当前位置:文档之家› 发动机点火系统与启动系统

发动机点火系统与启动系统

发动机点火系统与启动系统
发动机点火系统与启动系统

六安职业技术学院教案

2011 学年度第二学期编号

机电工程系汽车教研室任课教师邓林课程名称发动机构造与维修

授课章节第八章发动机启动系统

第八章发动机启动系统

发动机从停止转入工作状态,必须借助外力带动曲柄连杆机构运动,完成可燃混合气的压缩,才能开始点火燃烧或自燃。产生外力使发动机从静止状态进入工作状态的装置或系统即是发动机的启动系统。

发动机常采用人力、电力、辅助汽油机等多种方式启动。

人力启动:使用人力将发动机启动的方式。主要用于小型汽油机或作为紧急备用启动方式。

电力启动:启动机在点火开关和启动继电器的控制下,将蓄电池的电能转化为机械能,带动发动机飞轮齿圈使曲轴转动,完成发动机的启动。

辅助汽油机启动:大功率柴油机启动系统可以采用小型汽油机。通过先启动汽油机后,再带动柴油机运转。

电力启动系统,启动方便、迅速,启动可靠、结构简单,是目前汽车上广泛使用的一种启动方式。

一、启动系统的组成及原理

启动系统由蓄电池、启动机、启动继电器、点火开关等组成,如图11.24 所示。

启动系统的工作过程是:当点火开关放在启动挡,启动机控制电路先接通,才能接通启动机供电电路,让蓄电池电流经电磁开关流入启动机,并使其转动起来;与此同时,电磁开关还将启动机的驱动齿轮向外推出,使其与发动机飞轮齿圈相啮合,拖转发动机。待发动机被拖转到自己完成爆发并加速运转后,飞轮有反过来带动启动机驱动齿轮运转的趋势,启动机上的单向离合器使启动机的驱动齿轮相对于启动机电枢轴空转(以保护启动机)。

驾驶员应及时将点火开关转到点火挡,切断启动机控制电路,在控制机构弹簧恢复力作用下,驱动齿轮退回原处,脱离与飞轮齿圈啮合。由于供电电路同时被切

断,启动机停止运转。

启动机是启动系

统的主要组成部分,

一般由直流串励式电

动机、传动机构、电

磁开关等部分组成。

如图11.25 所示为东风EQ1090E 型汽车采用的QD124 型启动机的结构图。

QD124 型启动机额定功率1.84kW,额定电压12V,它由直流电动机、传动机构和控制装置部分组成。

二、启动机电路

目前汽车上大多采用电磁操纵强制啮合式启动机,这种类型的启动机又分为无启动继电器和有用动继电器两种。

1. 无启动继电器启动机控制电路——ST614 型启动机用于黄河、JN1090 型载货汽车。其结构原理如图11.28所示。

在电磁开关铁芯上绕有吸引线圈和保持线圈,两个线圈的首端共同接至启动机按钮。吸引线圈的另一端接至启动机主电路接柱,与启动机激磁绕组和电枢串联,保持线圈的另一端直接搭铁。电磁开关内装有活动铁芯,它通过调节螺钉与拨叉连接,挡铁的中心装有活动杆,其中安装有主电路接触盘。

工作过程:接通启动开关,接通吸引线圈和保持续圈的电路,其电路为:蓄电池“+”——主电路接线柱——电流表——熔断器——启动总开关——启动按钮————吸引线圈——主电路接柱——激磁绕组——搭铁——蓄电池电磁开关接柱7 负极——保持线圈——搭铁——蓄电池负极在两线圈电磁力的作用下,活动铁芯克服复位弹簧的弹力而被吸入。拨叉便将驱动小齿轮推出,使之与飞轮齿圈啮合;由于吸引线圈的电流流经启动机内部,产生一定的电磁转矩,使驱动小齿轮是在缓慢转动的情况下进入啮合,以保证啮合可靠性。当齿轮与飞轮齿圈完全啮合时,接触

盘将主触点接通,启动机主电

路被接通,电机旋转并带动曲

轴转动而实现启动。

2. 启动继电器控制启动

电路——QD124 型启动机启

动电路

QDl24 型启动机用于东

风EQ6100Q 汽油机,其控制电

路如图11.31所示。启动发动

机时,将点火开关转到启动位

置,接通启动继电器磁化线圈的电路。电流从蓄电池正极—启动机主电路接柱—电流表—点火开关—启动继电器“点火开关”接线柱—磁化线圈—搭铁—蓄电池负极。

磁化线圈产生的电磁力将触点闭合,接通了电磁开关内吸引线圈和保持线圈的电路。此时,电路工作状态和ST614型启动机按下启动按钮后吸引线圈、保持线圈电路工作状态完全相同,启动机主电路被接通,完成启动。

发动机启动后,放松点火开关,点火开关自动转回一个角度,切断启动继电器磁化线圈电路,使触点断开,在主触点尚未打开前瞬间,保持线圈中的电流由启动机主电路接柱、接触盘、接线柱、导电片、接线柱、吸引线圈构成回路,此时由于两线圈流过的电流方向相反,磁场互相抵消,活动铁芯在复位弹簧的作用下退回原位,启动机小齿轮退出啮合,同时接触盘复位,将主电路切断,电机停止转动。

发动机起动系

第一节概述 一、起动系的作用 发动机必须依靠外力带动曲轴旋转后,才能进人正常工作状态,通常把汽车发动机曲轴在外力作用下,从开始转动到怠速运转的全过程,称为发动机的起动。起动系的作用就是供给发动机曲轴足够的起动转矩,以便使发动机曲轴达到必需的起动转速,使发动机进入自行运转状态。当发动机进入自由运转状态后,便结束任务立即停止工作。 发动机常用的起动方式,有人力起动、辅助汽油机起动和电力起动机起动。人力起动是用手摇或绳拉,属于最简单的一种,现代汽车上仍有部分车型将人力手摇起动作为后备方式保留,有些车型则已取消。辅助汽油机起动方式只在少数重型汽车上采用。电力起动机起动是由直流电动机通过传动机构将发动机起动,它具有操作简单,起动迅速可靠,重复起动能力强等优点。现代汽车上均采用这种方式,电力起动机简称为起动机,均安装在汽车发动机飞轮壳前端的座孔上,用螺栓紧固。 二、起动系的组成 电力起动系简称起动系,由蓄电池、起动机和起动控制电路等组成,如图3—1所示,起动控制电路包括起动按钮或开关、起动继电器等。 起动机在点火开关或起动按钮控制下,将蓄电池的电能转化为机械能,通过飞轮齿圈带动发动机曲轴转动。为增大转矩,便于起动,起动机与曲轴的传动比:汽油机一般为13-17,柴油机一般为8-10。 三、起动机的组成及其分类 1.起动机的组成 起动机俗称“马达”,由直流电动机、传动机构和控制装置三大部分组成,如图3—2所示。 直流电动机的作用是将蓄电池输人的电能转换为机械能,产生电磁转矩。 传动机构的作用是利用驱动齿轮啮入发动机飞轮齿圈,将直流转。矩传给曲轴,并及时切断曲轴与反拖电动电动机之间的动力传递.防止曲轴机的电磁 控制机构的作用是接通或切断起动机与蓄电池之间的主电路,并使驱动小齿轮进人或退出啮合。有些起动机控制机构还有副开关,能在起动时将点火线圈附加电阻短路,以增大起动时车已不再使用。 转播到腾讯微博

汽车启动系统的常见电路故障分析

启动系统典型故障 启动系统的典型机械故障诊断排除 一、启动机空转 1故障现象与故障原因 接通启动开关后,只有启动机快速旋转而发动机曲轴不转。这种症状表明起动机电路畅通,故障在于启动机的传动装置和飞轮齿圈等处。 2 ?故障诊断方法 (1)若在启动机空转的同时伴有齿轮的撞击声,则表明飞轮齿圈牙齿或启动机小齿轮牙齿磨损严重或已损坏,致使不能正确地啮合。 (2)启动机传动装置故障有:单向啮合器弹簧损坏;单向啮合器滚子磨损严 重;单向啮合器套管的花键槽锈蚀,这些故障会阻碍小齿轮的正常移动,造成不 能与飞轮齿圈准确啮合等。 (3)有的启动机传动装置采用一级行星齿轮减速装置,其结构紧凑,传动比 大,效率高。但使用中常会出现载荷过大而烧毁卡死。有的采用摩擦片式离合器,若压紧弹簧损坏,花键锈蚀卡滞和摩擦离合器打滑,也会造成起动机空转。 汽车启动系主要由启动机和启动控制电路所组成,其故障有机械方面的,也有电器方面的。常见的故障现象有启动机不转,启动机运转无力,启动机空转而发动机不能启动,发动机启动后启动机运转不停,驱动齿轮与飞轮齿圈不能啮合且有异响等,下面就此逐一分析一下。 故障现象:打启动机时,有时能运转将发动机启动、有时不运转不能将发动机启动。 故障检修: 故障现象是打启动机时,有时启动机转动能将发动机启动;有时则不转动。在启动机不转动时,其电磁开关有吸动的“嗒、嗒”声。 检修时,首先检查蓄电池,确认其电量充足。然后把启动机从发动机上拆下来,解体检查。检查中发现它的四只电刷过度磨损,整流子表面有明显的烧痕。由于电刷和整流子接触不良,造成了启动机时转时不转的故障。用车床把整流子表面修复,再更换四只新的电刷,将启动机修复后装车试验。此时打启动机,启动机正常驱动发动机,发动机也顺利着车。故障完全排除。 二、启动机不转 1.在启动机不能正常转动时,表现为动力下降。 检修时,首先检查蓄电池,确认其电量充足。然后把启动机从发动机上拆下来,在拆卸过程中发现启动机的前滑动轴承已从发动机后瓢上的轴承孔中脱出。 启动机转子因前轴承损坏失去支撑,造成了转子扫膛动力下降,所以有时无力驱动

汽车发动机点火系统原理及故障分析

河南职业技术学院 毕业设计(论文) 题目汽车发动机点火系统原理及故障分析 系(分院)汽车工程系 学生姓名彭超 学号07183160 专业名称汽车电子技术 指导教师王贤高 2010 年 3 月20 日

河南职业技术学院汽车工程系(分院)毕业设计(论文)任务书

毕业设计(论文)指导教师评阅意见表

汽车发动机点火系统原理及故障分析 彭超 摘要:点火系统在发动机上由于工作环境相对于其它系统很恶劣,所以其状态的好坏直接决定着发动机的性能。本文较为详细的介绍了各种点火系统的组成结构、工作原理和控制内容,并针对常见的点火系统故障作了简要分析。 关键词:点火系统点火正时故障分析 汽油发动机正常工作的三要素:良好的空气----燃油混合气,很高的压缩压力,正确的点火正时及强烈的火花,去点燃空气----燃油混合气,从而实现发动机工作。 一、发动机点火系统必备的条件及组成结构 (一)、点火系统必备的条件 1、强烈电火花 在点火系统中产生的强烈电火花应产生于火花塞电极之间,以便于点燃空气---燃油混合气。因为空气存在空气电阻,这个电阻随空气高度压缩时而增大,所以点火系统必须能产生几万伏的高电压以保证产生强烈火花去点燃空气----燃油混合气。 2、正确的点火正时 点火系统必须始终根据发动机的转速和载荷和变化提供正确的点火正时。 3、持久的耐用性 点火系统必须具备足够的可靠性以经得住发动机产生的振动和高温。 (二)、点火系统的组成:如图-1;直接点火系统组成:如图-2 1、直接点火系统元件构成: (1)曲轴位置传感器:(NE)探测曲轴角度位置(发动机转速)。 (2)凸轮轴位置传感器:(G)辨认气缸和行程,并探测凸轮轴正时。 (3)节气门位置传感器:(VTA)探测节气门的开启角。 (4)空气流量计:(VG/PIM)探测进气量。 (5)水温传感器:(THW)探测发动机冷却液温度。 (6)带点火器的点火线圈:在最佳正时时,接通和切断初级线圈电流。向发动机ECU发送IGF信号。

汽车启动系工作原理

汽车启动系工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

汽车启动系统 学习目标: 1.掌握启动机的组成和结构; 2.掌握几种单向离合器的构造和工作过程; 3.掌握电磁控制装置的构造及工作原理; 4.通过对启动机的工作原理、特性、结构组成及控制装置工作过程的了解能够对启动系的一些典型的故障进行检测并排除 学习方法 从了解启动机的启动性能、工作原理和特性出发,掌握启动机的组成和结构特点并详细掌握几种单向离合器的构造、工作原理和电磁控制装置的构造与工作原理。并通过以上系统的学习,对启动系的组成和结构特点有一个全面的认识,再通过对典型车辆启动系的认识做到能够对启动系的一些典型故障进行诊断和排除。 学习内容 1.启动系统的功用和类型与基本组成; 2. 启动机的结构; 3. 汽车启动系统电路分析; 4. 启动机的正确使用与故障诊断; 5. 启动系统常见故障的诊断与排除; 学习内容启动系统的基本组成和功用启动机的类型 一、启动系统的基本组成和作用

现代汽车发动机以电动机作为启动动力。启动系统的基本组成如图3—1所示,由蓄电池、点火开关、启动继电器、启动机等组成。启动系统的功用是通过启动机将蓄电池的电能转换成机械能,启动发动机运转。 1.启动开关接通启动机电磁开关电路,以使电磁开关通电工作。汽油发动机的启动开关与点火开关组合在一起。 2.启动继电器由启动继电器触点(常开型)控制启动机电磁开关电路的通断,启动开关只是控制启动继电器线圈电路,从而保护了启动开关,有单联型(保护启动开关)和复合型(既保护启动开关又保护启动机)。 二、启动机的类型 1.按驱动齿轮啮合方式 (1)惯性啮合式 启动时,依靠驱动齿轮自身旋转的惯性与飞轮齿环啮合。惯性啮合方式结构简单,但工作可靠性较差,现很少采用。 (2)电枢移动式 靠磁极产生的电磁力使电枢作轴向移动,带动固定在电枢轴上的驱动齿轮与飞轮齿环啮合。电枢移动式启动机其结构较为复杂,在欧洲国家生产的柴油车上使用较多。 (3)磁极移动式 靠磁极产生的磁力使其中的活动铁心移动,带动驱动齿轮与飞轮齿环啮合。磁极移动式启动机其磁极的结构较为复杂,目前采用此种结构形式的启动机已不多见。 (4)齿轮移动式

第七章 发动机点火及控制

第七章发动机点火及其它控制 第一节发动机点火控制系统 一、点火控制系统的发展 点火系统最基本的原理是通过断电开关控制点火线圈一次电流的大小和断电时间,从而控制点火的能量和时刻,保证发动机汽缸内的混合气彻底燃烧。 在传统的化油器式汽油机中,点火控制系统经过了传统式(触点式)向无触点式发展的过程。在这一过程中,系统的分电器仍一直采用机械式离心和真空提前机构来控制发动机的点火提前角。 随着EFI系统的出现和发展,点火控制系统开始采用电控点火装置(ESA)。它可以使发动机在任何工况下均处于最佳点火提前状态,并实现3方面的功能:通电时间控制,点火提前角控制和爆震控制。 二、电子点火控制系统 现代点火控制系统都是计算机控制的电子控制系统。它可以分为两大类,一类是有分电器的,一类是没有分电器的。但是它们的主要组成及控制原理是相同的。 组成: (1)点火器:包括点火控制电路等、闭合角控制电路、点火器信号电路、功率晶体管及其驱动电路等。 (2)点火线圈及分电器点火线圈采用一次线圈电阻值很小的高能点火线圈。在有分电器的系统中,各汽缸共用一个点火线圈;在无分电器的系统中,将气缸分组,每组共用一个点火线圈,或者是每个气缸独立用一个线圈。 电子点火控制系统的组成如图 (1)ECU的输入信号 ECU的输入信号,除了节气门位置 传感器、输入信号,除了节气门位置传 感器、空气流量计、水温传感器等送来 的信号外,还有曲轴位置传感器送来的 以下信号: 1)G信号 所谓G信号,即上止点参考位置信号。 它的周期对应的曲轴转角等于发动机各 缸工作间隔所对应的曲轴转角(四缸发动机为180度,六缸发动机为120度),G信号的相位所对应的曲轴位置与各组活塞的上止点位置有一定的角度,一般为上止点前10度。 根据G信号,ECU可能准确地计算出曲轴每转1度及一周所用时间和发动机转速。由转速和其它传感器输入的参数,ECU可查表得到点火提前角和点火线圈通电时间。根据计算的1度信号所用时间,可计算出G信号后点火器的通电和断电时刻,最后输出点火控制信号。 在无分电器的点火控制系统中,有的将上止点位置G信号分为G1和G2,两信号相隔180度(曲轴转角360度)。在丰田皇冠汽车无分电器点火控制系统中,G1设定在第六缸上止点附近,G2设定在第一缸上止点附近。 2)Ne信号。 所谓Ne信号,即发动机曲轴转速信号。

汽车电路系统设计要求规范

汽车电路系统设计规范 一、制图标准的制定: 1.1电器符号的定义: 电气图形符号、诊断系统图形符号世界各大公司所用不尽相同,我们根据ISO7639、DIN40900以及美、日主要汽车公司常用符号制定奇瑞公司的电气图形符号库,若有新的器

件没有相应的符号可以根据需要经电器部相关设计人员讨论通过后添加到该库里,以不断丰富更新符号库。

电路图的读图方式一般有正向读图和反向读图两种方法。正向读图一般是设计开发时计算电流分配,负荷计算时使用的一种思路、设计方法;反向读图一般是电路故障检修或优化局部电路时常用的方法,和正向读图方法基本相反。 正向读图法:由电源——电流分配盒——保险丝——控制开关——控制模块输入——控制模块输出——线路分流——用电设备(执行机构)——地。 二、整车电器开发设计输入 根据公司开发车型的市场定位、级别以及市场相关车型比较,电器项目负责人编制出VTS(Vehicle Technical Specify)报公司审批,批准后的VTS表作为整车电器开发的设计输入,各专业组根据VTS要求编写详细的产品功能定义,技术要求。 三、单元电路设计格式规范 3.1功能定义:①根据VTS的要求讨论并制定主要单元电路、电器件零部件组成, 比如空调需要确定蒸发器结构类型、风门控制机构数量、传感器数 量、电子调速器、压缩机类型、冷凝器类型等,并应开始编制初级 BOM表; ②电器件的额定电压、工作电压范围、额定功率的确定; ③额定工作电流、最大工作电流(电机阻转状态)、静态耗电电流的 确定(≤3mA)。 3.2电路原理图:根据各单元的功能确定需要整车输入的哪些信号,输出哪些信号, 信号的类型(触发信号,脉冲频率信号,高电平或者低电平信号), 信号参数。控制方面应该考虑继电器控制还是集成电路控制,对于 CAN-BUS需确定该单元的控制信息,系统状态实时检测信息,以 及故障检测信息需不需要在CAN上公布等。单元电路的设计输出

发动机点火系统设计要点

专业实践报告 课题名称汽车电子点火系统 (2012 年秋季学期) 学院交通与机械工程学院 专业交通运输 班级交通09--1班 姓名杨冬冬 指导教师关醒权刘伟东 2013 年 1 月11 日

汽车电子点火系统 1.设计方案说明 1.1本课题研究的背景、目的和意义 桑塔纳2000型轿车采用的是带分电器式的电子点火系统,其突出特点是将点火系统与燃油喷射系统复合在一起,由一个电控单元(ECU)来控制,结构简单工作可靠。同时,也存在点火控制器故障、霍尔传感器损坏分电器盖、分火间破裂漏电、火花塞间隙增大,烧蚀严重,积油积碳过多等问题,存在一定的改进空间。学校考虑到机械类本科毕业生完全有能力对汽车点火系统的结构进行设计和验证,故提出了本课题的研究。 本课题的研究着重于使机械类本科毕业生以四年来所学的专业理论知识,结合一些课外参考文献,独立设计适用于桑塔纳2000型轿车的点火系统,培养学生独立思考、解决问题的能力和思维创新能力与实践能力,使其理论结合实际,学以致用,为以后走上工作岗位打好坚实的基础。 1.2 设计题目简介及其要求与目标 1.2.1桑塔纳2000型轿车点火系统 桑塔纳2000型轿车采用的是带分电器式的电子点火系统,主要由点火线圈、分电器、火花塞。带抗干扰元件的链接插座,爆燃传感器,点火导线等组成,结构简单,工作可靠,使用和维修比较方便。 1.2.2桑塔纳2000型轿车点火系统所要达到的效果及技术要求 点火系统的基本功用是在发动机各种工况和使用条件下,在气缸内适时、准确、可靠地产生电火花,以点燃可燃混合气,使发动机作功。 (1)能产生足以击穿火花塞两电极间隙的电压 使火花塞两电极之间的间隙击穿并产生电火花所需要的电压,称为火花塞击穿电压。火花塞击穿电压的大小与电极之间的距离(火花塞间隙)、气缸内的压力和温度、电极的温度、发动机的工作状况等因素有关。火花塞间隙越大,电极周围气体中的电子和离子距离越大,受到电场力的作用越小,越不容易发生碰撞的电离,一次要求具有较高的击穿电压方能点火;气缸内的压力越大或者温度越低,所要求的火花塞击穿电压越高;电极的温度对火花塞击穿电压也有影响,当火花塞的电极温度超过混合气的温度时,击穿电压可降低30%~50%。试

发动机点火系统

发动机点火系统 一、概述 发动机点火方式有炽热点火、压缩着火和电火花点火三种,柴油机用压缩着火,汽油机一般采用电火花点火。 1、对点火系统的要求 点火系统应在发动机各种工况和使用条件下,保证可靠而准确的点火。为此,点火装置应满足下列三个基本要求 1.能产生足以击穿火花塞电极间隙的高压电 实践证明,汽车发动机在满负荷低速时需8~10kV的高压,启动时则常需9~17kV的高压,正常点火一般在15kV以上,为了保证点火可靠,考虑各种不同因素的影响,点火高电压必须有一定的储量,所以点火装置产生的电压一般在15~20kV之间,而且高电压的升值要快。 2.火花塞应具有足够的能量 要使混合气可靠点燃,火花塞产生的火花应具有一定的能量,发动机正常工作时,由于混合气压缩终了的温度已接近其自燃温度,因此所需的火花能量很小(1~5MJ)。蓄电池点火系统能发出15~50 MJ的火花能量,足以点燃混合气。但在发动机启动、怠速运转以及节气门急剧打开时,则需较高的火花能量。 启动时,由于混合气雾化不良,废气稀释严重,电极温度低,故所需的点火能量最高。另外,为了提高发动机的经济性,当采用空燃比α=1.2~1.25的稀混合气时,由于稀混合气难于点燃,也需增加火花能量。考虑上述情况,为了保证可靠点火,火花塞一般应保证有50~80MJ 的点火能量,启动时应产生大于100MJ的火花能量。 3.点火时刻应适应发动机的工作情况 因为混合气在发动机的气缸内从开始点火到完全燃烧需要一定的时间(千分之几秒),所以要使发动机产生最大的功率,就不能在压缩行程终了活塞行至上止点才点火,而是需要适当提前一些。 因为发动机气缸的多少,负荷的大小,转速的变化,燃油品质的不同,即是同一发动机由于工况和使用条件的不同等等,都直接影响气缸内混合气的点火时间,为了使发动机能发出最大工功率,点火装置必需适应上述情况的变化实现最佳点火。 2、点火系统的分类 按照点火系统的组成和产生高压的方式不同,发动机的点火系统分为:传统点火系统、半导体点火系统、微机控制点火系统以及磁电机点火系统。 1).传统点火系统 2).半导体点火系统 3).微机控制点火系统 4).磁电机点火系统 二、传统点火系统组成与工作原理 1、传统点火系统的组成 传统点火系统主要由电源、点火开关、点火线圈、配电器、火花塞等组成,如图9-3所示。 (1)电源电源为蓄电池和发电机,供给点火系统所需电能,标称电压一般是12V。 (2)点火开关点火开关的作用是接通或断开点火系统初级电路。 (3)点火线圈点火线圈即变压器,其功用是将蓄电池12V的低压电变为15~20kV的高压电。 (4)配电器配电器的功用是接通和切断低压电路,使点火线圈及时产生高压电,按发动机各气缸的点火顺序送至火花塞;同时可调整点火时间。

汽车启动系统电路图

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 汽车启动系统电路图 启动系统在汽车上是一个很重要的部分,而启动系统电路图是掌握启动系统的一个基础,下面从易到难来介绍启动系统的电路图。 启动系统的组成部分有蓄电池一电源、启动机一动力部分、控制装置。 一、启动机中直流电动机的电路图 直流电动机的工作原理是电磁感应。给电动机输入电流,电动机向外输出转矩,从而启动发动机,其线路图如图1所示。 二、启动机 只有个电动机无法做到启动小齿轮和发动机飞轮平稳进入啮合和脱离啮合的,甚至没有办法去启动发动机,所以在直流电动机的基础上增加了一个电磁开关,线路图如图2。

启动开关闭合后,可移动铁芯在保持和吸拉两个线圈的共同作用下向左移动,带动拨叉使驱动小齿轮向右移动:同时,直流电动机的定子和转子线圈内流经的是小电流,输出转矩小,使驱动小齿轮和飞轮平稳啮合。当铁芯移动到最左侧时,铁芯左端的金属盘同时接触电源接线柱和电动机主接线柱,短路吸拉线圈,电流直接由电源接线柱流到电动机主接线柱,增强了启动时的点火能量和直流电动机的输出转矩,使发动机容易启动。 三、增加了启动继电器的电路图 启动开关直接和电磁开关连接,流经的是大电流。当开关断开时,易产生火花,损害开夭,所以增设了启动继电器,用小电流控制大电流,线路如图3所示。

说明:附加电阻接线柱是启动时短路点火系统中的附加电阻,目的是为了增强启动时的点火能量。 原理:小电流经过启动开关、启动继电器中的线圈控制经触电到启动机的大电流,从而保护启动开关。 四、增设了启动复合继电器的电路图 为了防止驾驶员在启动结束后没有及时断开启动开关,通过保护继电器自动断开线路,线路图如图4所示。

汽车发动机启动原理

一、启动系统的基本组成和作用 现代汽车发动机以电动机作为启动动力。启动系统的基本组成如图3—1所示,由蓄电池、点火开关、启动继电器、启动机等组成。启动系统的功用是通过启动机将蓄电池的电能转换成机械能,启动发动机运转。 1.启动开关接通启动机电磁开关电路,以使电磁开关通电工作。汽油发动机的启动开关与点火开关组合在一起。 2.启动继电器由启动继电器触点(常开型)控制启动机电磁开关电路的通断,启动开关只是控制启动继电器线圈电路,从而保护了启动开关,有单联型(保护启动开关)和复合型(既保护启动开关又保护启动机)。 二、启动机的类型 1.按驱动齿轮啮合方式 (1)惯性啮合式 启动时,依靠驱动齿轮自身旋转的惯性与飞轮齿环啮合。惯性啮合方式结构简单,但工作可靠性较差,现很少采用。 (2)电枢移动式 靠磁极产生的电磁力使电枢作轴向移动,带动固定在电枢轴上的驱动齿轮与飞轮齿环啮合。电枢移动式启动机其结构较为复杂,在欧洲国家生产的柴油车上使用较多。 (3)磁极移动式 靠磁极产生的磁力使其中的活动铁心移动,带动驱动齿轮与飞轮齿环啮合。磁极移动式启动机其磁极的结构较为复杂,目前采用此种结构形式的启动机已不多见。

(4)齿轮移动式 靠电磁开关推动电枢轴孔内的啮合杆而使驱动齿轮与飞轮齿环啮合。齿轮移动式其结构也比较复杂,采用此种结构的一般为大功率的启动机。 (5)强制啮合式 靠电磁力通过拨叉或直接推动驱动齿轮作轴向移动与飞轮齿环啮合。强制啮合式启动机工作可靠、结构也不复杂,因而使用最为广泛。 2. 按传动机构结构 (1)非减速启动机 启动机与驱动齿轮之间直接通过单向离合器传动。一直以来,汽车上使用的启动机其传动机构均为这种机构。 (2)减速启动机 在启动机与驱动齿轮之间增设了一组减速齿轮。减速启动机具有结构尺寸小、重量轻、启动可靠等优点,在一些轿车上应用日渐增多。 学习内容?启动机的组成? 直流电动机的结构? 传动机构? 电磁开关 一、启动机的组成

可控起动传输(CST)系统原理..

可控起动传输(CST)系统 第一节CST系统的结构及工作原理 为了保证重型输送机的平稳、安全、经济、高效运行,必须对其起、制动过渡过程、运行状态及性能进行合理的调节与控制,实行软特性可控起动与制动,延长起、制动时间,减小速度变化率及其引起的动载荷,改善输送机的运行条件,使驱动装置、牵引构件及张紧装置的负载能力与强度得到充分利用,达到最佳的技术状态和经济效果。 美国道奇(DODGE)公司制造的可控起动传输系统(CONTROLLED START TRANS-MISSION SYSTEM,以下简称CST系统)是80年代初研制的机械减速与液压控制相结合的软特性可控传输系统,它具有优良的起动、停车、调速和功率平衡性能,是重型刮板输送机和长大带式输送机上较理想的动力传输装置。 一、主机结构及运动分析 CST系统是一个可进行微机闭环控制的机—液传动系统,其主机部分是一个带有反应盘湿式摩擦离合器的齿轮减速箱,如图4—6—1所示。减速器由输入轴、一对外啮合齿轮(斜齿圆柱齿轮或圆锥齿轮)和一套行星轮系的二级变速装置及与行星轮托架固接的输出轴组成。液控反应盘湿式摩擦离合器(见图4—6—2)由动摩擦片组、静摩擦片组及环行液压控制油缸组成。动摩擦片以圆周外齿嵌于行星轮系环形内齿轮一侧的内环齿中,与内齿轮同步旋转;静摩擦片中心的花键孔,可沿固定于机壳离合器座上的花键轴滑移。 牵引电动机起动时,输入轴与电动机轴同步旋转,经外啮合齿轮驱动太阳轮、行星轮转动。因与带式输送机驱动滚筒轴相联接的CST输出轴上承受很大负载力矩,输出轴和行星轮托架不转动,行星轮只做自转而不绕太阳轮公转,从而带动内齿轮和动摩擦片旋转。这时环形油缸活塞未挤压摩擦片,动、静摩

发动机点火系统的控制思路

发动机点火系统的控制思路 一、点火提前角控制 (1)点火提前角的控制方法 (a )点火提前角控制方法概述 ECU 根据汽油机的各种工况信号对点火时刻控制。 根据发动机的转速和进气压力信号从存贮器数据找到相应的基本点火提前角,根据有关传感器信号值加于修正,得出实际点火提前角。 初始点火提前角是指汽油机在各种工况可能具有的最小提前角。 点火定时控制方法的两种基本类型:启动期间的点火时刻控制;以及 正常运行期间的点火时刻控制。 (b )启动点火定时控制 备用电路控制 在启动期间,当汽油机转速在规定转速(500转/分)以下时,由于进气歧管压力或进气量信号不稳定,点火时刻固定为初始点火提前角。这一提前角由ECU 中的备用电路控制,不需计算处理。 根据水温控制 如日产汽车的ECCS 系统当发动机转速在100转/分以下超低速运行时,把从点火至活塞到达上止点的时间定为常量;转速大于一百时,根据水温选择最佳点火提前角。其中,在零摄氏度以下时应特别加大点火提前角。 (c )正常运行期间的点火时刻控制 发动机在正常运行时,ECU 根据进气歧管压力和转速确定基本点火提前角,然后根据其它相关信号来修正。 基本点火提前角 冷却水温度(度) 点 火提前角

信号;节气门位置信号;燃油选择开关;爆震信号。 怠速触点断开,发动机处于正常工况运行,ECU根据存储器的数据确定基本点火提前角。 具有爆震控制功能的系统,在 ECU中装有专门用于爆震控制的点火时刻控制数据。 怠速触点闭合:ECU接收的信号有:节门位置信号;汽油机转速;空调信号。怠速触点闭合,怠速工况运转,ECU根据汽油机与空调开关的接通确定基本点火提前角;空调开关接通,由于怠速旁通气量和喷油增加,点火提前角增大。 怠速工况基本点火提前角如图 影响点火提前角的主要因素 1、发动机转速 发动机转速提高后,在给定的时间内曲轴转过的角度会更大,而燃烧速度在相对低的转速下是不会跟随变化的,如果想使燃烧在上止点后(ATDC)10°~15°左右完成,那么必须使点火时刻提前。如发动机在850r/min的怠速时,点火提前角为6°~12°,而转速增加到4000r/min时,点火提前角增大到28°。但当转速继续增加时,由于混合气压力与温度的提高及进气扰流的增强,会使燃烧速度加快,为避免发生爆燃,最佳点火提前角的增加速度就要适当减慢。 2、发动机负荷 在轻载和节气门部分开度时,进气管内的真空度较高,吸进进气管和汽缸内的空燃混合气的数量少。这些稀薄的混合气在压缩终了的压力较低,燃烧速度较慢,为了在上止点后(ATDC)10°~15°左右完成燃烧,点火时刻必须提前。 在大负荷时,节气门全开,大量的空燃混合气被吸入汽缸,并且进气管的真空度低,这就会导致燃烧压力增高,燃烧速度加快。在这样的情况下,必须推迟点火提前角,以防止气体在上止点后(ATDC)10°~15°以前全部燃烧完毕。 3、辛烷值 汽油的辛烷值越高,抗爆性越好,点火提前角可适当增大;辛烷值越低,抗爆性越差,点火提前角则应相应减小,否则容易产生爆燃。 修正点火提前角 1、暖机修正 发动机冷机起动后,冷却液温度较低且汽油雾化不良,此时应增大点火提前角。在暖

第六章 发动机点火系统

第六章发动机点火系统 二机构五系统:曲柄连杆机构,配气机构、燃料供给系、润滑系、冷却系、点火系和起动系第一节点火系统概述 1.作用汽油机在压缩接近上止点时,可燃混合气是由火花塞点燃的,从而燃烧对外作 功,为此,汽油机的燃烧室中都装有火花塞。能够在火花塞两电极间产生电火花的全部设备称为发动机点火系 (igniting system)(图6-1)。点火系的功用就是按照气缸的工作顺序定时地在火花塞两电极间产生足够能量的电火花。 图6-1 2.分类 点火系按照组成和产生高压电方法不同,可以分为 1.蓄电池点火系蓄电池或发电机点火线圈和断电器 2.半导体点火系蓄电池或发电机点火线圈和半导体元件 3.磁电机点火系磁电机 3.要求 (1)在火花塞两电极间产生足够高的次级电压。 (2)火花具有一定的能量。 (3)在任何工况下,均获得最佳点火提前角。 (4)汽车发动机的点火系同汽车上的其它电器设备一样采用单线制连接,即一端搭铁。无论是正极搭铁还是负极搭铁,均应保证点火瞬间火花塞中心电极为负,因为,热的金属表面比冷的金属表面容易发射电子,发动机工作时,火花塞的中心电极较侧电极温度高。 第二节蓄电池点火系的组成及工作原理 1.组成(图6-2) 蓄电池点火系主要由: 蓄电池(storage battery)、发电机(generator)、点火开关(igniting switch)、点 火线圈(ignition coil)、断电器(contact breaker)、配电器(distributor)、 电容器(capacitor)、火花塞(spark plug)、高压导线(high tension cable)、阻 尼电阻(suppressor resistor)等组成。

软启动工作原理.docx

软启动工作原理 软启动器电动机的应用 1、软启动器工作原理与主电路图 软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如 三相全控桥式整流电路,主电路图见1图。使用软启动器启动电动机时,晶闸管的输出电压逐渐 增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波软污启染动。器同时还提 供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车 引起的转矩冲击。软启动与软停车的电压曲见线图2,3。 2软启动器的选用 (1)选型:目前市场上常见的软启动器旁有路型、无旁路型、节能型等。根据负 载性质选择不同型号的软启动器。 旁路型:在电动机达到额定转数时,用旁路接触器取代已完成任务的软启动器,降低晶闸 管的热损耗,提高其工作效率。也可以用一台软启动器去启动多台电动机。 无旁路型:晶闸管处于全导通状态,电动机工作于全压方式,忽略电压谐波分量,经常用 于短时重复工作的电动机。 节能型:当电动机负荷较轻时,软启动器自动降低施加于电动机定子上的电压,减少电动 机电流励磁分量,提高电动机功率因数。 (2)选规格:根据电动机的标称功率,电流负载性质选择启动器,软一启般动器容 量稍大于电动机工作电流,还应考虑保护功能是否完备,例如:缺相保护、短路保护、过 载保护、逆序保护、过压保护、欠压保护。等 3、Alt48软启动器的特点 Alt48 软启动器启动时采用专利技术转的矩控制。转矩斜坡上升更快速,损耗更低。具有电 动机和软启动器综合保护功能,能全时连续检测电机电流,提供电机可靠和完整保护,这种保护功能在启动结束后旁路仍能起作用,这是其它软启动器都不具备的。 Alt48 在保持加速力矩的同时,实时计算定子和转子的功率。在整个加速周期连续计算电机 功率因数和定子损耗,通过检测电压和电流来计算功率因数,并扣除定子损耗,得到实际的转子功率和电机力矩。 4Alt48软启动器的应用 设计采用一拖二方案,见4图,即一台软启动器带两台水泵,可以依次启动,停止两台水泵。 一拖二方案主要特点是节约一台软启动器,减少了投资,充分体现了方案的经济性,实用性。

发动机起动系统

起动系统 作用:供给发动机曲轴足够的起动转矩,以便使发动机的曲轴达到必需的起动转速,使发动机进入自行运转的状态,当发动机进入自行运转的状态后,便结束任务立即停止工作 组成:由起动机、电磁开关、控制电路、起动机继电器、点火开关(起动开关)、蓄电池、起动机电路组成。

起动系统 起动机 作用:是由直流电动机产生动力,经传动机构带动发动机曲轴转动,从而实现发动机的起动。也就是利用起动机小齿轮与发动机啮合,以摇转发动机使其能发动:发动机发动后,小齿轮与飞轮必须立刻分离,以免起动机受损。 组成:起动机在起动系统主要由直流串励式电动机、离合机构和控制装置三个部分组成 详细如下: (1)直流串励电动机:作用是将蓄电池输入的电能转换为机械能,产生电磁转矩。直流电动机主要由电枢、磁极、换向器等主要部件构成

1.电枢:电枢是直流电动机的旋转部分,包括换向器、电枢铁芯、电枢绕阻、电枢轴 2.磁极:磁极一般个4个,两对磁极相对交错安装在电动机定子内壳上,低碳钢板制成的机壳也是磁路的一部分。也有用6个磁极的起动机 3.电刷与电刷架:电刷架一般为框式结构,其中正极电刷架与端盖绝缘地固装,负极电刷架直搭铁。电刷置于电刷架中,电刷架上装有弹性较好的盘形弹簧。 (2) 离合机构:作用是将电动机的电磁转矩传递给发动机使其起动,同时又能在发动机起动后自动打滑,保护起动机不致飞散损坏。目前起动机常用的离合机构有滚柱式、摩擦片式和弹簧式. 1摩擦片式离合器: 可以传递较大转矩,并能在超载时自动打滑,但由于摩擦片易磨损,需经常检查调整,其结构也较复杂,所以多用于柴油发动机使用的功率较大的起动机上。(3)控制装置:又称起动开关,其作是用来接通和断开电动机与蓄电池之间的电路,同时还能接人和切断点火线圈的附加电阻。不同类型的汽车上使用的起动机

汽车启动系统电路图

汽车启动系统电路图 欧阳学文 启动系统在汽车上是一个很重要的部分,而启动系统电路图是掌握启动系统的一个基础,下面从易到难来介绍启动系统的电路图。 启动系统的组成部分有蓄电池一电源、启动机一动力部分、控制装置。 一、启动机中直流电动机的电路图 直流电动机的工作原理是电磁感应。给电动机输入电流,电动机向外输出转矩,从而启动发动机,其线路图如图1所示。 二、启动机 只有个电动机无法做到启动小齿轮和发动机飞轮平稳进入啮合和脱离啮合的,甚至没有办法去启动发动机,所以在直流电动机的基础上增加了一个电磁开关,线路图如图2。

启动开关闭合后,可移动铁芯在保持和吸拉两个线圈的共同作用下向左移动,带动拨叉使驱动小齿轮向右移动:同时,直流电动机的定子和转子线圈内流经的是小电流,输出转矩小,使驱动小齿轮和飞轮平稳啮合。当铁芯移动到最左侧时,铁芯左端的金属盘同时接触电源接线柱和电动机主接线柱,短路吸拉线圈,电流直接由电源接线柱流到

电动机主接线柱,增强了启动时的点火能量和直流电动机的输出转矩,使发动机容易启动。 三、增加了启动继电器的电路图 启动开关直接和电磁开关连接,流经的是大电流。当开关断开时,易产生火花,损害开夭,所以增设了启动继电器,用小电流控制大电流,线路如图3所示。 说明:附加电阻接线柱是启动时短路点火系统中的附加电阻,目的是为了增强启动时的点火能量。 原理:小电流经过启动开关、启动继电器中的线圈控制经触电到启动机的大电流,从而保护启动开关。

四、增设了启动复合继电器的电路图 为了防止驾驶员在启动结束后没有及时断开启动开关,通过保护继电器自动断开线路,线路图如图4所示。 工作原理:当发动机启动后,发电机中性点输出电压,使保护继电器中的线圈流过电流,产生磁场,使K2断开,故启动继电器中的线圈形成断路,使K1断开,从而断开启动

汽车启动系工作原理

汽车启动系工作原理 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

汽车启动系统 学习目标: 1.掌握启动机的组成和结构; 2.掌握几种单向离合器的构造和工作过程; 3.掌握电磁控制装置的构造及工作原理; 4.通过对启动机的工作原理、特性、结构组成及控制装置工作过程的了解能够对启动系的一些典型的故障进行检测并排除 学习方法 从了解启动机的启动性能、工作原理和特性出发,掌握启动机的组成和结构特点并详细掌握几种单向离合器的构造、工作原理和电磁控制装置的构造与工作原理。并通过以上系统的学习,对启动系的组成和结构特点有一个全面的认识,再通过对典型车辆启动系的认识做到能够对启动系的一些典型故障进行诊断和排除。 学习内容 1.启动系统的功用和类型与基本组成; 2.启动机的结构; 3.汽车启动系统电路分析; 4.启动机的正确使用与故障诊断; 5.启动系统常见故障的诊断与排除; 学习内容启动系统的基本组成和功用启动机的类型 一、启动系统的基本组成和作用 现代汽车发动机以电动机作为启动动力。启动系统的基本组成如图3—1所示,由蓄电池、点火开关、启动继电器、启动机等组成。启动系统的功用是通过启动机将蓄电池的电能转换成机械能,启动发动机运转。 1.启动开关接通启动机电磁开关电路,以使电磁开关通电工作。汽油发动机的启动开关与点火开关组合在一起。

2.启动继电器由启动继电器触点(常开型)控制启动机电磁开关电路的通断,启动开关只是控制启动继电器线圈电路,从而保护了启动开关,有单联型(保护启动开关)和复合型(既保护启动开关又保护启动机)。 二、启动机的类型 1.按驱动齿轮啮合方式 (1)惯性啮合式 启动时,依靠驱动齿轮自身旋转的惯性与飞轮齿环啮合。惯性啮合方式结构简单,但工作可靠性较差,现很少采用。 (2)电枢移动式 靠磁极产生的电磁力使电枢作轴向移动,带动固定在电枢轴上的驱动齿轮与飞轮齿环啮合。电枢移动式启动机其结构较为复杂,在欧洲国家生产的柴油车上使用较多。 (3)磁极移动式 靠磁极产生的磁力使其中的活动铁心移动,带动驱动齿轮与飞轮齿环啮合。磁极移动式启动机其磁极的结构较为复杂,目前采用此种结构形式的启动机已不多见。 (4)齿轮移动式 靠电磁开关推动电枢轴孔内的啮合杆而使驱动齿轮与飞轮齿环啮合。齿轮移动式其结构也比较复杂,采用此种结构的一般为大功率的启动机。 (5)强制啮合式 靠电磁力通过拨叉或直接推动驱动齿轮作轴向移动与飞轮齿环啮合。强制啮合式启动机工作可靠、结构也不复杂,因而使用最为广泛。 2.按传动机构结构 (1)非减速启动机 启动机与驱动齿轮之间直接通过单向离合器传动。一直以来,汽车上使用的启动机其传动机构均为这种机构。 (2)减速启动机 在启动机与驱动齿轮之间增设了一组减速齿轮。减速启动机具有结构尺寸小、重量轻、启动可靠等优点,在一些轿车上应用日渐增多。 学习内容启动机的组成直流电动机的结构传动机构电磁开关

汽车启动系统电路图

汽车启动系统电路图 启动系统在汽车上是一个很重要的部分,而启动系统电路图是掌握启动系统的一个基础,下面从易到难来介绍启动系统的电路图。 启动系统的组成部分有蓄电池一电源、启动机一动力部分、控制装置。 一、启动机中直流电动机的电路图 直流电动机的工作原理是电磁感应。给电动机输入电流,电动机向外输出转矩,从而启动发动机,其线路图如图1所示。 二、启动机 只有个电动机无法做到启动小齿轮和发动机飞轮平稳进入啮合和脱离啮合的,甚至没有办法去启动发动机,所以在直流电动机的基础上增加了一个电磁开关,线路图如图2。

启动开关闭合后,可移动铁芯在保持和吸拉两个线圈的共同作用下向左移动,带动拨叉使驱动小齿轮向右移动:同时,直流电动机的定子和转子线圈内流经的是小电流,输出转矩小,使驱动小齿轮和飞轮平稳啮合。当铁芯移动到最左侧时,铁芯左端的金属盘同时接触电源接线柱和电动机主接线柱,短路吸拉线圈,电流直接由电源接线柱流到电动机主接线柱,增强了启动时的点火能量和直流电动机的输出转矩,使发动机容易启动。 三、增加了启动继电器的电路图 启动开关直接和电磁开关连接,流经的是大电流。当开关断开时,易产生火花,损害开夭,所以增设了启动继电器,用小电流控制大电流,线路如图3所示。 说明:附加电阻接线柱是启动时短路点火系统中的附加电阻,目的是为了增强启动时的点火能量。 原理:小电流经过启动开关、启动继电器中的线圈控制经触电到启动机的大电流,从而保护启动开关。 四、增设了启动复合继电器的电路图 为了防止驾驶员在启动结束后没有及时断开启动开关,通过保护继电器自动断开线路,线路图如图4所示。

工作原理:当发动机启动后,发电机中性点输出电压,使保护继电器中的线圈流过电流,产生磁场,使K2断开,故启动继电器中的线圈形成断路,使K1断开,从而断开启动机中的电流。在启动开关没有断开的情况下,保护启动机。 以上是启动机中最常用的电路图,掌握了此电路图,为实际的线路连接和启动系统的故障诊断打下一个基础。

消防系统工作原理及控制方式

第一章消防系统工作原理及控制方式 气体灭火系统主要有自动、手动、机械应急手动和紧急启动/停止四种控制方式,但其工作原理却因其灭火剂种类、灭火方式、结构特点、加压方式和控制方式的不同而各不相同,下面列举部分气体灭火系统分别进行介绍。 一、系统工作原理 (一)高压二氧化碳灭火系统、内储压式七氟丙烷灭火系统与惰性气体灭火系统 当防护区发生火灾,产生烟雾、高温和光辐射使烟感、温感、感光等探测器探测到火灾信号,探测器将火灾信号转变为电信号传送到报警灭火控制器,控制器自动发出声光报警并经逻辑判断后,启动联动装置,经过一段时间延时,发出系统启动信号,启动驱动气体瓶组上的容器阀释放驱动气体,打开通向发生火灾的防护区的选择阀,同时打开灭火剂瓶组的容器阀,各瓶组的灭火剂经连接管汇集到集流管,通过选择阀到达安装在防护区内的喷头进行喷放灭火,同时安装在管道上的信号反馈装置动作,将信号传送到控制器,由控制器启动防护区外的释放警示灯和警铃。 另外,通过压力开关监测系统是否正常工作,若启动指令发出,而压力开关的信号未反馈,则说明系统存在故障,值班人员应在听到事故报警后尽快到储瓶间,手动开启储存容器上的容器阀,实施人工启动灭火。 (二)外储压式七氟丙烷灭火系统 控制器发出系统启动信号,启动驱动气体瓶组上的容器阀释放驱动气体,打开通向发生火灾的防护区的选择阀,同时加压单元气体瓶组的容器阀,加压气体经减压进入灭火剂瓶

组,加压后的灭火剂经连接管汇集到集流管,通过选择阀到达安装在防护区内的喷头进行喷放灭火。 二、系统控制方式 气体灭火系统具体控制过程见图3-6-4控制流程图所示。 (一)自动控制方式 本灭火控制器配有感烟火灾探测器和定温式感温火灾探测器。控制器上有控制方式选择锁,当将其置于“自动”位置时,灭火控制器处于自动控制状态。当只有一种探测器发出火灾信号时,控制器即发出火警声光信号,通知有异常情况发生,而不启动灭火装置释放

汽车启动系工作原理

汽车启动系工作原理 1、掌握启动机的组成和结构; 2、掌握几种单向离合器的构造和工作过程; 3、掌握电磁控制装置的构造及工作原理; 4、通过对启动机的工作原理、特性、结构组成及控制装置工作过程的了解能够对启动系的一些典型的故障进行检测并排除学习方法从了解启动机的启动性能、工作原理和特性出发,掌握启动机的组成和结构特点并详细掌握几种单向离合器的构造、工作原理和电磁控制装置的构造与工作原理。并通过以上系统的学习,对启动系的组成和结构特点有一个全面的认识,再通过对典型车辆启动系的认识做到能够对启动系的一些典型故障进行诊断和排除。学习内容 1、? 启动系统的功用和类型与基本组成; 2、启动机的结构; 3、汽车启动系统电路分析; 4、启动机的正确使用与故障诊断; 5、启动系统常见故障的诊断与排除;?学习内容启动系统的基本组成和功用? 启动机的类型 一、启动系统的基本组成和作用现代汽车发动机以电动机作为启动动力。启动系统的基本组成如图32所示,其各部分功用:直流电动机:产生电磁转矩。传动机构:在发动

机启动时,使启动机小齿轮与飞轮齿圈啮合,将启动机转矩传给发动机飞轮;在发动机启动后,使启动机自动脱开飞轮齿 圈。电磁操纵机构:控制启动机的运转和传动机构的啮合与分离。 二、直流电动机的结构汽车用启动电动机一般为直流电动机,主要由磁极、电枢、换向器以及机壳等部件组成。电枢绕组与磁场绕组串联,称此种直流电动机为串励式直流电动机。 1、磁极。由固定在机壳上的磁极铁心和缠绕在铁芯上的磁场绕组组成,磁场绕组所产生的磁极应该是相互交错的。一般采用四个磁极,功率大于 7、35KW的启动机个别采用6个磁极。 2、电枢与换向器。电枢由外圆带槽的硅钢片叠成的铁芯、电枢轴和电枢绕组等组成,启动机工作时,通过电枢绕组和磁场绕组的电流达几百安或更大,因此其磁场绕组和电枢绕组一般采用矩形断面的裸铜线绕制。换向器由许多换向片组成,换向片的内侧制成燕尾形,嵌装在轴套上,其外圆车成圆形。换向片与换向片之间均用云母绝缘。 3、电刷与电刷架。用来联接磁场绕组和电枢绕组的电路,并使电枢轴上产生的电磁力矩保持固定方向。电刷用含铜石墨制成,装在端盖上的电刷架中,通过电刷弹簧保持与换向片之间具有适当的压力。电动机内装有四个电刷架,其中两个电刷架与机壳直接相连构成电路搭铁,称为搭铁电刷架。

相关主题
文本预览
相关文档 最新文档