()s k y y s =-+和y s W k =?代入式(1)得 ()0 F t ky =-+ (2) 上式表明,如果以静力平衡位置作为计算位移的起点,则建立体系的运动方程时,可以不考虑重力W 的影响。这对其他体系的振动(包括受迫振动)也同样适用。 将2 2 ()d y F t m dt =-代入式(2)得: 2 2()0d y m ky t dt += 令2 k m ω= dy y dt = (速度) 2 2 d y y dt = (加速度) 则 2 2 ()0d y m ky t dt += 可变为 2 y y ω+= (3) 此为单自由度体系无阻尼自由振动的运动方程,它反映了这种振动的一般规律。 若采用柔度法建立运动方程(建立位移方程),以静力平衡位置作为计算位移的起点,则梁在质量m 处除惯性力2 2()d y F t m dt =-这个假想的 外荷载作用外,再无其他外力作用。所以由达朗伯原理可知,梁在集中质量m 处任一运动瞬时的位移为

相关主题
文本预览
相关文档 最新文档