当前位置:文档之家› 核泄漏解决方案

核泄漏解决方案

核泄漏解决方案
核泄漏解决方案

核泄漏解决方案

什么是核泄漏

核能外泄又称为核熔毁,是一种发生于核能反应炉故障时,严重的后遗症。核能外泄所发出的核能辐射虽远比核子武器威力与范围小,但是却相同能造成一定程度的生物伤亡。核泄漏的原因

核能外泄最主要原因,就是核子反应炉核心冷却系统故障,导致控制辐射的相关设备失常。虽说核能外泄不一定全然包括核子灾害,但是已经是已知核能应用上的最大环保隐忧。另外,核能外泄虽也可指使用核能发电的航海器具所发生的灾害;尤其是潜舰,不过一般说来是指用来发电的核能电厂发生的核熔毁事件,例如:切尔诺贝利核事故。还还有一些不可抗的自然因素:地震、海啸等,例如:日本9级大地震引发的福岛核泄漏。

核泄漏的危害

?对生物的危害

核泄漏一般的情况对人员的影响表现在核辐射,也叫做放射性物质,放射性物质可通过呼吸吸入,皮肤伤口及消化道吸收进入体内,引起内辐射,y辐射可穿透一定距离被机体吸收,使人员受到外照射伤害。身体接受的辐射能量越多,其放射病症状越严重,致癌、致畸风险越大。

?对人员的危害

放射性物质的衰变中产生电离辐射。它能破坏人体组织里分子和原子之间的化学键,可能对人体重要的生化结构与功能产生严重影响。我们的身体会尝试修复这些损伤,但是有时损伤过于严重或涉及太多组织与脏器,以至于不可能修复。

而且,身体在自然修复过程中,也很可能产生错误。最容易为辐射所伤的身体部分包括肠胃上皮细胞以及生成血细胞的那些骨髓细胞。

最大的长期健康风险是癌症。通常当体细胞受损或老化到一定程度时,它们会自我消除。当这种自我消除的能力消失时,细胞获得“永生”,可以不受控制地不断地分裂,这就演化成癌症。

我们的机体有许多机制来阻止细胞癌变,并替换受损的组织。然而辐射所带来的损害可以严重搅乱机体中的这些机制,从而让癌症风险大大提高。此外,如果机体不能很好的修复辐射带来的对化学键的破坏和改变,我们的基因里有可能会产生突变。这些突变不但增高自

身的癌症风险,还有可能被传递下去,使得辐射的作用在子孙身上展现出来。这些作用包括较小的头部与脑部、眼部发育缺陷、生长缓慢和严重的认知学习缺陷。

核泄漏的防护及解决方案

核泄漏的防护

为落实纵深防御原则,核电站在放射性物质(裂变产物)和环境之间设置了四道屏障,只要任一道完整,就可防止放射性物质外漏。

第一道燃料芯块核裂变产生的放射性物质98%以上滞留在二氧化铀芯块中,不会释放出来。

第二道燃料包壳燃料芯块密封在锆合金包壳内,防止放射性物质进入一回路水中。

第三道压力边界由核燃料构成的堆芯封闭在壁厚20厘米的钢质压力容器中,压力容器和整个一回路都是耐高压的,放射性物质不会漏到反应堆厂房中。

第四道安全壳反应堆厂房是一个高大的预应力钢筋混凝土建筑,壁厚近一米,内表面加有6毫米厚的钢衬,防止放射性物质进入环境。

核泄漏早期采取的防护措施主要有:(1)隐蔽:这是防止来自放射性污染物的外照射和内照射最筒单的方法。隐蔽是指在放射性污染物到达以前躲在室内,关闭门窗。隐蔽时应注意避开门窗,必要时可用砖、土坯、沙袋将窗户加以屏蔽。(2)尽可能快速撤离:撤离是指人员从受核泄漏污染区撤到安全地区。撤离的人群应是受照剂量较高、可能发生确定性损伤效应的较小人群,而对较大人群应采取隐蔽的方法。(3)必要的药物防护:可在专业医生的指导下服用碘化钾片。

核泄漏中期采取的防护措施主要有:(1)搬迁:即将人群从沾染区迁移出去;(2)控制人员进入污染区:除执行抢救、监测等任务的人员外,其他人员一律不准进人沾染区。(3)控制摄入受污染的食物和饮水:这是防止人员食入受到沾染的食物和饮水所造成内照射的主要措施。当放射性物质发生泄漏后,环境会被沾染,从而使蔬菜、水果、水源等受到放射性沾染,应对食物和水加以控制。如必须食用沾染食物时,可用水洗或去掉被沾染的表层、削去果皮的方法去除蔬菜和水果表面的放射性污染物。(4)洗消建筑物、道路及工作场所受到放射性物质的污染:可进行清扫、水洗、覆盖或刮去表层等。

核泄漏时个人防护措施主要有:(1)呼吸防护:可用防尘口罩,在没有口罩的情况下,可用手帕、纸巾、餐巾、衣服等捂住口、鼻。如果将口罩或其他防护材料浸湿,其防护放射性物质效果更佳。(2)体表防护:可用任何着装用品如帽、头巾、雨衣、手套和靴等,并可

翻起衣领、围上围巾、扎紧袖口和裤脚等方法,可减少体表放射性物质的沾染。(3)洗消以除放射性物质沾染:皮肤除沾染的最好方法是淋浴,在没有淋浴的情况下,可用水洗身体裸露部位,如脸、手、颈部等,特别应注意有油泥的部位以及耳、鼻、眼周围,应进行彻底擦洗。(4)健康检查:如外周血象是否降低,是否有呕吐和腹泻等胃肠道症状。一旦发现有异常放射性物质或上述不适症状,应尽快到专业医疗机构进一步检查和治疗。

日本核泄露事件核辐射相关知识

什么是核辐射?核辐射究竟有什么危害? 核辐射是原子核从一种结构或一种能量状态转变为另一种结构 或另一种能量状态过程中所释放出来的微观粒子流。核辐射可以使物质引起电离或激发,故称为电离辐射。电离辐射又分直接致电离辐射和间接致电离辐射。直接致电离辐射包括α、β、质子等带电粒子。间接致电离辐射包括光子(γ射线和X射线)、中子等不带电粒子。 早期核辐射在核爆炸最初十几秒钟辐射出来的人眼看不见的伽 玛射线和中子流。它是核爆炸特有的杀伤破坏因素。早期核辐射接近光速呈直线传播。当发现闪光时,人员早已受到射线的作用了。早期核辐射能像X射线那样穿透人体和物体,能穿透几千米的空气层。当射线照射到人体、杀死细胞达一定程度时,人员就会得放射病;照射到土壤、食盐、碱、食品和某些金属器具上,还会使这些原来没有放射性的物质产生感生放射性,也能对人员造成伤害。它还能使光学玻璃变暗、胶卷曝光、化学药品失效,并能影响电子仪器的性能。 在放射医学和人体辐射防护中,辐射剂量的单位有多种衡量模式和计量单位。较为完整的衡量模式是“当量剂量”,是反映各种射线或粒子被吸收后引起的生物效应强弱的辐射量。其国际标准单位是“西弗”,定义是每千克人体组织吸收1焦耳,为1西弗。 人体遭受过量辐射,可能导致疲劳、头昏、失眠、皮肤发红、溃疡、出血、脱发、白血病、呕吐、腹泻等,有时还会增加癌症、畸变、遗传性病变发生率,影响几代人的健康。一般来讲,身体接受的辐射能量越多,其放射病症状越严重,致癌、致畸风险越大。 1

根据国际放射防护委员会制定的标准,辐射总危险度为0.0165/西弗,也就是说,人体每接受1西弗的辐射剂量,就会增加0.0165的致癌几率。西弗是个非常大的单位,因此通常使用毫西弗、微西弗。1毫西弗=1000微西弗。据我国核电安全专家郁祖盛介绍,根据我国的标准,每人每年受到的辐射量应小于2.7毫西弗。事实上,人体如果短期受到低于100毫西弗的辐射,也并不会造成影响。辐射剂量超过4000毫西弗,则可能致死。 而日有媒体报道的福岛第一核电站3号机组外部辐射量一度达 到每小时1557微西弗。这个辐射量只相当于一个人接受十几次X光检查,尚不会对人体造成危害。 核泄漏时怎么做? 美国联邦紧急事务管理局(FEMA)网站上介绍了核电站发生紧急情况 时应该采取的一些措施,摘译如下: 下文中的指导原则告诉你在核电站发生紧急情况时该怎么做。注意随时携带一个用电池的收音机收听具体指令。关闭并锁好门窗。 如果要求你撤离: ?注意保持窗户和通风口关闭;使用再循环空气。 如果建议你留在室内: ?关闭空调、换气扇、锅炉和其他进风口。 ?如果可能,进入地下室或其他地下区域。 ?如非绝对必要,不要使用电话。

切尔诺贝利核电事故案例

前苏联切尔诺贝利事故 一、切尔诺贝利事故的影响 1、安南呼吁继续援助切尔诺贝利核电站事故受害国 新华网联合国4月26日电(记者杨志望)联合国秘书长安南26日在切尔诺贝利核电站事故19周年之际发表声明,呼吁国际社会继续对俄罗斯、白俄罗斯和乌克兰等深受那场灾难影响的国家提供援助,帮助这些国家恢复受灾地区的社会经济发展。 声明说,俄、白、乌3国至今仍在社会、经济和环境领域遭受人类历史上最严重的核电站事故的影响,联合国多年来一直致力于协助这3个国家消除这些影响。那场核事故带来的挑战随着时间的推移也在发生变化。目前,辐射造成的威胁已逐渐减少,取而代之的是赤贫、失业和基础设施匮乏等问题。 声明指出,联合国帮助消除切尔诺贝利事故影响的工作重点,也从紧急人道救援转向长期的发展援助,以帮助受灾地区建立新的、可持续的生活方式。国际社会应增加对切尔诺贝利受害国的援助,帮助受灾社区居民实现自给自足,恢复健康、正常的生活。 声明说,联合国倡议成立的“切尔诺贝利论坛”将于今年9月就该事故造成的影响作出结论,白俄罗斯将于明年举办切尔诺贝利事故20周年纪念活动。这些活动都将有助于促使国际社会吸取那场核事故的教训,并防止类似事故的发生,也有助于推动国际社会向事故的受害国和受害者提供持续的援助。 2、震动世界的事故 如果说1979年的美国三里岛核电站事故引起了美国舆论的哗然,那么,1986年4月26日前苏联切尔诺贝利核电站发生的事故,则震动了世界,其后果几乎影响到整个国际能源界。这一天的凌晨1点23分,位于苏联大城市基辅以北130公里白俄罗斯-乌克兰大森林地带东部的切尔诺贝利核电站,第四号机组发生了事故,反应堆猛烈爆炸,引起熊熊大火导致反应堆堆芯毁坏和部分厂房倒塌。 事后,前苏联政府宣布,有31人死亡,8吨多强辐射物质倾泻而出,203人受伤,13.5万人被疏散,事故造成的直接经济损失达数十亿卢布。事故发生后,大量放射性尘埃飘逸到北欧和东、西欧部分国家,使一些地区环境中某些介质的放射性物质含量远远超过正常标准。污染遍及居住着694.5万人的15万平方公里地区,320多万人直接遭受核辐射侵害。参加救援工作的83.4万人中,已有5.5万人丧生,7万人成为残疾,30多万人受放射伤害死去。 3、切尔诺贝利石屋 1996年11月30日晚22点,乌克兰切尔诺贝利核电站1号机组顺利关闭,以后将不再使用。切尔诺贝利核电站是乌克兰现有的5座核电站之一,原有4个发电机组。1986年4月第4号机组发生爆炸,酿成核泄漏事故以后,由于乌克兰能源短缺,其余机组仍然继续运转。但西方国家担心事故重演,多次敦促关闭切尔诺贝利核电站,同时答应给乌克兰以经济补偿。 1996年4月,西方七国以及欧洲联盟与乌克兰在莫斯科签署关于解决切尔诺贝利核电站问题的谅解备忘录。备忘录规定该电站在2000年前全部关闭,西方七国为此承诺向乌克

三里岛事故

附录1 三哩岛事故A1.1 核电 厂概况 美国Pennsylvania 州,Three Mile Iland上的二号堆,TMI-2,为B&W 公司设计和建造,1978 年12 月投入使用。 两环路,每个环路有两台冷却剂泵。蒸汽发生器是直流式的,这意味着二次侧装量较少。一回路工作压力为152bar 。HPIS 可在正常运行压力或更高压力下向一次系统注入含硼水(它的截止压力为197bar),当一次侧系统压力降至110bar 以下时,自动起动。 安注箱压力为41 bar LPIS 的起动压力是28bar 核电厂的额定功率:2772MW, 961MW(e) 事故前核电厂的状态及始发事件: 1979 年3 月28 日凌晨,TMI-2 在97%额定功率下,以自动控制方式运行。 稳压器的释放阀及安全阀均有持久的微小泄漏(大约0.3kg/s) 二回路中,有一些堵塞的离子交换树脂(A resin block had developed in a condensate polisher unit's transfer line),准备用压缩空气及去离子水输送至回收箱,这一操作,使水进入了压缩空气系统,然后进到空气管路上的仪表中,引起了紊乱,关闭了冷凝水增压泵的进水阀门,于是冷凝水增压泵及主给水泵停止运行。

A1.2 事故过程 A1.2.1 第一阶段汽轮机停车(0—6min) 0 s 汽轮机停车,蒸汽旁路阀打开,辅助给水泵启动,失去主给水,使蒸汽发生器从一回路系统导出热量减少,汽轮机停车后,主泵继续运行,反应堆继续运行。 反应堆冷却剂系统压力上升 3—6 s RCS 压力达到PORV 整定值155bar,阀开启卸压,这不足以降压,RCS 压力继续上升 8 s RCS 压力达到停堆整定值162 bar,控制棒插入堆芯,停堆,至此一切保护系统工作正常,接下来需要的是带走衰变热。 13 s RCS 压力降至PORV 自动关闭压力152bar,但关闭失效,卡开,造成了一个小破口失水事故(汽腔小破口),RCS 冷却剂不断从PORV 流失,在二回路系统中,全部三个辅助给水泵在运转,但是在SG 中水位在下降。这是因为SG 与辅助给水泵之间的阀门被关住了。大概在42 小时之前,进行例行试验时关上的,显然是因疏忽而保持于这种关闭的位置。其他阀门上挂的状态标签遮住了这些阀门的状态指示灯。没有水注入SG ,它们正在蒸干。

世界核电技术发展简史

世界核电技术发展简史 1、第一代核电技术 即早期原型反应堆,主要目的是为通过试验示范形式来验证核电在工程实施上的可行性。 前苏联在1954年建成5兆瓦实验性石墨沸水堆型核电站;英国1956年建成45兆瓦原型天然铀石墨气冷堆型核电站;美国1957年建成60兆瓦原型压水堆型核电站;法国1962年建成60兆瓦天然铀石墨气冷堆型核电站;加拿大1962年建成25兆瓦天然铀重水堆型核电站。这些核电站均属于第一代核电站。 2、第二代核电技术 第二代核电技术是在第一代核电技术的基础上建成的,它实现了商业化、标准化等,包括压水堆、沸水堆和重水堆等,单机组的功率水平在第一代核电技术基础上大幅提高,达到千兆瓦级。 在第二代核电技术高速发展期,美、苏、日和西欧各国均制定了庞大的核电规划。美国成批建造了500至1100兆瓦的压水堆、沸水堆,并出口其他国家;前苏联建造了1000兆瓦石墨堆和440兆瓦、1000兆瓦VVER型压水堆;日本和法国引进、消化了美国的压水堆、沸水堆技术,其核电发电量均增加了20多倍。 美国三里岛核电站事故和前苏联切尔诺贝利核电站事故催生了第二代改进型核电站,其主要特点是增设了氢气控制系统、安全壳泄压装置等,安全性能得到显著提升。此前建设的所有核电站均为一代改进堆或二代堆,如日本福岛第一核电站的部分机组反应堆。我国目前运行的核电站大多为第二代改进型。 3、第三代核电技术 指满足美国“先进轻水堆型用户要求”(URD)和“欧洲用户对轻水堆型核电站的要求”(EUR)的压水堆型技术核电机组,是具有更高安全性、更高功率的新一代先进核电站。 第三代先进压水堆型核电站主要有ABWR、System80+、AP600、AP1000、EPR、ACR等技术类型,其中具有代表性的是美国的AP1000和法国的EPR。中国已引进AP1000等技术,分别在浙江三门和山东海阳等地开工建造。 4、第四代核电技术 第四代核电是由美国能源部发起,并联合法国、英国、日本等9个国家共同研究的下一代核电技术。目前仍处于开发阶段,预计可在2030年左右投入应用。第四代核能系统将满足安全、经济、可持续发展、极少的废物生成、燃料增殖的风险低、防止核扩散等基本要求。

液化石油气泄漏事故现场应急处置方法

液化石油气泄漏事故现场应急处置 基本措施 1 岗位职责 液化石油气储配站事故现场应急处置分为初期处置和后期处置,初期处置以场站现场岗位人员为主;后期处置由企业、专业救援队伍以及社会救援机构共同实施救援。 1.1 初期救援岗位职责 1.1.1 现场指挥(事故现场职位最高者) 迅速判断事故部位、起因、状况;指挥或亲自实施应急措施;指挥启动或亲自启动消防系统;视事故发展向有关部门、上级报告事故情况,或直接向社会救援机构求援。 1.1.2 应急操作 立即判断事故发生部位、发生原因,找出关键处置点;按照企业预案规定步骤操作,切断事故设备与储配系统的连接通道,停运机泵并切断储配系统电源,设法扑灭初期火苗。 1.1.3 消防操作 力争扑灭初期火苗;立即启动消防水系统,连接消防水枪或启动喷淋系统,进行冷却降温或驱散泄露的液化石油气。 1.2 后期救援岗位职责 后期救援人员岗位参见《预案》及各企业预案。 2 现场应急处置基本措施 2.1 固定式液化石油气储罐事故 2.1.1 储存有液化石油气的储罐发生开放性化学爆炸 事故发生后,应立即向消防机构和有关部门报警报告,在确保人员安全的情况下关闭所有紧急切断阀,开启消防喷淋系统对相邻储罐进行喷淋降温,所有人员立即撤离现场,远距离设置警戒区域,等待专业救援机构救援。 2.1.2 储罐在检验维修时发生爆炸 该类事故爆炸气体来源于罐残留,事故发生后,应立即停止所有生产作业,检测罐爆炸性气体在安全围以后,救援人员佩戴防毒面具进入储罐将受伤人员救出,立即就近送医院救治。 2.1.3 储罐及其接管发生液相泄漏 ⑴液相泄漏发生后,应立即停止一切生产作业,关闭所有紧急切断阀,开启消防喷淋系统,连接消防水枪,对泄漏出的液化石油气进行驱散,干粉灭火器上风头掩护。

福岛核泄漏事故

福岛核泄漏事故、全球干旱全球能源危机正在加剧 阿拉伯国家政治动荡、福岛核泄漏事故、全球干旱,这三件事加起来对能源界意味着什么?我想,任何曾预言未来几年能源供应将不会出现问题的人都将大失所望,因为能源供应正面临着一个严酷的未来。 能源供应面临危机 由于油价再次高升以及全球范围内的经济危机,石油需求的脚步得以放缓。在5月石油市场报告中,国际能源署下调了今年全球石油消耗总量的预期,削减了每日19万桶,为每日8920万桶。得益于这次的下调,全球油价也许不会继续攀升至之前所预测的高度。但是,油价在今年保持高位仍是毋庸置疑的。人们正承受着自2008年油价暴增后的又一次高油价压力。 坏消息是,全球正面对着一个又一个的能源问题,而且这些问题还在不断加剧。易于开采的石油、天然气及煤炭已经越来越少,地缘政治对能源供应的影响再次显现。这些问题现在一股脑的摆在了人们面前,更是为全球能源供应前景蒙上了一层阴影。 随着经济快速发展,能源需求的增长速度实在太过惊人。要满足这样的能源需求已经是十分艰巨的任务,自然没有多少余地去挑选能源。不论是高度工业化的发达国家还是处在经济快速增长期的发展中国家,能源需求量都在与日俱增。另外,我们还得面对能源安全挑战以及燃料价格继续增长等可能出现的问题,这更是增加了能源供应的压力。 2011年的上半年对于能源界来说是一个“多事之秋”,三件重大事件已经改变了目前的能源供应格局,同时也将影响到我们的能源未来。 政治动荡影响能源供应 第一个,也是目前最让人头疼的问题就是部分阿拉伯国家的政治动荡。目前这种动荡正在持续,并有在阿拉伯国家中蔓延之势。能源和政治历来是分不开的,尤其是在拥有丰富能源储备的国家。由于不是主要石油生产国,突尼斯和埃及的政变没有给能源领域带来太多影响,但这股政治上的冲击波却波及了其他重要的石油生产国,包括利比亚、也门以及沙特。虽然也门以及沙特政府仍在努力维持国内的政局稳定,但饱受战火洗礼的利比亚石油产量已从过去的每日170万桶降至几乎为零。 尽管所有人都知道,石油不可能一直占领能源市场,未来必将会被其他能源取代。但就目前来说,石油仍是世界经济的命脉,石油供应不稳定带来的后果是任何国家都无法承受的。阿拉伯国家动荡带来的石油产量下降必须得到弥补,但是用什么来弥补呢?即便对像沙特这样的石油生产大国来说,增产都不是一件容易的事情。想要增产,政府就得投入大量资金,用以开发更多石油资源。而在易于开采的石油资源已经越来越少的今天,增产只能通过开发那些难以开发的石油资源来实现。但是,这就意味着更高的成本以及更多的基础设施需求。 《华尔街日报》不久就指出,想要满足日益增长的石油需求,必须有赖于沙特等主要石油生产国开发更多过去较少开发的石油资源,如重油等。当然就像我前面提到的,这需要投入大量资

三里岛事件和切尔诺贝利事故的真相

三里岛事件和切尔诺贝利事故的真相 1.三里岛事件无人伤亡 在1979年3月28日,位于美国宾西法尼亚州的三里岛核电站的2号堆,发生了核电史上第一次严重事故。这是由于水泵阀门信号灯故障和操作人员多次误操作所造成的。反应堆堆芯两次露出水面,使燃料元件破坏和大约三分之二的堆芯熔化。导致大量惰性气体和放射性碘与其他一些放射性核素进入了安全壳内。并且由于锆包壳和水发生化学反应,也产生许多氢气,但没有发生爆炸。因为安全壳的良好密封性和屏蔽作用,这次事故释放到环境中的放射性物质很少。根据监测调查,对周围80千米的200万居民所带来的总剂量仅为20人·Sv(希沃特),不到这地区居民年本底辐射总剂量的(核设施建设运行之前该地区的辐射剂量水平)1%(这地区的年本底辐射总剂量2400人·Sv),附近居民受到的最大个人剂量不到1毫希沃特,只与作一次X光胸部透视所受的剂量差不多。三里岛核电站值班的118名工作人员,无一伤亡,只有3人的受照剂量超过季度允许剂量水平。 2.切尔诺贝利事故有了论断 1986年4月26日,苏联切尔诺贝利核电站4号堆(石墨水冷堆),由于工作人员违章操作、判断失误,加上反应堆设计缺陷,特别是没有安全壳等原因,导致了核电史上一次最严重的事故。4号堆出现了瞬发超临界(当中子增殖因子k>1,缓发中子失去控制作用,每代中子寿命变得极短,堆功率会急剧上升而无法控制,就发生瞬发超临界,造成燃料熔化和三道屏障破坏。),功率剧增,堆芯熔化,蒸汽爆炸,石墨燃烧。因为这个堆没有安全壳,大量放射性物质(12×1018贝可)释入大气。由于大气扩散,使白俄罗斯、乌克兰和俄罗斯约3万平方千米面积土地,受到了不同程度的污染。这次灾难性事故所造成的经济损失和社会影响是巨大的。 10年后,1996年在奥地利首都维也纳,国际原子能机构、世界卫生组织和欧盟委员会联合召开“国际切尔诺贝利事故10周年大会”,参加大会的有71个国家和20个国际组织的845名科学家和280名记者。这次大会对切尔诺贝利事故做出了权威性结论:切尔诺贝利事故共造成30人死亡、其中28人死于过量辐照,2人死于爆炸。其健康影响,主要表现在儿童甲状腺癌发病率有极少量增加,但确诊甲状腺癌的儿童,仅有3人死亡。除儿童甲状腺癌发病率增加外,尚未观察到这次事故所引起的癌症发病率的增加。这一事实和有些报道中渲染的切尔诺贝利事故的后果大相径庭。 三里岛事件和切尔诺贝利事故引起了核电科技工作者和管理者的极大重视,例如:对类似构造的核电站实施了整改或关闭,改进设计,提高安全性,加强人员培训,改善人-机接口,修订安全法规,完善维修和运行规程,严格安全监督制度,等等。不让三里岛事件和切尔诺贝利事故重演。现在,核电厂运行安全的目标见表达1-1: 表1-1 核电厂运行安全目标 风险概率堆芯融化概率大量释放放射性概率 运行中核电站10-4/(堆·年)10-5/(堆·年) 新建核电站10-5/(堆·年)10-6/(堆·年)人们采取各种措施确保核电站特别低的风险概率,因此对核电安全疑虑和担心,是完全不必要的。

苏联切尔诺贝利核电站_泄露事故详细资料

切尔诺贝利,乌克兰北部基辅州城市,位处白俄罗斯边境,邻近另一个被废弃的城市普里皮亚季。切尔诺贝利在一九八六年四月二十六号因切尔诺贝利核事故而被废弃。 切尔诺贝利核电站是苏联在1970年建造的,是乌克兰境内首个核电厂。 切尔诺贝利核能电厂四号机组于1986年4月26日凌晨1点23分发生爆炸,是历史上最严重的核能发电厂意外事故。这次灾难所释放出的辐射线剂量是投在广岛的原子弹的400倍以上。

由于切尔诺贝利发电厂没有保护掩体,导致受到核辐射尘污染的云层飘往众多地区,包括原苏联西部的部分地区、西欧、东欧、斯堪地那维亚半岛、不列颠群岛和北美东部部分地区。此外,乌克兰、白俄罗斯及俄罗斯境内均遭受到严重的核污染,超过336,000名的居民被迫撤离。依据前苏联的官方报告,约60%受到辐射尘污染的地区皆位于白俄罗斯境内。但根据2006年的TORCH(The Other Report On Chernobyl)报告指出,半数的辐射尘都落在前述的三个前苏联国家以外。

这次意外引起了众人对于前苏联核能发电工业上的安全顾虑,也减缓了一系列的核能工程进度。同时此次事件也促使了前苏联政府的资讯趋向较为透明化。苏联解体后的各个独立国家,包括俄罗斯、乌克兰、白俄罗斯,至今仍为清理切尔诺 贝利事件所造成的污染问题及其引起的健康问题上付出着极大的代价。

因事件所造成的死亡人数难以精确计算,前苏联时期的刻意隐瞒,使得追查牺牲者方面的工作变得更为困难,事实上,前苏联政府当局在事件发生之后不久,已禁止医生在死亡证明上提及因“辐射线”而死亡。由辐射线导致的潜在死亡因素,特别是至今仍尚未发生的癌症,而这些在将来都难以证明是因切尔诺贝利事件所引起的。估计与实际的数据差别是相当大的,一份由国际原子能总署和世界卫生组织所主导的切尔诺贝利论坛在2005年所提出的切尔诺贝利事件报告中,56人的死亡被归咎于此事件(47名救灾人员,9名罹患甲状腺癌的儿童),并估计在切尔诺贝利地区660万人口中,已经和将会死于辐射的人数可能高达4,000人。

福岛事故的全过程

为什么福岛核电站未能逃脱核泄漏厄运 2012年03月10日07:35新华网 字号:T|T 为什么福岛核电站未能逃脱核泄漏厄运 日本NHK电视台“复原”事故全过程 2011年12月16日,日本政府发布了福岛核电站核泄漏事故的平息报告。关于这个事故的核心部分还有许多谜团。为接近或解开这些谜团,日本NHK电视台独家采访了100多名现场工作人员和指挥人员等,收集了大量第一手资料、图片和录像录音,听取了许多专家的意见,努力再现当时的情景,尽可能还原事故的真相…… 事件回放 2011年3月11日下午14时45分,日本福岛核电站中央控制室,一切工作正常运行,值班人员11人,都在岗位上。14时46分,发生了日本历史上最大的9级地震。核电站自动感应系统立即停止了原子炉的运行,燃料棒自动上升,反应堆停止工作。这一过程,仅仅用了两秒钟。 此次地震,首先造成福岛核电站周围高压输电线塔的大量震塌,从而使得福岛核电站中央控制室外部供电全部中断。核电站马上启动应急电源柴油发电机,很快恢复了中央控制室的供电。此时,现场技术人员根据日本原子能发电站操作规程,立即启动原子炉冷却系统。冷却系统正一步一步顺利进入正常运行状态。 地震发生51分钟后,突然,中央控制室一片漆黑。现场指挥者和所有人员不知道发生了什么情况。原来,强震引发的高达10米以上的海啸巨浪,袭击了设计能力只能抵御3米海啸大浪的福岛核电站。首先被淹的是南部建筑物,接着一号机组遭到侵袭,压力超过50吨的海水冲毁了第一道防护门,海水马上进入室内,应急电源柴油发电机完全进水,停止工作;海水进一步侵入位于地下室的蓄电池房。 蓄电池是使原子炉处于被冷却状态的最后一根救命稻草。但遗憾的是,当时所有蓄电池彻底被淹,核电站立刻陷入丧失所有电源的最险恶的境地。 2011年12月11日,当时的现场最高负责人、福岛第一原子能发电站站长福良昌敏第一次公开接受NHK独家采访时说,当时的情况真的是无能为力,不能做任何事情…… 那么,核泄漏真的无法避免吗? 第一次机会出现

液氮灌区泄漏事故应急处理措施示范文本_1

液氮灌区泄漏事故应急处理措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

液氮灌区泄漏事故应急处理措施示范文 本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 第一步事故汇报:发生事故后,当班的班长(包括安 全员、副班长)要在组织人员进行前期处理的同时还必须 马上了解事故初步情况并向厂、调度室和公司有关部门汇 报、报警;汇报内容为发生事故的种类、发生时间和准确 地点、有无人员伤亡或被困情况发生等并将情况向厂所有 岗位人员报告; 第二步发生事故后在岗人员的处理:白班班长(或厂值 班人员)马上组织能出动的所有人员在迅速做好自我防护 (正确佩戴好空气呼吸器)后到出事地点进行相关处理: 成立临时抢险小组;首先在安全条件允许的前提下对出现

受伤和被困的人员进行脱离现场的紧急救护;及时、准确切断泄漏源,用蒸汽或消防水稀释泄漏点,处理过程中防止液氮窒息和冻伤;若不能切断泄漏源,判定事故罐部位后迅速关闭对应罐的阀门并检查关闭事故罐与相邻罐的连通阀门,组织岗位人员进行相关流程的变更,主要是切断进料源,停止输出作业,避免和延缓罐体内的液氮泄漏量,防止进一步扩大事态;现场确不具备救人和开关阀门的安全条件则放弃(由厂管理人员加快向消防部门请求支援)。 第三步事发现场的处理人员应加强事故现场的监控和处理工作,防止事故和人员伤亡情况扩大,并随时报告事故进展情况。 1)事故场所、设施周围采取的紧急安全疏散:

世界十大恐怖核泄漏盘点

世界十大恐怖核泄漏盘点 世界上曾经有多个核电站发生过核泄漏时间,下面就为您盘点世界史上最可怕的十大核电事故。 1.1979年3月28日,三哩岛 三哩岛核电厂2号机组部分反应堆堆芯融化导致了美国核电经营历史上最严重的核泄漏事故,尽管它并没有造成人员伤亡。 三哩岛核泄漏事故,通常简称“三哩岛事件”,是1979年3月28日发生在美国宾夕法尼亚州萨斯奎哈河三哩岛核电站的一次严重放射性物质泄漏事故。 三哩岛核泄漏事故是核能史上第一起反应堆堆芯融化事故,自发生至今一直是反核人士反对核能应用的有力证据。三哩岛核泄漏事故虽然严重,但未造成严重后果,究其原因在于安全壳发挥了重要作用,凸现了其作为核电站最后一道安全防线的重要作用。在整个事件中,运行人员的错误操作和机械故障是重要的原因,提示人们,核电站运行人员的培训、面对紧急事件的处理能力、控制系统的友好性等细节对核电站的安全运行有着重要影响。 2.帕洛玛雷核事故 1966 年1月15日上午10时22分,两架美国战略空军司令部的飞机———一架B—52轰炸机和一架KC—135空中加油机,在西班牙沿海的比利亚里科斯村和帕洛玛雷斯村的上空进行空中加油训练,在两机联接时,突然在31000英尺的高空相撞。轰炸机发生爆炸解体,变成了一团巨大的、烈焰奔腾的火球,加油机摇摇摆摆地向前飞行一会儿,也开始解体,200多吨燃烧着的飞机残片,零乱地散布在空中,落向地面上惊慌失措的目击者们。其中,有4枚威力巨大的氢弹! 3.切尔诺贝利核电厂泄露事故 1986年4月26日凌晨1时23分,切尔诺贝利核电站4号反应堆发生爆炸。8 吨多强辐射物质混合着炙热的石墨残片和核燃料碎片喷涌而出。据估算,核泄漏事故后产生的放射污染相当于日本广岛原子弹爆炸产生的放射污染的100倍。 切尔诺贝利最后一个反应堆已于2000年12月15日正式关闭。据专家估计,完全消除这场浩劫的影响最少需要800年! 乌克兰共有250万人因切尔诺贝利核事故而身患各种疾病,迄今已在核泄漏事故的善后事务上花费了150亿美元,预计到2015年,还将耗资1700亿美元。核事

世界核电站建设现状及前景

世界核电站建设现状及前景 胡经国 人类使用的能源已由木材时代、煤炭时代、石油时代进入到核能时代。利用核裂变反应产生的巨大能量—核裂变能(本文所说的核能是指核裂变能)发电已有30多年的历史。今天,核能已成为技术上最成熟、安全、经济、清洁、最有潜力和发展前途的一种新能源。在当今世界能源日益紧缺的情况下,建设核电站对于世界经济的发展具有重要的战略意义。尽管发生了美国三里岛和苏联切尔诺贝利核电站事故,但是世界核电站建设仍然在持续、稳定地向前发展。 到1983年9月,全世界已有20多个国家和地区拥有在运转的核电站270多座,总装机容量为1700亿瓦。同时,在建和拟建的核电站尚有200多座。 据国际原子能机构统计,1984年,全世界有34座核电站投产发电,使世界核电站发电量增长17%,达到2200亿瓦。当年,全世界新建核电站14座。 到1986年底,全世界在运转的核电站达到376座,总装机容量达到2769.75亿瓦;在建的核电站有135座,总装机容量为1469.31亿瓦;拟建的核电站有124座,总装机容量为1218.9亿瓦。 到1987年6月底,全世界在运转的核电站有389座,总装机容量达到3000亿瓦。当时,世界各国核电站所提供的电力,相当于700多万桶石油的能量。去年,全世界又增加了20座核电站,使世界核电站总数达到420座。 据预测,到2000年,全世界已安装的核电站的装机容量将达到4970~6460亿瓦;到2025年,将增加到8750~21600亿瓦。 到1986年底,核电站发电量占世界发电总量的比重已上升到了15%。同时,核电站发电量占各国发电总量的比重,法国为70%,比利时为67%,瑞典为50%,瑞士和西德两国分别为39%和30%,日本和美国两国分别为25%和17%。 据预测,到2000年,核电站发电量占世界发电总量的比重,将从现在的15%上升到20%~30%。 目前,全世界的核电站都是利用铀235或钚239等容易裂变的同位素,通过核裂变反应获得巨大的能量的。近几年来,一些工业发达国家正在加紧研究通过受控核聚变反应获得更加巨大的能量。科学家们预测,到本世纪末,受控核聚变技术将获得重大突破。到21世纪,人类通过受控核聚变反应所获得的能量将会越来越多。核能在世界能源消费结构中的比

日本福岛核泄漏对海洋环境的影响

日本福岛核泄漏对海洋环境的影响 摘要::2011 年3 月12 日日本仙台以东120 公里发生里氏9.0 级地震,地震引发海啸,福岛核电站发生爆炸,核泄漏使周围区域遭受辐射影响。日本方面将核污染废水排放入大海中。这种不负责任的做法使周围邻国也遭受了巨大的影响,其影响己经超出了日本国界, 造成全球性核污染事故。 关键词:核污染,海洋环境,影响 1.日本福岛核电站核泄漏的原因 根据报道, 2011 年在3月11 日下午地震发生之后, 福岛第一核电站1号、2 号、3 号机组在第一时间自动停堆, 这说明核电站设计的停堆能力经受地震扔发挥了作用。地震后电厂发电的设备都停下来了, 外电网也没有了, 机组应急柴油发电机启动运行后又遭遇海啸袭击, 应急电源遭到损坏, 交流电源全部丧失, 堆芯失去冷却, 余热无法导出, 反应堆内部温度和压力急剧上升, 不得不通过打开阀门泄压, 大量放射性物质排放到了外界[1]。另外, 乏燃料水池在冷却系统停止运行后水温上升, 大量产生蒸汽。由于反应堆燃料的包壳材料是锆合金, 在高温下与水蒸气发生了化学反应产生大量的氢气, 氢气进入反应堆厂房因集聚而发生爆炸, 加剧了污染物的泄漏。3 月12 日机组注入海水冷却, 但是还没有完全度过危机。应当说这次事故中堆芯燃料失去冷却及氢气爆炸是致命的[2]。目前的压水堆核电站设置有氢气消除系统, 或者采用氢气复合器, 或者采用点火器, 防止浓度增加发生燃烧或爆炸。福岛第一核电站安全壳内没有消氢系统, 核电站内没有很好的可燃气体的控制系统, 氢气产生后没有有效的控制措施, 结果引起氢气爆炸。福岛第一核电站有6 个机组, 1 号、2 号和3 号机组相继发生氢气炸, 破坏是比较大一点, 4 号乏燃料池也遭到破坏, 不过4 号、5 号和6 号正好在停堆检修, 因为停运, 剩余热量比较少, 情况稍好些。 2.福岛核电站核泄漏当时的基本情况 2011年3月13日,日本原子能安全保安院按照“国际核能事件分类表”把核电站爆炸事故定为4 级。“国际核能事件分类表”把核事件按严重程度分为0-7级。4 级意味着核事件可定性为“事故”。然而,由于福岛核电站的多个反应堆发生爆炸,造成福岛核电站周围核辐射严重超标,3月18日,日本原子能安全保

公司丁烷泄漏事故应急处置预案

宁波市佳百仕电器有限公司 可燃气体泄漏事故应急预案 1. 事故类型和危害程度分析 1.1公司的生产特点使用的丁烷,存在火灾、爆炸、中毒、窒息等危险有害因素,可能导致安全事故.丁烷泄漏时,当空气中的浓度达到25%时,可导致人体缺氧而造成神精系统损害,严重时可表现呼吸麻痹、昏迷、甚至死亡。,其危险点主要分布在丁烷仓库、加压区、充装区。 1.2丁烷泄漏的原因和特点 1.丁烷泄漏的原因: ?阀门垫片损坏,出现裂缝,引起泄漏。 ?压力表损坏。 ?管道破裂。 2. 丁烷泄漏的特点: 丁烷是一种易燃易爆气体,具有易燃、可燃气体的双重性,比空气重。如发生泄漏可能导致火灾和爆炸。

2. 应急基本原处置则 以人为本、减少危害、快速反应、统一指挥、分级负责、单位自救、区域联防与社会救援相结合。 3. 组织机构及职责 3.1 应急组织体系 宁波市佳百仕电器有限公司公司安全生产事故应急组织体系见图1。

3.2指挥机构及职责 3.2.1 宁波市佳百仕电器有限公司应急指挥中心 总指挥:张巨登 副总指挥:陆斌斌 成员:周帅帅、苏富宝、余红霞、肖荣、卢秀芳、黄锡萍 3.2.2 宁波市佳百仕电器有限公司应急指挥中心办公室 宁波市佳百仕电器有限公司应急指挥中心办公室由生产部和办公室组成。 主任:陆斌斌 副主任:周帅帅 3.2.2职责 (1)现场总指挥的职责 1)听汇报 各单位现场负责人向总指挥汇报事件原因初步分析、火势大小及爆炸影响范围、人员伤亡情况、物料泄漏情况、工艺处理情况、应急物资储备情况、应急人员及器材到位情况、气象情况、救援措施情况和周边情况。公司应急救援相关部门和单位按职责分工向总指挥汇报事故发展情况及开展的救援准备、事故控制工作。 2)观态势

核电站核泄漏事故

核电站核泄漏事故 1986年5月12日,星期一 最早的警报发自瑞士。1986年4月28日星期一,上午9点,瑞士首府斯德哥尔摩以北的瑞福什马克(Forsmark)核电站,技术人员在计算机显示屏上观测到了一串扰动信号,工程师们开始疯狂的搜索核泄漏源,但一无所获。他们把核电厂工作的600名工人集合起来列队,对他们一一用盖特计数器(译注:一种检测核辐射的工具)实施检测。此时干扰信号变得更强:工人们的衣服上的放射线含量远远超过了标准水平。室外,监测人员拿着盖特计数器读取核电厂周围土壤和植被的放射线含量。结果显示,周边环境的放射线数值为正常水平的5-6倍。显然,出事了,出大事了。 在更远一些的北方和东方,春季的雨雪降落在芬兰和瑞士的局部地区;在南方和西方,挪威和丹麦也经历了同样的降水过程,四个国家都检测到了这令人不安的信号。一定在某处,一个神秘的源头正在向大气倾泻危险的放射物,这些放射物正在进入人们和植物赖以呼吸的空气之中。而此时,经过这样一场彻底的胆颤心惊,瑞士已迅速确认了放射源不在他们的国家。他们立即将怀疑的目光投向了南部,他们强大的邻居——苏联。 盛行风的方向让他们如坠冰窟。这几天气流都是从黑海升起,经由乌克兰,吹过波罗的海和斯堪的纳维亚半岛的(译注:纳维亚半岛,西北欧一大半岛,为挪威和瑞士占据。北、西、东及南分别为北冰洋、大西洋和波罗的海)。但当瑞士和其邻国向莫斯科方向寻求解释时,他们得到的是否认和坚石般的沉默。整整六个小时,斯堪的纳维亚半岛上的各国都坚持某些危险的东西发生了泄露,但苏联则重复坚称没有发生任何异状。 直到周一晚上9点,一位面无表情的新闻主播才在莫斯科电视台宣读了一份来自苏联四句话的声明,这四句话似乎力图把所有答案都概括进去。这份简练且颇不情愿的声明全文如下:“在切尔诺贝利电站发生的一起事故中,一个反应堆被毁。我们正在采取措施消除事故的影响。我们会对事后的处置实施援助。我们已成立了专门的政府委员会。”然后,这位主播就拿起了另一张稿纸,转去播报有关苏联和平基金的报道。 只有32年历史,在争议中成长的民用原子能设施遇到了致命的危机,危机

从福岛核电站事故分析看安全文化

从福岛核电站事故分析看安全文化 日本正遭遇二战以来最大的灾难,这次地震由于其史无前例的强烈震级和同时伴随的强次生灾害揪住了全球民众的心。这其中,福岛第一核电站事故1、2、3、4号机组所发生的事故,由于其可能对周边产生的恶劣影响和对人心理产生的恐慌,引起了越来越强烈的关注。根据诸多业内人士对核电站事故以及事故应急处理的分析,我们看到:福岛第一核电站事故看起来是天灾(地震引发海啸造成装置失效),但其实也有许多人为因素,也就是说,还是有人做了不应该做的事情,有人没做应该做的事情。 下面我结合专业人士eagle506的技术分析谈一谈这其中的文化因素。 1、关于应急处置 2011年3月11日下午,地震发生,反应堆安全停堆,按理应该马上向堆芯补水,保证堆芯冷却防止超压,但地震摧毁了电网,厂外电源不可用,这时应该发动应急柴油机,但海啸来了,柴油机房被淹,不过核电厂还备有蓄电池,虽然容量较小,但是在事故后8小时内还是为压力容器的冷却做了一些贡献的。电池眼看就要耗尽,为了保住压力容器,必须要卸压,防止压力容器超压爆炸。而且操作员也确实是这样做的。 但是,12日早,日本首相菅直人要来视察。 如果卸压,环境中的放射性会升高,虽然菅直人是空中视察,但这对没有穿防护服的日本首相来说仍然不是什么好事,所以,根据日本某

些论坛的说法(没有得到官方证实),卸压的事由于此次视察暂时中断。但余热不等人,安全壳内温度压力仍在上升。 菅直人走后,操作员开始继续释放压力容器内部的压力。此时压力容器内的温度约为550 摄氏度,堆芯已经裸露并产生大量氢气。所以,含有氢气的蒸汽,通过卸压水箱简单的降温和过滤就被排放到厂房大气中。 下午三点左右,随着一声巨响,反应堆厂房顶盖被爆炸完全摧毁,只剩下钢结构。。。 这是很典型的一个例子。起初是低估了事故的后果,后来关键时刻,没有恪守安全第一的原则,由于首相的视察中断了正在进行的卸压操作,最终导致了反应堆厂房爆炸。如果时光可以倒流,我们知道,应该本着“以人为本,安全第一”的原则,作最坏的打算,做最周全的准备,而在应急处置的关键时刻,应该拒绝首相的视察,全力以赴投入到抢险工作中。但是很遗憾,时光不能重来。 2、关于采取何种措施的问题 在整个过程中,操作员一直在采取比较保守的冷却方式。虽然有机会,但是直到爆炸发生也没有向堆芯内注入硼水,而是用清水代替。一方面是不希望反应堆就此报废,一方面是对反应堆的承受能力抱有侥幸心理。客观的说,操作人员在最大限度的保护反应堆,但是没有在最大限度上保护公众的安全。 我们知道:安全文化最核心的理念就是“以人为本,安全第一”、“安全

三里岛事故调查报告

三里岛事故调查报告 篇一:三哩岛核事故相关资料 三哩岛核电厂事故后,美国核电行业做了如下改善:提升和加强核电厂设计与设备要求,包括消防、管道系统、辅助给水系统、安全壳隔离、组件可靠性、自动停机能力等;更新操作员培训与配备要求,加强设计基准事故以外的培训;改进主控室人机界面设计,对主控的报警重新进行分类,把重要信息集中在安全监督盘上;加大了仪表的指示量程,并增加了重要参数监测指示;提高应急准备水平,有重大事故时应立即通报美国核管理委员会,同时,美国核管理委员会成立24 h 值班的运营中心;建立定期公开报告制度,包括美国核管理委员会视察核电厂的报告、电厂绩效、管理效果等;由美国核管理委员会的高级管理人员对核电厂的性能进行定期分析,辨识出需要加强监管的问题;成立了美国核动力运行研究所(INPO),以提供技术支持和同行评审,加强核电厂之间的经验交流;成立了美国核能协会(NEI),以利于和美国核管理委员会等政府机构及国会沟通。 NRC 事故定性(NRC):A combination of equipment malfunctions, design-related problems and worker errors led to TMI-2's partial meltdown and very small off-site releases of radioactivity.

设备故障、设计缺陷以及人员失误一系列综合因素导致了三哩岛核电厂(TMI)2号机组部分堆芯熔毁,极少量放射性物质外泄。 1 Impact of the Accident A combination of personnel error, design deficiencies, and component failures caused the Three Mile Island accident, which permanently changed both the nuclear industry and the NRC. Public fear and distrust increased, NRC's regulations and oversight became broader and more robust, and management of the plants was scrutinized more carefully. Careful analysis of the accident's events identified problems and led to permanent and sweeping changes in how NRC regulates its licensees – which, in turn, has reduced the risk to public health and safety. 事故影响 设备故障、设计缺陷以及人员失误一系列综合因素导致了三哩岛核事故的发生,永久改变了美国核工业与美国核管会(NRC)。事故发生后,公众对核能的恐惧和不信任日益增长,NRC管理与监督范围更广,也更为严格。NRC通过对三哩岛核事故进行仔细分析,对核电厂持证单位管理做出了彻底改进,降低了公众健康和安全风险。事故后,NRC做出的

日本福岛核泄漏事故经过以及对中国的影响

日本福岛核泄漏事故经过以及对中国的影响 2011年3月11日13时46分,日本近海发生9.0级地震,随之导致的海啸和核泄漏危机使这个国家陷入了前所未有的灾难之中。地震海啸纯属天灾无法避免,然而核泄漏危机却可以说是真正的人祸。 福岛第一核电站位于福岛工业区,同在该工业区内的有福岛第二核电站。两个核电站统称为福岛核电站。第一核电站共有6个反应堆,第二核电站拥有4个反应堆。经受地震及海啸袭击后,第一核电站6个反应堆均出现程度不等的异常情况。 核泄漏原因之一:技术缺陷、设备老化、选址不科学等因素是此次日本核泄漏事故不断发酵的原因。 福岛第一核电厂1号反应炉1971年开始运转,运行时间将近40年,严重老化。据悉,日本很多核电设备不少已是“超期服役”,使用寿命接近或超过25至30年的最长年限。据日本媒体报道,今年2月7日,东京电力公司完成了对于福岛第一核电站1号机组的分析报告,报告称机组已经服役40年,出现了一系列老化迹象,包括反应堆压力容器的中性子脆化、热交换区气体废弃物处理系统出现腐蚀等。抗震标准老化也为事故埋下了隐患。日本早期核电站设计抗震标准为里氏6.5级。2006年日本修改了核电站抗震标准,将这一标准提高到抗震能力最大为里氏7.0级。但目前日本国内55座核电站中,只有静冈县的滨冈核电站达到了最新抗震标准。据东京电力公司文件显示,对第一和第二核电站的地震测试假设,最高只有7.9级,换言之,该核电站的安全设计水平,远未达到抵御9级地震的标准。 11日下午,日本东北部海域发生9级强震,并引发强烈海啸,当天日本电力公司宣布,其在日本北部女川町工厂的三座核反应堆自动关闭。然而,几天后相继传来核电站爆炸和反应堆受损的消息。部分专家通过媒体上描绘的各个节点的场景为记者勾勒出福岛核电站核泄漏的大致过程: 由于核裂变的链式反应在地震之初就已自动停止,所以在核反应堆内的燃料棒不会发生像原子弹那样的核爆炸。所谓堆芯熔化,是指核反应堆温度上升过高,造成燃料棒熔化并发生破损事故。失去冷却水后,堆芯水位下降,燃料棒露出水面,燃料中的放射性物质产生的热量无法去除,随后温度持续上升会导致这种情况。 据日本媒体报道,操作人员尝试打开阀门,释放反应堆容器内的蒸气以让反应堆内的压力下降,爆炸声响起,厂房轰然倒塌。有专家分析,反应堆堆芯附近蒸汽外泄后产生的氢气和周围空气中的氧气发生反应引发爆炸,这场爆炸有可能导致护罩安全壳局部受损,从而导致铀燃料能够对外放射。无法有效对堆芯降温正是这次事故的关键所在。由于发电机在地震中遭到损毁,冷却水循

相关主题
文本预览
相关文档 最新文档