当前位置:文档之家› 大学物理答案第11章

大学物理答案第11章

大学物理答案第11章
大学物理答案第11章

大学物理答案第11章

第十一章 恒定磁场

11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )

(A ) r R B B

2= (B ) r R B B = (C ) r R B B =2 (D )

r R B B 4= 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比

21==R r n n r R

因而正确答案为(C ).

11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量

为( )

(A )B r 2π2 (B ) B r 2

π (C )αB r cos π22 (D ) αB r cos π2

题 11-2 图

分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ?=m Φ

.因而

正确答案为(D ).

11-3 下列说法正确的是( )

(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过

(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零

(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零

(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零

分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强

度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).

11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )

(A ) ???=?21L L d d l B l B ,2

1P P B B = (B ) ???≠?2

1L L d d l B l B ,21P P B B = (C ) ???=?21L L d d l B l B ,2

1P P B B ≠ (D ) ???≠?21L L d d l B l B ,21

P P B B ≠

题 11-4 图

分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).

11-5 半径为R 的圆柱形无限长载流直导体

置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),

则磁介质内的磁化强度为( )

(A )()r

I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/

分析与解 利用安培环路定理可先求出磁

介质中的磁场强度,再由M =(μr-1)H 求得

磁介质内的磁化强度,因而正确答案为(B ). 11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速.

分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由l

Nec I =,可解出环中的电子数.

解 通过分析结果可得环中的电子数

10

104?==ec Il N 11-7 已知铜的摩尔质量M =63.75 g·mol -1 ,密度ρ =8.9 g · cm -3 ,在铜导线里,假设

每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j

-=? ,

求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍?

分析 一个铜原子的质量A

N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度

m ρn /=

根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j

v = .从而可解得电子的漂移速率v d .

将电子气视为理想气体,根据气体动理论,电子热运动的平均速率

e m kT

π8=v

其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.

解 (1) 铜导线单位体积的原子数为

M ρN n A

/= 电流密度为j m 时铜线内电子的漂移速率

14A s m 1046.4--??===e

N M j ne j m m d ρv (2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为

81042.2π81?≈=e d d m kT v v v

室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠

加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.

11-8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.

题 11-8 图

分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据

恒定电流的连续性,在两个同轴导体之间的任意

大学物理 马文蔚 第五版 下册 第九章到第十一章课后答案

第九章振动 9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为,且向x 轴正方向运动,代表此简谐运动的旋转矢量为() 题9-1图 分析与解(b)图中旋转矢量的矢端在x轴上投影点的位移为-A/2,且投影点的运动方向指向Ox轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b). 9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为() 题9-2图 分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为.振动曲线上给出质点从–A/2 处运动到+A处所需时间为 1 s,由对应旋转矢量图可知相应的相位差,则角频率,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案. 9-3两个同周期简谐运动曲线如图(a)所示, x1 的相位比x2 的相位() (A)落后(B)超前(C)落后(D)超前 分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).

题9-3图 9-4当质点以频率ν作简谐运动时,它的动能的变化频率为() (A)(B)(C)(D) 分析与解质点作简谐运动的动能表式为,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C). 9-5图(a)中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为() (A)(B)(C)(D) 分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是(即反相位).运动方程分别为和 .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法, 如图(b)很方便求得合运动方程为.因而正确答案为(D). 题9-5图 9-6 有一个弹簧振子,振幅,周期,初相.试写出它的运动方程,并作出图、图和图.

大学物理第十章原子核物理答案

第16章 原子核物理 一、选择题 1. C 2. B 3. D 4. C 5. C 6. D 7. A 8. D 二、填空题 1. 171076.1?,13 1098.1? 2. 2321)(c m m m -+ 3. 1.35放能 4. 9102.4? 5. 117.8 6. 2321`c h m m m -+ 7 . 67.5MeV ,67.5MeV/c ,22 1036.1?Hz 8. 121042.2-? 9. 1.49MeV 10. 115kg 三、填空题 1. 解:设从t =0开始做实验,总核子数为N 0,到刻核子数为N 由于实验1.5年只有3个铁核衰变,所以 1<<τt ,)1(0τ t N N -≈ t =0时,铁核总数为 31274 0106.310 66.1104.6?=??=-N t =1.5年时,铁核总数为 )1(300τ t N N N -≈-=由此解得 3131 00108.15.13 106.3?=??=-=t N N N τ年

设半衰期为T ,则当t =T 时有2/0N N =,由τ/0e t N N =得τ/e 2 1T = 所以, 31 311025.1693.0108.12ln ?=??==τT 年 2. 解:设氢核和氮核的质量分别为N H m m 、,被未知粒子碰撞后速度分别为v H 和v N ; 未知粒子的质量为m , 碰撞前速度为v ,与氢核碰撞后为v 1,与氮核碰撞后为v 2 未知粒子与氢核完全弹性碰撞过程满足关系 H H 1v m mv mv += 2H H 2122 12121v m mv mv += 未知粒子与氮核完全弹性碰撞过程满足关系 N N 2v m mv mv += ● 2N N 2122 12121v m mv mv += ? 联立 ~?得 2 N N 2 H H N H )()(m m m m m m E E ++= 带入数据,可解得 03.1H =m m 由其质量比值可知,未知粒子的质量与氢核的质量十分接近,另由于它在任意方向的磁场中都不偏转,说明它不带电.由此判断该新粒子是中子. 3. 解:与第一组α粒子相对应的衰变能为 α1α12264.793MeV 4.879MeV 4222 A E K A ==?=- 与第二组α粒子相对应的衰变能为 α2α2 2264.612MeV 4.695MeV 4222A E K A ==?=- 226 86Rn 的两能级差为 ()α1α2 4.879 4.695MeV 0.184MeV E E E ?=-=-= 光子的能量与此两能级差相对应,所以光子的频率为 619 19340.18410 1.60218910Hz 4.4510Hz 6.62610 E h ν--????===??

关于大学物理答案第章

17-3 有一单缝,缝宽为,在缝后放一焦距为50cm 的汇聚透镜,用波长为的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 代入数据得 17-4 用波长为的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 依题意有 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 依题意有 0115.234.0sin 5 2sin 20sin 50===→=--θθ 中央波束的角宽为00475.2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 依题意有 2 )122(2)132(21λλ+?=+? 代入数据得 nm 6.428760057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径)中的柱状感光细胞每平方毫米约×105个。星体的像照亮了几个这样的细胞? 解:(1)据爱里斑角宽公式,星体在视网膜上像的角宽度为 (2)视网膜上星体的像的直径为 (3)细胞数目应为3.2105.14)104.4(52 3=????=-πn 个 17-8 在迎面驶来的汽车上,两盏前灯相距120cm 。试问汽车离人多远的地方,眼睛恰能分辨这两盏前灯?设夜间人眼瞳孔直径为,入射光波长为550nm.。 解: 17-9 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。(1)若被识别的牌照上的字划间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大? (2)此照相机的孔径需多大?光的波长按500nm 计算。 解:装置的光路如图所示。 17-10 一光栅每厘米刻有4000 位)已知?和?谱线的波长分别为656nm 和解: S 1S 2

《大学物理》第二版-课后习题标准答案-第九章

《大学物理》第二版-课后习题答案-第九章

————————————————————————————————作者:————————————————————————————————日期:

习题精解 9-1.在气垫导轨上质量为m 的物体由两个轻弹簧分别固定在气垫导轨的两端,如图9-1所示,试证明物体m 的左右运动为简谐振动,并求其振动周期。设弹簧的劲度系数为k 1和k 2. 解:取物体在平衡位置为坐标原点,则物体在任意位置时受的力为 12()F k k x =-+ 根据牛顿第二定律有 2122()d x F k k x ma m dt =-+== 化简得 212 20k k d x x dt m ++ = 令2 12k k m ω+=则22 20d x x dt ω+=所以物体做简谐振动,其周期 12 22m T k k π π ω = =+ 9-2 如图9.2所示在电场强度为E 的匀强电场中,放置一电偶极矩P=ql 的电偶极子,+q 和-q 相距l ,且l 不变。若有一外界扰动使这对电荷偏过一微小角度,扰动消息后,这对电荷会以垂直与电场并通过l 的中心点o 的直线为轴来回摆动。试证明这种摆动是近似的简谐振动,并求其振动周期。设电荷的质量皆为m ,重力忽略不计。 解 取逆时针的力矩方向为正方向,当电偶极子在如图9.2所示位置时,电偶极子所受力矩为 sin sin sin 22 l l M qE qE qEl θθθ=--=- 电偶极子对中心O 点的转动惯量为 2 2 21 222 l l J m m ml ????=+= ? ????? 由转动定律知 2221sin 2d M qEl J ml dt θθβ=-==? 化简得 222sin 0d qE dt ml θθ+= 当角度很小时有sin 0θ≈,若令2 2qE ml ω= ,则上式变为

大学物理标准答案第10章

第十章 静电场中的导体与电介质 10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A )升高 (B )降低(C )不会发生变化 (D )无法确定 分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地 题 10-2 图 分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= =(B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4== 题 10-3 图

分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( ) (A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理答案第1~2章

大学物理答案第1~2 章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 质点的运动 1-1已知质点运动方程为t R x ω-=sin ,)cos 1(t R y ω-=,式中R ,ω为常量,试求质点作什么运动,并求其速度和加速度。 解:22 cos ,sin x y x y dx dy v Rw wt v Rw wt dt dt v v v Rw ==-==-∴=+= 2 222 2 sin ,cos y x x y x y dv dv a Rw wt a Rw wt dt dt a a a Rw ====∴=+= sin ,(1cos )x R wt y R wt ==- 222()x y R R ∴+-=轨迹方程为 质点轨迹方程以R 为半径,圆心位于(0,R )点的圆的方程,即质点 作匀速率圆周运动,角速度为ω;速度v = R ω;加速度 a = R ω2 1-2竖直上抛运动的物体上升到高度h 处所需时间为t 1,自抛出经最高点再回到同一高度h 处所需时间为t 2,求证:h =gt 1 t 2/2 解:设抛出点的速度为v 0,从高度h 到最高点的时间为t 3,则 012132 012221201112()0,2()/2 ()11 222 12 v g t t t t t v g t t t t h v t gt g t gt gt t -+=+=∴=++∴=- =-= 1-3一艘正以v 0匀速直线行驶的汽艇,关闭发动机后,得到一个与船速反向大小与船速平方成正比的加速度,即a =kv 2,k 为一常数,求证船在行驶距离x 时的速率为v=v 0e kx . 解:取汽艇行驶的方向为正方向,则 020 0,,ln v x v kx dv dx a kv v dt dt dv dv kvdt kdx v v dv kdx v v kx v v v e -==-= ∴=-=-∴=-=-∴=?? 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。 解:人前进的速度V 0,则绳子前进的速度大小等于车移动的速度大小,

上海交大版大学物理第九章参考答案

版权归原著所有 本答案仅供参考 习题9 9-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=L 。容器与大气相通排出一部分气体后,气压下降了。若温度不变,求排出气体的质量。 解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。 由于温度不变,∴00PV PV =,有:00 1.783PV V L P = =?, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =?-=, 这部分气体在1.78atm 下体积为:''V = 0'0.7831.78 PV L P ?= 则排除的气体的质量为:0.783'' 1.3 1.71.78 g L m V g L ρ??==?= 。 根据题意pV RT ν=,可得:m pV RT M = ,1V p RT p M m ρ== 9-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。如果其中的一边装有某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少 解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴ O H H O m m M M =,代入数据有: 1.6O m kg = 。 9-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少

解:已知氮气和氧气质量相同,水银滴停留在管的正中央, 则体积和压强相同,如图。 由:mol m pV RT M =,有: 2222 (30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:3028 2103028 T K ?= =+ 。 9-4.高压氧瓶:7 1.310p Pa =?,30V L =,每天用51 1.010p Pa =?, 1400V L =,为保证瓶内6' 1.010p Pa ≥?,能用几天 解:由''pV p V =,可得:761.31030'390' 1.010pV Pa L V L p Pa ??===?, ∴'360V V V L ?=-=; 而:11'p V p V ?=?,有:615' 1.010********.010p V Pa L V L p Pa ????===?, 那么:能用的天数为36009400/L n L = =天 天 。 9-5.如图,长金属管下端封闭,上端开口,置于压强为0p 的大气中。在封闭端加热达11000T K =,另一端保持2200T K =,设温度沿管长均匀变化。现封闭开口端,并使管子冷却到100K ,求管内压强。 解:根据题意,管子一端11000T K =,另一端保持2200T K =, 所以,温度沿管长线性分布,设管长为l ,函数关系为: ()200T x kx =+,其中:l k 800 = 。 2 N 2 O

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理第九章振动学基础习题答案

第九章 振动学习题 9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0??? ? ?+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。 解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,?0=π/3,m A ω=v ,2m a A ω= (2)π=8π3 t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。 解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。 (2 )ω== 2π2T ω==9-3 设地球是一个密度为ρ在隧道内做无摩擦运动。(1)证明此质点的运动是谐振动;(2)计算其振动周期。 解:以球心为原点建立坐标轴Ox 。质点距球心x 时所受力为 324433 x m F G G mx x πρπρ=-=- 令43 k G m πρ=,则有F kx =-,即质点做谐振动。 (2 )ω== 2πT ω== 9-4 A =2.0 ×10-2 m ,周期T =0.50s 。当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。求以上各种情况的振动方程。 解:ω=2π/T=4πs -1 (1)?0=0,0.02cos4(m)x t π= (2)?0=π/2,0.02cos 4(m)2x t ππ??=+ ?? ? (3)?0=π/3,0.02cos 4(m)3x t ππ??=+ ?? ? (4)?0=4π/3,40.02cos 4(m)3x t ππ??=+ ??? 9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。若使物

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

大学物理答案第12章汇总

第十二章电磁感应电磁场和电磁波 12- 1 一根无限长平行直导线载有电流 I , 一矩形线圈位于导线平面内沿垂直于载流导线方 向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流 (B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定 题12-1图 分析与解 由右手定则可以判断, 在矩形线圈附近磁场垂直纸面朝里, 磁场是非均匀场, 距 离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感 应电流方向由法拉第电磁感应定律可以判定.因而正确答案为( B ). 12- 2 将形状完全相同的铜环和木环静止放置在交变磁场中, 并假设通过两环面的磁通量 随时间的变化率相等,不计自感时则( ) (A )铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大 分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流?因而正确答案为( A ). 12- 3 有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为 感电动势为12,由i 1变化在线圈2中产生的互感电动势为 0 ,下述论断正确的是 ( ). (A ) M 12 M 21 ,蚣1 @2 M12 ?若它们分别流过 i1 和 i2 的变化电流且石 di 2 dt ,并设由i 2变化在线圈1中产生的互

@2 (B) M 12 M 21 , %1 § 2 (C) M 12 M 21 , ◎1 @2 (D) M 12 M 21 , 蚣1 12 而正确答案为(D ) 12- 4对位移电流,下述说法正确的是( ) (A )位移电流的实质是变化的电场 (B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理 分析与解 位移电流的实质是变化的电场. 变化的电场激发磁场, 在这一点位移电流等效于 传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因 而正确答案为(A ). 12- 5 下列概念正确的是( ) (A )感应电场是保守场 (B ) 感应电场的电场线是一组闭合曲线 (C ) ①m LI ,因而线圈的自感系数与回路的电流成反比 (D ) ①m LI ,回路的磁通量越大,回路的自感系数也一定大 分析与解对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ). 12— 6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为 5 2 ① 8.0 10 sin 100 n ,式中 ①的单位为Wb t 的单位为s ,求在t 1.0 10 s 时,线 圈中的感应电动势. 分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数 d ① d ^ 和,在此情况下,法拉第电磁感应定律通常写成 E N ,其中书N ①称为磁 dt dt 链. 解线圈中总的感应电动势 分析与解 教材中已经证明M21 = M12,电磁感应定律 %1 M 21di 1 dt M i2-di 2 ?因 dt

大学物理第一章答案

1.5一质点沿半径为 0.10m的圆周运动,其角位置(以弧度表示)可用公式表示:θ= 2 +4t 3.求: (1)t = 2s时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答] (1)角速度为 ω= dθ/dt = 12t2 = 48(rad2s-1), 法向加速度为 an = rω2 = 230.4(m2s-2); 角加速度为 β= dω/dt = 24t = 48(rad2s-2), 切向加速度为 at = rβ= 4.8(m2s-2). (2)总加速度为, 当at = a/2时,有4at2 = at2 + an2,即.由此得, 即,

解得. 所以=3.154(rad). (3)当at = an时,可得rβ= rω2, 即24t = (12t2)2, 解得. 1.7一个半径为R = 1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体 A.在重力作用下,物体A从静止开始匀加速地下降,在Δt = 2.0s内下降的距离h= 0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度. [解答]圆盘边缘的切向加速度大小等于物体A下落加速度. 由于,所以 at = 2h/Δt2 = 0.2(m2s-2). 物体下降3s末的速度为 v = att = 0.6(m2s-1), 这也是边缘的线速度,因此法向加速度为 =

0.36(m2s-2). 1.8一升降机以加速度 1.22m2s-2上升,当上升速度为 2.44m2s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m.计算: (1)螺帽从天花板落到底面所需的时间; (2)螺帽相对于升降机外固定柱子的下降距离. [解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为.由题意得h = h1 - h2,所以,解得时间为 = 0.705(s). 算得h2 = - 0.716m,即螺帽相对于升降机外固定柱子的下降距离为 0.716m. [注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程, 由此可计算钉子落下的时间,进而计算下降距离. 第一章质点运动学 1.1一质点沿直线运动,运动方程为x(t) = 6t2 - 2t 3.试求: (1)第2s内的位移和平均速度;

大学物理第12章习题解答

第十二章 习题答案 12.1 选择题 (1) 对位移电流,下述四种说法哪个正确( ) A. 位移电流是由线性变化磁场产生的. B. 位移电流是指变化的电场. C. 位移电流的热效应服从焦耳-楞次定律. D. 位移电流的磁效应不服从安培环路定理. (2) 空气中有一无限长金属薄壁圆筒,在表面上沿圆周方向均匀地流着一层随时间变化的面电流i (t),则( ) A. 圆筒内均匀地分布着变化磁场和变化电场. B. 任意时刻通过圆筒内假象的任一球面的磁通量和电通量均为 零. C. 沿圆筒内任意闭合环路上电场强度的环流为零. D. 沿圆筒外任意闭合环路上磁感应强度的环流不为零. (3) 如图12.1(3)所示为一充电后的平行板电容器,A 板带正电,B 板 带负电,开关K 合上时,A ?B 板间位移电流的方向为(按图上所标x 轴 正方向回答) A .x 轴正向 B .x 轴负向 C .x 轴正向或负向 D .不确定 题12.1(3)图 答案:(1) B, (2)B, (3)B. 12.2 填空题 1. S t B l E L S d d ??????-= ① 0d =??S B S ② S t D I l H S L i d d ????∑??+= ③ 试判断下列结论是否包含于或等效于哪一个麦克斯韦方程式的.将确定的方程式用代号填在相应结论的空白处. (1) 变化的电场一定伴随有磁场__________________. (2) 变化的磁场一定伴随有电场__________________. (3) 磁感线是无头无尾的闭合曲线________________. 2.平行板电容器的电容C 为20 μF ,两板上的电压变化率V/s 105.1d d 5?=t U ,则该平行板电容器中的位移电流为____________. 3.一空气平行板电容器的两极板是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为t E d d .若略去边缘效应,则两板间的位移电流为______________. 答案: (1)③①②, (2)3 A, (3)20 R dt dE πε

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

相关主题
文本预览
相关文档 最新文档