当前位置:文档之家› 脉冲模块_MOD_PULSER_PLS3.2 V3.3 03.07 englisch

脉冲模块_MOD_PULSER_PLS3.2 V3.3 03.07 englisch

脉冲模块_MOD_PULSER_PLS3.2  V3.3 03.07 englisch
脉冲模块_MOD_PULSER_PLS3.2  V3.3 03.07 englisch

CAN-RS232通信转换模块的设计与实现

CAN-RS232通信转换模块的设计与实现 摘要:设计了一个结构简单、使用方便、应用面广的CAN节点与RS232串口通信转换模块.详细介绍了该模块的工作原理和实现方法,即通过软硬件相结合实现电平标准和通信协议的转换,从而完成两者之间的信息传输. 1 引言 RS232作为标准的计算机串行接口已被广泛使用,与此同时,随着现场总线技术的飞速发展,具有实时性好、可靠性高、结构简单等优点的CAN总线在测控系统中也越来越多地被采用。但由于两者的总线结构、通信协议及传输特点各不相同,因而给不同设备之间的连接带来诸多不便,因此,如何以最简单的方式实现CAN节点与RS232串行口的通信就成为工程实践中一个不可回避的问题。 本文采用典型的不具备CAN通信能力的AT89C51单片机作为微处理器,设计了一个简单、实用的通信转换模块。该通信转换模块具有体积小、结构简单、通用性好、使用方便等特点。 2 工作原理 CAN-RS232通信转换模块通过硬件电路的电平标准转换和软件编程的通信协议转换实现相关功能。 2.1 电平标准转换 RS232采用的不是TTL电平的接口标准,而是负逻辑,即逻辑“1”为-3 V—-15 V:逻辑“0”为+3 V-+15 V;而CAN总线是采用“显性”和“隐性”两个互补的逻辑值表示“0”和“1”,其信号是以两线之间的“差分”电压形式出现的。这样导致两总线之间的信号电压不匹配.无法直接进行正常的通信,因此.需要相应的硬件接口电路实现电平标准转换。 2.2 通信协议转换 RS232通信属于异步串行通信,一般为两点传输其每帧的数据格式通常为:起始位+数据位+奇偶校验位(可省略)+停止位;每个数据包的格式通常为:数据包头+数据字节+校验和(溢出不计)。而CAN通信属于总线通信,可以同时存在多个节点,因此通信协议相对也比较复杂,这里以标准帧传输为例,其数据格式通常如表1所列。因此,需要软件处理实现通信协议的转换。

脉冲信号发生器使用方法

脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般都以矩形波为标准信号输出。 脉冲信号发生器的种类繁多,性能各异,但内部基本电路应包括图1所示的几个部分。 主振级一般由无稳态电路组成,产生重复频率可调的周期性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器使输出的脉冲信号幅度可调。 所示为xc-15型脉冲信号发生器的面板示意图,xc-15型脉冲信号发生器是高重复频率ns (纳秒)级脉冲信号发生器。其重复频率范围为1kHz~100MHz,脉冲宽度为5ns~300μs,幅度为150mV~5V,并输出正、负脉冲及正、负倒置脉冲,性能比较完善。 (1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用 ①“频率”粗调开关和“频率细调”旋钮。调节“频率”粗调开关和“频率细调”旋钮,可实现1kHz~100MHz的连续调整。粗调分为十挡(1kHz、3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz和100MHz),用细调覆盖。“频率细调”旋钮顺时针旋转时频率增高,顺时针旋转到底,为“频率”粗调开关所指频率;逆时针旋转到底,为此“频率”粗调开关所指刻度低一挡。例如,“频率”粗调开关置于10kHz挡,“频率细调”旋钮顺时针旋转到底时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。 ②“延迟”粗调转换开关和“延迟细调”旋钮。调节此组开关和旋钮,可实现延迟时间5ns~300,tts的连续调整。延迟粗调分为十挡(5ns、10ns、30ns、l00ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输出负方波的下降沿超前主脉冲前沿的时间。 “延迟细调”旋钮逆时针旋转到底为粗调挡所指的延迟时间。顺时针旋转延迟时间增加,顺时针旋转到底为此粗调挡位高一挡的延迟时间。例如,“延迟”粗调开关置于30ns挡,“延迟细调”旋钮顺时针旋转到底时输出延迟时间为100ns;逆时针旋转到底时输出延迟时间为30ns。 ③“脉宽”粗调开关和“脉宽细调”旋钮。通过调节此组开关和旋钮,可实现脉宽5ns~300μs 的连续调整。“脉宽”粗调分为十挡(5ns、10ns、30ns、100ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。“脉宽细调”旋钮逆时针旋转到底为粗调挡所指的脉宽时间。顺时针旋转脉宽增加,顺时针旋转到底为此粗调挡位高一挡的脉宽。例如,“脉宽”粗调开关置于10ns挡,“脉宽细调”旋钮顺时针旋转到底时输出脉宽为30ns;逆时针旋转到底时输出延迟时间为10ns。 ④“极性”选择开关。转换此开关可使仪器输出四种脉冲波形中的一种。 ⑤“偏移”旋钮。调节偏移旋钮可改变输出脉冲对地的参考电平。 ⑥“衰减”开关和“幅度”旋钮。调节此组开关和旋钮,可实现150mV~5V的输出脉冲幅度调整。 (2)使用注意事项在使用xc 15型脉冲信号发生器时应注意如下两点事项。 ①本仪器不能空载使用,必须接入50Ω负载,并尽量避免感性或容性负载,以免引起波形畸变。 ②开机后预热15min后,仪器方能正常工作。

PWM(脉冲宽度调制Pulse Width Modulation)原理

1、 PWM原理 2、调制器设计思想 3、具体实现设计 一、 PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs<

其中,。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语 音信号x(t)加上一个直流成分以及相位调制波构成。当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。 二、数字脉冲宽度调制器的实现: 实现数字脉冲宽度调制器的基本思想参看图2。 图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。 图3 为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大

单片机PWM(脉冲宽度调制)原理与实现

、PWM原理 2、调制器设计思想 3、具体实现设计 一、PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs< (1) 其中,x{t}是离散化的语音信号;Ts是采样周期;是未调制宽度;m是调制指数。 然而,如果对矩形脉冲作如下近似:脉冲幅度为A,中心在t = k Ts处,在相邻脉冲间变化缓慢,则脉冲宽度调制波xp(t)可以表示为: (2) 其中,。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语音信号x(t)加上一个直流成分以及相位调制波构成。当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。 二、数字脉冲宽度调制器的实现: 实现数字脉冲宽度调制器的基本思想参看图2。 图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。 图3 为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大到小顺序变化,而是将数据分成偶数序列和奇数序列,在一个计数周期,偶数序列由小变大,直到最大值,然后变为对奇数序列计数,变化为由大到小。如图3例子。 奇偶序列的产生方法是将计数器的最后一位作为比较数据的最低位,在一个计数周期内,前半个周期计数器输出最低位为0,其他高位逐次增大,则产生的数据即为偶数序列;后半个周期输出最低位为1,其余高位依次减小,产生的数据为依次减小的偶序列。具体电路可以由以下电路图表示: 三、8051中的PWM模块设计:

GSM通信模块

4.4 GPRS无线传输数据终端硬件设计 GPRS模块主要包括模数转换、数据处理和通信模块等。GPRS传输模块选择的是索尼爱立信的GR64。GR64是索尼爱立信新推出的一款内嵌TCP/IP协议栈的GSM/GPRS模块,支持GPRS CLASS 10,内嵌的ARM9微控制器可以开放给用户。GR64具有丰富的存储资源;256KB的脚本空间可同时容纳2个脚本,可用于CSD 方式下脚本远程升级,至少50KB的数据NVM空间和100KB RAM;丰富的功能库涵盖所有的底层驱动,用户只须编写自己的应用程序。为开发基于GPRS网络的TCP/IP应用,索尼爱立信提供了一套完整工具,其机对机通信商业解决方案(M2mpower Business Solution)是一个强有力的支持环境,专为促进提高成本效益比率的无线机对机应用的研发而设计。M2mpower使开发者通过运用特定的开发工具,能够更容易地将无线应用直接嵌入兼容的索尼爱立信机对机产品中。GR64提供丰富的接口:对外有2个自适应波特率和帧格式的串口,其中UARTI 用于AT命令控制或本地脚本下载,UART3为通用串口;另外,还有USB2.0、SPI、I2C、天线、音频接口,12根I/O线(8根复用),AD/DA转换器,蜂鸣器和实时时钟等内置外设。 4.4.1 GR64模块 本设计选用Sony/Ericsson的GR64做为远程传输的GPRS模块。GR64是Sony/Ericsson公司2006年4月上市的新一代可编程无线通信模块,它带有GSM/GPRS全套语音和数据功能。 GR64模块具有超小的体积,所有功能都集中在一块集成的芯片内;较低的功耗,工作电压范围是3.2~4.5 V,数据传输时平均电流330mA,功率为2W,休眠状态时平均电流约为1.6 mA;内嵌TCP/IP协议栈且支持数据透明传输,这使得GR64模块进行数据传输变得非常便捷,同时又有利于用户的二次开发。

4 脉冲信号产生电路共23页文档

4 脉冲信号产生电路 4.1 实验目的 1.了解集成单稳态触发器的基本功能及主要应用。 2.掌握555定时器的基本工作原理及其性能。 3.掌握用555定时器构成多谐振荡器、单稳态触发器的工作原理、设计及调试方法。 4.2 实验原理 1.集成单稳态触发器及其应用 在数字电路的时序组合工作中,有时需要定时、延时电路产生定时、展宽延时等脉冲,专门用于完成这种功能的IC,就是“单稳延时多谐振荡器”,也称“单稳触发器”。其基本原理是利用电阻、电容的充放电延时特性以及电平比较器对充放电电压检测的功能,实现定时或延时,只需按需要灵活改变电阻、电容值大小,就可以取得在一定时间范围的延时或振荡脉冲输出。常用的器件有LS121/122、LS/HC123、LS/HC221、LS/HC423、HC/C4538及CC4528B等。 集成单稳态触发器在没有触发信号输入时,电路输出Q=0,电路处于稳态;当输入端输入触发信号时,电路由稳态转入暂稳态,使输出Q=1;待电路暂稳态结束,电路又自动返回到稳态Q=0。在这一过程中,电路输 出一个具有一定宽度的脉冲,其宽度与电路的外接定时元件C ext 和R ext 的数 值有关。 图4-1

集成单稳态触发器有非重触发和可重触发两种,74LS123是一种双可重触发的单稳态触发器。它的逻辑符号及功能表如图4-1、表4-1所示。 在表4-1中“正”为正脉冲,“负”为负脉冲。 LS/HC123的特点是,复位端CLR也具有上跳触发单稳态过程发生的功能。 在C ext >1000pF时,输出脉冲宽度t w ≈0.45R ext C ext 。 器件的可重触发功能是指在电路一旦被触发(即Q=1)后,只要Q还未恢复到0,电路可以被输入脉冲重复触发,Q=1将继续延长,直至重复触发的最后一个触发脉冲的到来后,再经过一个t w (该电路定时的脉冲宽度)时间,Q才变为0,如图4-2所示: 图4-2 74LS123的使用方法: (1)有A和B两个输入端,A为下降沿触发,B为上升沿触发,只有AB=1时电路才被触发。 (2)连接Q和A或Q与B,可使器件变为非重触发单稳态触发器。 (3)CLR=0时,使输出Q立即变为0,可用来控制脉冲宽度。 (4)按图4-3、3-5-4连接电路,可组成一个矩形波信号发生器,利用开关S瞬时接地,使电路起振。 图4-3 图4-4 2.555时基电路及其应用 555时基电路是一种将模拟功能和数字逻辑功能巧妙地结合在同一硅片上的新型集成电路,又称集成定时器,它的内部电路框图如图4-5所示。 图4-5 电路主要由两个高精度比较器C 1、C 2 以及一个RS触发器组成。比较器 的参考电压分别是2/3V CC 和1/3V CC ,利用触发器输入端TR输入一个小于 1/3V CC 信号,或者阈值输入端TH输入一个大于2/3V CC 的信号,可以使触发 器状态发生变换。CT是控制输入端,可以外接输入电压,以改变比较器的参考电压值。在不接外加电压时,通常接0.01μF电容到地,DISC是放电输入端,当输出端的F=0时,DISC对地短路,当F=1时,DISC对地开路。 R D 是复位输入端,当R D =0时,输出端有F=0。 器件的电源电压V CC 可以是+5V~+15V,输出的最大电流可达200mA,当 电源电压为+5V时,电路输出与TTL电路兼容。555电路能够输出从微秒级到小时级时间范围很广的信号。 (1)组成单稳态触发器 555电路按图4-6连接,即构成一个单稳态触发器,其中R、C是外接定时元件。单稳态触发器的输出脉冲宽度t w ≈1.1RC。 图4-6 (2)组成自激多谐振荡器 图4-7 自激多谐振荡器电路 按图4-7连接,即连成一个自激多谐振荡器电路,此电路的工作过程

脉冲宽度调制技术的具体应用

脉冲宽度调制 目录[隐藏] 一、脉冲宽度调制基本原理 二、脉冲宽度调制具体过程 三、脉冲宽度调制的优点 四、脉冲宽度调制控制方法 五、脉冲宽度调制相关应用领域 六、脉冲宽度调制技术的具体应用 一、脉冲宽度调制基本原理 二、脉冲宽度调制具体过程 三、脉冲宽度调制的优点 四、脉冲宽度调制控制方法 五、脉冲宽度调制相关应用领域 六、脉冲宽度调制技术的具体应用 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最 广泛应用的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技 术发展的主要方向之一。 [编辑本段] 一、脉冲宽度调制基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可

脉冲信号发生器的使用方法

脉冲信号发生器的使用方法 脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲 信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般 都以矩形波为标准信号输出。脉冲信号发生器的种类繁多,性能各异,但 内部基本电路应包括主振级一般由无稳态电路组成,产生重复频率可调的周期 性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主 振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路 组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对 脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉 冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器 使输出的脉冲信号幅度可调。 如(1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用 ①频率粗调开关和频率细调旋钮。调节频率粗调开关和频率细调旋钮, 可实现1kHz~100MHz的连续调整。粗调分为十挡 (1kHz、3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz 和100MHz),用细调覆盖。频率细调旋钮顺时针旋转时频率增高,顺时针旋转 到底,为频率粗调开关所指频率;逆时针旋转到底,为此频率粗调开关所指刻 度低一挡。例如,频率粗调开关置于10kHz挡,频率细调旋钮顺时针旋转到底 时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。 ②延迟粗调转换开关和延迟细调旋钮。调节此组开关和旋钮,可实现延 迟时间5ns~300,tts的连续调整。延迟粗调分为十挡 (5ns、10ns、30ns、l00ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输

脉冲波形的产生与变换

脉冲波形的产生与变换 脉冲信号是数字电路中最常用的工作信号。脉冲信号的获得经常采用两种方法:一是利用振荡电路直接产生所需的矩形脉冲。这一类电路称为多谐振荡电路或多谐振荡器;二是利用整形电路,将已有的脉冲信号变换为所需要的矩形脉冲。这一类电路包括单稳态触发器和施密特触发器。这些脉冲单元电路可以由集成逻辑门构成,也可以用集成定时器构成。下面先来介绍由集成门构成的脉冲信号产生和整形电路。 9.1 多谐振荡器 自激多谐振荡器是在接通电源以后,不需外加输入信号,就能自动地产生矩形脉冲波。由于矩形波中除基波外,还含有丰富的高次谐波,所以习惯上又把矩形波振荡器叫做多谐振荡器。多谐振荡器通常由门电路和基本的RC电路组成。多谐振荡器一旦振荡起来后,电路没有稳态,只有两个暂稳态,它们在作交替变化,输出矩形波脉冲信号,因此它又被称作无稳态电路。 9.1.1门电路组成的多谐振荡器 多谐振荡器常由TTL门电路和CMOS门电路组成。由于TTL门电路的速度比CMOS门电路的速度快, 故TTL门电路适用于构成频率较高的多谐振荡器,而CMOS门电路适用于构成频率较低的多谐振荡器。 (1)由TTL门电路组成的多谐振荡器 由TTL门电路组成的多谐振荡器有两种形式:一是由奇数个非门组成的简单环形多谐振荡器;二是由非门和RC延迟电路组成的改进环形多谐振荡器。 ①简单环形多谐振荡器

(a) (b) 图9-1 由非门构成的简单环形多谐振荡器把奇数个非门首尾相接成环状,就组成了简单环形多谐振荡器。图9-1(a)为由三个非门构成的多谐振荡器。若uo的某个随机状态为高电平,经过三级倒相后,uo跳转为低电平,考虑到传输门电路的平均延迟时间tpd,uo输出信号的周期为6tpd。图9-1(b)为各点波形图。 简单环形多谐振荡器的振荡周期取决于tpd,此值较小且不可调,所以,产生的脉冲信号频率较高且无法控制,因而没有实用价值。改进方法是通过附加一个RC延迟电路,不仅可以降低振荡频率,并能通过参数 R、C控制振荡频率。 ② RC环形多谐振荡器 如图9-2所示,RC环形多谐振荡器由3个非门(G1、G2、G3)、两个电阻(R、RS)和一个电容C组成。电阻RS是非门G3的限流保护电阻,一般为100Ω左右;R、C为定时器件,R 的值要小于非门的关门电阻,一般在700Ω以下,否则,电路无常工作。此时,由于RC的值较大,从u2到u4的传输时间大大增加, 基本上由RC的参数决定,门延迟时间tpd可以忽略不计。 图9-2 RC环形多谐振荡器 a.工作原理 设电源刚接通时,电路输出端uo为高电平,由于此时电容器C尚未充电,其两端电压为零,则u2、u4为低电平。电路处于第1暂稳态。随着u3高电平通过电阻R对电容C充电,u4电

脉冲宽度控制

脉冲宽度调制 编辑 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 目录 1简介 2背景介绍 3基本原理 4谐波频谱 5具体过程 6优点 7控制方法 8应用领域 9具体应用 1 简介 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压

电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM 控制技术发展的主要方向之一。 2背景介绍 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。 模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。 通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 3基本原理 脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。 例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度相等,都等于∏/n ,但幅值不等,且脉冲顶

第八章 脉冲波形的产生和变换试题及答案

第八章脉冲波形的产生和变换 一、填空题 1.(10-1中)矩形脉冲的获取方法通常有两种:一种是________________;另一种是________________________。 2.(10-1易)占空比是_________与_______的比值。 3.(10-4中)555定时器的最后数码为555的是(,)产品,为7555的是(,)产品。 4.(10-3中)施密特触发器具有现象;单稳触发器只有个稳定状态。 5.(易,中)常见的脉冲产生电路有,常见的脉冲整形电路有、。 6.(中)为了实现高的频率稳定度,常采用振荡器;单稳态触发器受到外触发时进入。 7.(10-3易)在数字系统中,单稳态触发器一般用于______、 ______、______等。 8.(10-3中)施密特触发器除了可作矩形脉冲整形电路外,还可以作为________、_________。 9.(10-2易)多谐振荡器在工作过程中不存在稳定状态,故又称为________。 10.(10-2中)由门电路组成的多谐振荡器有多种电路形式,但它们均具有如下共同特点: 首先,电路中含有________,如门电路、电压比较器、BJT 等。这些器件主要用来产生________;其次,具有________, 将输出电压器恰当的反馈给开关器件使之改变输出状态;另外,还有,利用RC电路的充、放电特性可实现_______,以获得所需要的振荡频率。在许多实用电路中,反馈网络兼有_____作用。 11.(10-3易)单稳态触发器的工作原理是:没有触发信号时,电路处于一种_______。外加触发信号,电路由_____翻转到_____。电容充电时,电路由______自动返回至______。 二、选择题 1.(10-2中)下面是脉冲整形电路的是()。 A.多谐振荡器触发器 C.施密特触发器触发器 2.(10-2中)多谐振荡器可产生()。

脉冲宽度调制(PWM)技术

脉冲宽度调制(PWM)技术 在电力电子变流器控制系统中,对于控制电路的要求往往是除能够控制负载的加电与断电外,还应该能够控制加载到负载上的电压高低及功率大小。在大功率电力电子电路中,控制加载至负载上电压及功率的实用方法就是脉冲宽度调制(pulse width modulation, PWM)。 1. 面积等效原理 在控制理论中,有一个重要的原理,即冲量等效原理:大小、波形不相同的窄脉冲变量(冲量)作用在具有惯性的环节上时,只要这些变量对时间的积分相等,其作用的效果将基本相同。这里所说的效果基本相同是指惯性环节的输出响应波形基本相同。例如,下图1示出的三个窄脉冲电压波形分别为矩形波、三角波和正弦波,但这二个窄脉冲电压对时间的积分相等,或者说它们的面积相等。当这三个窄脉冲分别作用在只有惯性的同一环节上时,其输出响应基本相同。因此,冲量等效原理也可以称为面积等效原理。 从数学角度进行分析,对上图1所示的三个窄脉冲电压波形进行傅里叶变换,则其低频段的特性非常相近,仅在高频段有所不同,而高频段对于具有惯性负载的电路影响非常小。由此进一步证明了面积等效原理的正确性。 2. 脉冲宽度调制技术

依据面积等效原理,在电路中可以利用低端电源开关或高端电源开关,以一定频率的导通和截止连续切换,使电源电压U i以一系列等幅脉冲(或称为矩形波)的形式加载到负载上,加载在负载上的电源电压Uo波形如图2所示。 图2所示的矩形波的电压平均值: 此式表明在一个脉冲周期内,电压的平均值与脉冲的占空比是成正比的,于是,可以通过改变脉冲的占空比来调整加载到负载上的电压大小。当占空比小时,加载到负载上的平均电压就低,即加载到负载上的功率小;而占空比大时,加载到负载上的平均电压就高,加载到负载上的功率大。这种通过等幅脉冲调节负载平均电压及功率的方法称为脉冲宽度调制,也称为斩波控制。 采用脉冲宽度调制方式为负载供电,由于供电电压是脉动的,势必会产生出各种谐波。为了明确脉冲宽度调制技术对负载产生的影响,且考虑此分析结果便于以后章节引用,可将图2所示的等幅脉冲序列描述为 式中,G(t)为开关函数,其波形如图3所示。 在此式中,第一项DUi是等幅脉冲序列的直流成分,也即输出电压的平均值。可见,输出电

通信直流变换电源模块

通信直流变换电源模块 RT4820S 用 户 手 册

目录 通信直流变换模块介绍 (2) 1.1 结构及接口 (2) 1.1.1模块外观 (2) 1.1.2前面板 (2) 1.1.3后面板 (4) 1.2模块工作原理 (5) 1.3模块主要功能 (5) 1.3.1保护功能 (5) 1.3.2 其它功能 (6) 1.4模块性能参数 (7) 1.4.1环境要求 (7) 1.4.2输入特性 (8) 1.4.3输出特性 (8) 1.4.4其他特性 (8) 1.5模块安装尺寸 (9) 1.6包装维护 (10) 1.6.1运输包装 (10) 1.6.2维护 (10) 1.7使用注意事项及处理 (10) 1.7.1模块均流 (10) 1.7.2输出电压设定 (11) 1.7.3分组号设定 (11) 1.7.4地址设定 (11) 1.7.5模块告警现象及处理 (11) 注意事项 (12)

通信直流变换模块介绍 RT4820S 型模块额定输入AC220V/DC220V 或DC110V 电源,输出为DC48/20A ;可用于一体化电源系统用作通信电源使用,下面将做系统的介绍: 1.1 结构及接口 1.1.1 模块外观 模块的外观如下图: 图2-1 充电模块外观 1.1.2 前面板 模块前面板如下图所求: 图2-2 充电模块前面板 指示灯 LED 上键(长按5秒取消设置) 下键(长按5秒取消设置) 紧固螺钉

1)LED显示面板 可显示模块电压、电流、告警、地址、分组号、运行方式等信息。若按键无操作超过一分钟,将自动显示模块电压和电流,此时如果存在告警,则显示告警信息。电压显示精度为±0.5V,电流显示精度为±0.2A。 2)指示灯 模块面板上有3个指示灯,分别为电源指示灯(绿色)、保护指示灯(黄色)和故障指示灯(红色),见下表。 表2-1 面板指示灯说明 3)手动操作按键 模块面板上有两个按键,上键和下键。 通过按键,可查看模块信息。例如模块输出电压48V、输出电流10.0A、地址2、运行在自动方式、分组号1,按上键或下键将依次显示如图2-3。 输出电压48V 输出电流10A 地址2 分组号1 运行在自动模式 图2-3 模块信息显示顺序

如何正确使用脉冲信号发生器

如何正确使用脉冲信号发生器 脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般都以矩形波为标准信号输出。 脉冲信号发生器的种类繁多,性能各异,但内部基本电路应包括图1所示的几个部分。 主振级一般由无稳态电路组成,产生重复频率可调的周期性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器使输出的脉冲信号幅度可调。 所示为xc-15型脉冲信号发生器的面板示意图,xc-15型脉冲信号发生器是高重复频率ns(纳秒)级脉冲信号发生器。其重复频率范围为1kHz~100MHz,脉冲宽度为5ns~300μs,幅度为150mV~5V,并输出正、负脉冲及正、负倒置脉冲,性能比较完善。 (1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用 ① “频率”粗调开关和“频率细调”旋钮。调节“频率”粗调开关和“频率细调”旋钮,可实现 1kHz~100MHz的连续调整。粗调分为十挡(1kHz、 3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz和100MHz),用细调覆盖。“频率细调”旋钮顺时针旋转时频率增高,顺时针旋转到底,为“频率”粗调开关所指频率;逆时针旋转到底,为此“频率”粗调开关所指刻度低一挡。例如,“频率”粗调开关置于 10kHz挡,“频率细调”旋钮顺时针旋转到底时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。 ②“延迟”粗调转换开关和“延迟细调”旋钮。调节此组开关和旋钮,可实现延迟时间5ns~300,tts的连续调整。延迟粗调分为十挡(5ns、10ns、30ns、l00ns、 300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输出负方波的下降沿超前主脉冲前沿的时间。 “延迟细调”旋钮逆时针旋转到底为粗调挡所指的延迟时间。顺时针旋转延迟时间增加,顺时针旋转到底为此粗调挡位高一挡的延迟时间。例如,“延迟”粗调开关置于30ns挡,“延迟细调”旋钮顺时针旋转到底时输出延迟时间为100ns;逆时针旋转到底时输出延迟时间为30ns。 ③ “脉宽”粗调开关和“脉宽细调”旋钮。通过调节此组开关和旋钮,可实现脉宽5ns~300μs的连续调整。“脉宽”粗调分为十挡(5ns、10ns、 30ns、100ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。“脉宽细调”旋钮逆时针旋转到底为粗调挡所指的脉宽时间。顺时针旋转脉宽增加,顺时针旋转到底为此粗调挡位高一挡的脉宽。例如,“脉宽”粗调开关置于10ns挡,“脉宽细调”旋钮顺时针旋转到底时输出脉宽为30ns;逆时针旋转到底时输出延迟时间为10ns。 ④“极性”选择开关。转换此开关可使仪器输出四种脉冲波形中的一种。 ⑤“偏移”旋钮。调节偏移旋钮可改变输出脉冲对地的参考电平。 ⑥“衰减”开关和“幅度”旋钮。调节此组开关和旋钮,可实现150mV~5V的输出脉冲幅度调整。

PWM (脉冲宽度调制)原理与实现

PWM (脉冲宽度调制)原理与实现 1、PWM原理 2、调制器设计思想 3、具体实现设计 一、PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs<

其中,。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语 音信号x(t)加上一个直流成分以及相位调制波构成。当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。 二、数字脉冲宽度调制器的实现: 实现数字脉冲宽度调制器的基本思想参看图2。 图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。 图3 为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大

Modbus和EtherNetIP的双向转换模块

5204‐DFNT‐MCM模块OPC的配置方法 5204‐DFNT‐MCM模块为ProSoft Technology生产的协议转换模块,可实现Modbus协议和EtherNet/IP协议的双向转换。 模块工作原理: 如上图所示模块通过Modbus端口将Modbus网络的数据读取到内部数据库, 内部数据库有4000个寄存器可供用户进行数据读写操作,同时该模块还有一个 EtherNet/IP(DFNT)的通讯端口,该端口可以实现和其他EtherNet/IP网络的数据通讯。下面我们以一个实例来说明如何通过OPC的方式实现Rsview和该模块的数据交换。 一、配置RsLinx Step1:打开RsLinx 选择 Communication菜单下的Configure Drivers Step2:选择EtherNet device驱动,点击Add new

Step3:为该驱动命名后,点击OK按钮 Step4:定义IP地址,此IP地址就是5202‐DFNT‐MCM4的IP地址,本例为192.168.1.100然后点击OK或者Apply Step5:配置OPC或者DDE,选择菜单栏的OPC/DDE并点击菜单下的Topic Configuration; Step6:在下面的窗口中选择New增加一个Topic,并命名Topic,在Data Collection选项中,处理器类型选择SLC503+,如下图所示:

Step7:在Advanced Communications中的Communications Drivers选择已配置的EtherNet驱动: Step8:配置Remote Addressing,在Remote Device中选择Remote ControlNet。这一步骤用于为DFNT模块设置路由路径,这一步是关键不能忽视,一些老版本的RsLinx这一步骤是自动生成的,而2.41版本以后的模块是需要手动设置的。具体设置见下图。

脉冲信号发生器

电子技术综合训练 设计报告 题目:脉冲信号发生器 姓名:xxx 学号:xxxxxxx 班级:xx 电气及其自动化xx 同组成员:xxx 指导教师:xxx 日期:2011年1月4日

脉冲信号发生器的原理主要分为四部分,即正弦波的产生,方波的变换,分频电路和倍频电路,并由这四部分最终产生三种不同频率的信号,其要点在于电路的线路连接及焊接。通过设计体会理论与实际结合的重要性. 关键字:正弦发生多谐振荡器降频电路锁相环

一、设计任务和要求 (5) 1.1设计任务 (5) 1.2设计要求 (5) 二、系统设计 (6) 2.1系统要求 (6) 2.2方案设计 (6) 2.3系统工作原理 (7) 三、单元电路设计 (8) 3.1 RC正弦发生器 (8) 3.1.1电路结构及工作原理 (9) 3.1.2电路仿真 (9) 3.1.3元器件的选择及参数确定 (9) 3.2 555定时器组成的多谐振荡器 (9) 3.2.1电路结构及工作原理 (9) 3.2.2电路仿真 (11) 3.3 74LS161计数器降频电路 (11) 3.3.1电路结构及工作原理 (11)

3.3.2电路仿真 (11) 3.3.3元器件的选择及参数确定 (11) 3.4 锁相环升频电路 (13) 3.4.1电路结构及工作原理 (13) 3.4.2元器件的选择及参数确定 (15) 四、系统仿真 (17) 五、电路安装、调试与测试 (18) 5.1电路安装 (17) 5.2电路调试 (17) 5.3系统功能及性能测试 (17) 5.3.1测试方法设计 (18) 5.3.2测试结果及分析 (18) 结论 (19) 参考文献 (20) 总结、体会和建议 (21) 附录 (22)

蓝牙转无线通信模块的制作方法

一种蓝牙转无线通信模块,应用于微功率无线网络中智能表计与个人移动通信终端之间建立通信,包括壳体和位于其内的PCB通信主板,所述PCB通信主板包括微处理器MCU控制电路、蓝牙电路、收发信电路、低通滤波电路、收发转换开关电路、稳压电路和天线;天线将收到的射频信号经收发转换开关电路送到收发信电路,由收发信电路再送到所述微处理器MCU控制电路;微处理器MCU控制电路送至蓝牙电路,由蓝牙电路发送给所述个人移动通信终端;微处理器MCU控制电路将蓝牙电路送来的信号转换为数据包,送至收发信电路调制为射频信号,经低通滤波电路送到收发转换开关电路,通过天线发送给智能表计。本技术新型的有益效果是:采用价格低廉、操作方便的方式,实现了使用智能手机和平板电脑等移动通信终端和智能表计之间的通信。 权利要求书 1.一种蓝牙转无线通信模块,应用于微功率无线网络中智能表计与个人移动通信终端之间建立通信,其特征在于: 包括壳体和位于其内的PCB通信主板(2),所述PCB通信主板(2)包括微处理器MCU控制电路(20)、蓝牙电路(21)、收发信电路(22)、低通滤波电路(23)、收发转换开关电路(24)、稳压电路(25)和天线(26);

所述稳压电路(25)将外部提供的电力转换为适配的电力向其他电路供电; 所述天线(26)将收到的射频信号经收发转换开关电路(24)送到收发信电路(22),由收发信电路(22)将射频信号调解为数据包再送到所述微处理器MCU控制电路(20); 所述微处理器MCU控制电路(20)将接到的数据包转换为蓝牙信号,送至蓝牙电路(21),由蓝牙电路(21)发送给所述个人移动通信终端; 所述微处理器MCU控制电路(20)将蓝牙电路(21)送来的蓝牙信号转换为数据包,送至所述收发信电路(22)调制为射频信号,经低通滤波电路(23)滤波后送到收发转换开关电路(24),通过与该收发转换开关电路(24)连接的天线(26)发送给智能表计。 2. 按照权利要求1所述的蓝牙转无线通信模块,其特征在于: 所述微处理器MCU控制电路(20)的微处理器集成电路U100是采用R5F2L357CDFP,所述微处理器集成电路U100的1脚、52脚和49脚接入所述蓝牙电路(21);所述微处理器集成电路U100的14脚至18脚和PA15脚接入收发信电路(22)。 3.按照权利要求1所述的蓝牙转无线通信模块,其特征在于: 所述蓝牙电路(21)包括蓝牙模组U1, 所述蓝牙模组U1采用BF4030,该蓝牙模组U1的数据UART_TX脚、UAPR_RX脚和RESET脚连接至所述微处理器MCU控制电路(20),所述蓝牙模组U1的RESET脚经电容C400接地。 4.按照权利要求1所述的蓝牙转无线通信模块,其特征在于: 所述收发信电路(22)包括收发信集成电路U200,采用SX1278,收发信集成电路U200的第1脚与收发转换开关电路(24)连接;该收发信集成电路U200的16脚至19脚与所述微处理器MCU控制电路(20)连接,该收发信集成电路U200的27脚与低通滤波电路(23)连接。 5.按照权利要求1所述的蓝牙转无线通信模块,其特征在于:

相关主题
文本预览
相关文档 最新文档