当前位置:文档之家› 各种信令流程详解

各种信令流程详解

各种信令流程详解
各种信令流程详解

1鉴权一般过程

2位置更新操作(一)____位置更新仅涉及本

VLR

3位置更新操作(二)____位置更新涉及本VLR和HLR(当MS进入新的VLR或MS首次登录,或相关网络数据丢失后,且MS都使用IMSI来标识自己)

4呼叫接续信号流程____移动用户呼叫移动用户(主被叫MS在同一MSC内)(一)

5呼叫接续信号流程____移动用户呼叫移动用户(主被叫MS在同一MSC中)(二)

6呼叫接续流程____挂机过程

7呼叫接续信号流程____固定用户呼叫移动用户(一)

8呼叫接续流程____固定用户呼叫移动用户(二)

VoLTE信令流程详解

V o L T E信令流程详解 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

V O L T E信令流程 VOLTE是基于SIP协议的语音通话,所有与IMS交互的信令全部为SIP信令,在理解VOLTE信令方面必须对SIP信令进行了解,EPC只是做为业务承载体。由于SIP信令是以加密方式传输,SIP信令只有在CN侧和终端侧才能解码,基站CDL无法记录SIP信令,同时CDL无法解码较多NAS层直传消息,所以本文中的信令说明部分不结合CDL信令进行说明注册流程及重要信令详解 SIP提供了发现机制,如果用户要发起和另一个用户的会话,SIP必须发现可到达目的用户的当前主机,注册将记录地址URI和一个或者多个联系地址相关联,这样才能进行呼叫等业务。 严格意义上说,SUBSCRIBE和NOTIFY过程不属于注册过程,但由于该过程在注册完成后紧跟着出现,所以本文将该过程放在注册流程中进行说明。用户的注销过程与注册过程相似,主要就是注销请求中,expire值为0,所以本文中不再进行单独说明,注销过程无SUBSCRIBE信令,是因为UE注册时已有SUBSCRIBE。 信令说明如下: UE进行Attach,建立QCI=9的默认承载,并使用IMSAPN建立PDN连接; 建立立QCI=5的默认承载,用于传送SIP信令; UE通过QCI=5的默认承载向IMS发起注册请求; P-CSCF通过HSS获知用户信息不在数据库中,便向终端代理回送401Unauthorized质询信息,其中包含安全认证所需的令牌; 终端将用户标识和密码根据安全认证令牌加密后,再次用REGISTER消息报告给P-CSCF服务器; P-CSCF将REGISTER消息中的用户信息解密,验证其合法后,IMS核心网将该用户信息登记到数据库中,并向终端返回成功响应消息200OK; 用户向IMS订阅注册事件包 服务器应答订阅成功 IMS服务器发送notify消息,由于订阅的用户已经注册,所以IMS服务器回应 Notify消息中,状态为active,同时携带XML信息 终端发送Notify200表示接收成功 注册过程测试信令载图如下: 注销过程测试信令截图如下: ActivateDefaultEPSBearerContextRequest(QCI=5) 该信令是用于建立QCI=5的默认承载,所有SIP信令都通过QCI=5的承载传输,该信令的内容已在该信令前的RRC重配置中附带下来。 主要说明如下: 该信令中主要是关注QCI等级,必须是QCI=5,才能传输SIP信令,ERABID=6 REGISTER(1STSipRegisterRequest)®ISTER401(Unauthorized) REGISTER信令是用于网络注册,建立关联 主要说明如下: 这是用户的第一个REGISTERREQUST信令,所以鉴权方面部分内容为空,需要网络回应后才能补齐 REGISTER401信令是用于向终端回送401Unauthorized质询信息,其中包含安全认证所需的令牌,令牌对应用户第一个REGISTERREQUST信令中鉴权摘要为空的部分,并指明算法,主要说明如下:

后台RNC信令分析资料剖析

目录 第1章CT工具的基本知识 (4) 1.1CT工具的配置 (4) 1.1.1服务器端配置 (4) 1.1.2客户端配置 (4) 1.1.3单机版使用 (6) 第2章信令分析说明 (7) 2.1 基本知识准备 (7) 2.1.1如何看业务信令 (7) 2.1.2流程中的几个重要概念 (9) 2.2 RRC建立过程的信令分析 (10) 2.2.1 RRC Connection Request信令综述 (10) 2.2.2 RRC Connection Request信令 (11) 2.2.3 Radio Link Setup信令 (13) 2.2.4 Radio Link Setup Response信令 (26) 2.2.5 Radio Link Setup Failure信令 (27) 2.2.6 RRC Connection Setup信令 (28) 2.2.7 Radio Link Restore Indication信令 (37) 2.2.8 RRC Connection SetupComplete信令 (37) 2.2.8 RRC建立过程中常见问题 (38) 2.3初始直传信令分析 (39) 2.3.1 InitialDirectTransfer信令分析 (41) 2.3.2 InitialUEMessage信令分析 (42) 2.3.2 CommonID信令分析 (42) 2.4鉴权过程(可选)信令分析 (43) 2.4.1 DirectTransfer信令分析(图中1) (46) 2.4.2 DownLinkDirectTransfer信令分析(图中2) (46) 2.4.3 UpLinkDirectTransfer信令分析(图中3) (47) 2.4.4 DirectTransfer信令分析(图中4) (47) 2.4.5 鉴权过程中常见问题 (48) 2.5安全模式信令分析 (48) 2.5.1 SecurityModeCommand(Iu口上,CN到RNC) (49) 2.5.2 SecurityModeCommand(Uu口上,RNC到UE) (53)

WCDMA信令分析(详细解释层三信令及涉及常用参数)-信令解码

呼叫信令详解(前后台) 呼叫流程信令图 起呼过程分四个阶段:RRC连接建立,直传信令连接建立,RAB建立,震铃接通建立RRC连接 直传信令连接建立(含鉴权和加密)

RAB建立过程

振铃,接通 RRC建立过程 (1)UE 在取得下行同步后,向NodeB发送SYNC_UL,接收到NodeB 回应的FPACH 信息后,在RACH 信道上向RNC 发送RRC Connection Request 消息,发起RRC 连接建立过程。 (2)RNC 准备建立RRC 连接,分配建立RRC 连接所需要的资源,并发送一条Radio Link Setup Request 消息给NodeB。 (3)NodeB 配置物理信道,在新的物理信道上准备接收UE 消息,并给RNC 发送一条

Radio Link Setup Response 响应消息。 (4)RNC 通过ALCAP 协议,建立Iub 数据传输承载。Iub 数据传输承载通过AAL2 的绑定标识与DCH 绑定在一起。建立Iub 数据传输承载需要NodeB 确认。 (5)(6)通过Downlink Synchronisation 和Uplink Synchronisation. 控制帧,NodeB 与RNC 为Iub 数据传输承载建立同步,此后NodeB 开始DL 发送。(7)RNC 在FACH 信道上发送RRC Connection Setup 消息给UE。 (8)UE 在DCCH 上发送RRC Connection Setup Complete 消息给RNC,RRC 连接建立完成 建立初始直传/上下行直传 (9)UE 在DCCH 上给RNC 发送一条Initial Direct Transfer(CM Service Request)消息,该消息包括了UE 请求的业务类型等信息,例如12.2K语音业务。 (10)RNC 发起初始到CN 的信令连接,并发送一条Initial UE Message 消息给CN,通知CN 关于UE 请求的业务等内容。 通过初始直接传输过程后,可使用该信令连接传输UE 和CN 之间的NAS 消息。 (11)CN 发送RANAP 消息Direct Transfer (Authentication Request)到RNC,要求对UE 进行鉴权。 (12)RNC 发送RRC Downlink Direct Transfer(Authentication Request)消息给UE。NAS 消息由UTRAN 透明的传输到UE (13)UE 发送RRC Uplink Direct Transfer Message(Authentication Response)消息给RNC,告知网络侧UE 已经按照鉴权要求完成了鉴权。 (14)RNC 发送RANAP 消息Direct Transfer 给CN,将UE 的NAS消息转发给CN。NAS 消息被透明的传输到UTRAN。 安全模式控制 (15)CN 发送RANAP 消息Security Mode Command 给RNC,要求终端进行安全模式控制。 (16)RNC 在下行DCCH 上发送RRC Security Mode Command 给UE,开始/重启加密过程。 (17)UE 成功应用新的加密方式后,在上行DCCH 上发送RRC SecurityMode Complete 给RNC (18)RNC 发送RANAP 消息Security Mode Complete 给CN,双方完成安全模式控制。建立RAB (19)(20)(21)(22)上行和下行的直接传输过程,NAS 要求传输数据, UE 向网络侧说明Bearer Capability 以及Called Number 等内容。 (22)CN 向RNC 发送RANAP 消息Common ID,告知RNC 该UE 的IMSI。 (23)CN 向RNC 发送RANAP 消息Radio Access Bearer Assignment Request ,发起RAB

七号信令解码分析毕业论文

七号信令解码分析毕业论文 第一章引言 第一节开发背景 七号信令网是电信网的三大支撑网之一,是电信网的重要组成部分,其应用十分广泛。到目前为止,我国已经建立了由高级信令转接点(HSTP)、低级信令转接点(LSTP)和大量的信令点(SP)组成的三级七号信令网,七号信令网真正成为电信网的神经网和支撑网。为了保证七号信令网的正常高效运行,七号信令集中监测系统作为对七号信令网进行集中监测和管理的工具就显得格外重要。协议分析是七号信令监测平台中实时和历史数据分析的一个重要组成部分,它对获得完整的信令规程分析和实现网络故障精确定位具有重要意义,而无论什么样的信令消息,进入监测系统的第一个环节就是要被系统解码,消息解码的正确和完整与否对监测系统来说就显得非常重要。本文根据《中国国网NO.7信号方式技术规》对协议分析的要求,分析和介绍消息解码的原理和实现方法!由于条件所限我们无法从实际的网络环境中提取数据,因此,我们从后台数据库提取数据来模拟实际的网络环境,我认为完全可以通过数据库来存放从实际网络环境中得到的信令信息,然后通过我们的软件对消息进行解码分析,这并不影响我们的软件的使用围! 第二节软件实现的功能

本软件的名称是:《七号信令的消息分析(TUP部分)》。该软件能根据从数据库中所提取到的信令数据根据NO.7信号方式TUP技术规进行解码分析。通过该软件可以把TUP的所有的消息格式进行分析从而可以据此满足电信网络对七号信令协议测试和详细解码实现快速定位故障的需要。 第三节开发工具简介 为了实现以上功能我使用了VB作为我的开发工具。VB是微软公司开发的基于windows95/98/NT平台的32位程序设计开发平台,其最大优点是简单易学,使用它可以开发出高效,标准的Windows应用程序,它面向对象的特点,丰富的控件都为大型软件的开发提供了方便,但它的缺点也是显而易见的,正因为它的简单,在面向底层的实现方面有所欠缺,如指针,位操作等,但这不足以掩饰它是一个优秀的软件开发工具。 第四节本次课题所完成的工作 在本次毕业设计当中完成这个课题的是两个人,我的主要工作是对从数据库中提取到的数据进行解码分析,并利用伙伴给出的显示方法进行显示。

LTE信令经过流程图(端到端平台)

TDD-LTE 基本信令流程图

1 概述 本文主要针对TD-LTE端到端信令流程图进行分解,为端到端平台提供分析流程呈现依据。由于部分流程无S1口信令支撑,当前根据相关文档进行的绘制,后续具备条件后进行补充调整。

2 TDD-LTE网络结构概述 LTE的系统架构分成两部分,包括演进后的核心网EPC(MME/S-GW)和演进后的接入网E-UTRAN。演进后的系统仅存在分组交换域。 LTE接入网仅由演进后的节点B(evolved NodeB)组成,提供到UE的E-UTRA控制面与用户面的协议终止点。eNB之间通过X2接口进行连接,并且在需要通信的两个不同eNB之间总是会存在X2接口。LTE接入网与核心网之间通过S1接口进行连接,S1接口支持多—多联系方式。 与3G网络架构相比,接入网仅包括eNB一种逻辑节点,网络架构中节点数量减少,网络架构更加趋于扁平化。扁平化网络架构降低了呼叫建立时延以及用户数据的传输时延,也会降低OPEX与CAPEX。 由于eNB与MME/S-GW之间具有灵活的连接(S1-flex),UE在移动过程中仍然可以驻留在相同的MME/S-GW上,有助于减少接口信令交互数量以及MME/S-GW的处理负荷。当MME/S-GW与eNB之间的连接路径相当长或进行新的资源分配时,与UE连接的MME/S-GW 也可能会改变。 E-UTRAN

2.1 EPC 与E-UTRAN 功能划分 与3G 系统相比,由于重新定义了系统网络架构,核心网和接入网之间的功能划分也随之有所变化,需要重新明确以适应新的架构和LTE 的系统需求。针对LTE 的系统架构,网络功能划分如下图: eNodeB 功能: 1) 无线资源管理相关的功能,包括无线承载控制、接纳控制、连接移动 性管理、上/下行动态资源分配/调度等; 2) IP 头压缩与用户数据流加密; 3) UE 附着时的MME 选择; 4) 提供到S-GW 的用户面数据的路由; 5) 寻呼消息的调度与传输; 6) 系统广播信息的调度与传输; 7) 测量与测量报告的配置。 MME 功能: 1) 寻呼消息分发,MME 负责将寻呼消息按照一定的原则分发到相关的 eNB ; 2) 安全控制; E-UTRAN

LTE 空口信令流程详解

LTE空口信令流程详解以及相关优化案例汇总1、附着信令流程 1.1 、Attach附着信令流程 (统计时延:红色的为开始和结束信令) EPS MM Attach request EPS MM Unknown(0x0734) UL CCCH rrcConnectionRequest DL CCCH rrcConnectionSetup UL DCCH rrcConnectionSetupComplete DL DCCH rrcConnectionReconfiguration DL DCCH dlInformationTransfer UL DCCH rrcConnectionReconfigurationComplete EPS MM Security protected NAS message EPS MM Authentication request EPS MM Authentication response EPS MM Unknown(0x077B) UL DCCH ulInformationTransfer DL DCCH dlInformationTransfer EPS MM Security protected NAS message EPS MM Security mode command EPS MM Security mode complete EPS MM Unknown(0x0790) UL DCCH ulInformationTransfer DL DCCH ueCapabilityEnquiry UL DCCH ueCapabilityInformation DL DCCH securityModeCommand DL DCCH rrcConnectionReconfiguration UL DCCH rrcConnectionReconfigurationComplete EPS MM Security protected NAS message EPS MM Attach accept EPS SM Activate default EPS bearer context request EPS SM Activate default EPS bearer context accept EPS MM Attach complete EPS MM Unknown(0x072D) UL DCCH ulInformationTransfer DL DCCH rrcConnectionReconfiguration UL DCCH rrcConnectionReconfigurationComplete

TDLTE信令流程及信令解码

T D L T E信令流程及信令 解码 Document number:BGCG-0857-BTDO-0089-2022

TD-LTE信令流程及信令解码 ()

本文主要就PS业务建立流程和LTE系统内切换的信令及信令解码进行重点IE分析,并加以标注。所有信令为eNB侧跟踪的信令。 1.PS业务建立流程: 1.1RRC Connection Request UE上行发送一条RRC Connection Request消息给eNB,请求建立一条RRC连接,该消息携带主要IE有: -ue-Identity :初始的UE标识。如果上层提供S-TMSI,侧该值为S-TMSI;否则从0…240-1中抽取一个随机值,设置为ue-Identity。

establishmentCause :建立原因。该原因值有emergency---拨打紧急号码, HighPriorityAccess---高优先级接入,mt-access--被叫接入,mo-Signalling--发送信令时,mo-Data---发送数据时,DelayTolerantAccess-v1020---R10中新增原因,延迟容忍接入。其中“mt”代表移动终端,“mo”代表移动始端。 信令解码如下: -RRC-MSG : |_msg : |_struUL-CCCH-Message : |_struUL-CCCH-Message : |_message : |_c1 : |_rrcConnectionRequest : |_criticalExtensions : |_rrcConnectionRequest-r8 : |_ue-Identity : | |_randomValue : ----'00'B(31 49 7B 78 C3 ) ---- |_establishmentCause : ---- highPriorityAccess(1) |_spare : ---- '0'B(00 ) 04 53 14 97 b7 8c 32 UE 初始标识,此处 因为上层没有提供 S-TMSI,所以为随机 建立原因,此处highPriorityAc

编解码流程

目录 1 编解码流程 (2) 1.1 编码流程 (2) 1.2 PES、TS结构 (3) PES结构分析(ES打包成PES) (3) TS结构:(PES经复用器打包成TS): (4) 2 解码流程 (5) 2.1 获取TS中的PAT (5) 2.2 获取TS中的PMT (6) 2.3 分流过滤 (6) 2.4 解码 (7) 3 DVB和ATSC制式 (7) 3.1 DVB和ATSC的区别 (7) 3.2 DVB和ATSC的SI (8)

1编解码流程 1.1编码流程 图1-1 ES:原始码流,包含视频、音频或数据的连续码流。 PES:打包生成的基本码流,是将基本的码流ES流根据需要分成长度不等的数据包,并加上包头就形成了打包的基本码流PES流,可以是不连续的。 TS:传输流,是由固定长度为188字节的包组成,含有独立时基的一个或多个节目,适用于误码较多的环境。 PS:节目流. TS流与PS流的区别在于TS流的包结构是固定长度的,而PS 流的包结构是可变长度的。在信道环境较为恶劣,传输误码较高时,一般采用TS码流;而在信道环境较好,传输误码较低时,一般采用PS码流。TS码流具有较强的抵抗传输误码的能力。

最后经过64QAM调制及上变频形成射频信号在HFC网中传输,在用户终端经解码恢复模拟音视频信号。 1.2PES、TS结构 PES结构分析(ES打包成PES) ES是直接从编码器出来的数据流,可以是编码过的视频数据流,音频数据流,或其他编码数据流的统称。每个ES都由若干个存取单元(AU)组成,每个AU实际上是编码数据流的显示单元,即相当于解码的1幅视频图像或1个音频帧的取样。 ES流经过PES打包器之后,被转换成PES包。PES包由包头和payload组成。 打包时,加入显示时间标签(Presentation Time-Stamp,PTS),解码时间标签(Decoding Time-Stamp,DTS)及段内信息类型等标志信

GSM信令分析及流程详解大全

Layer 3信令分析及流程详解汇编Layer 3信令是看网络运行情况的信息层,从第三层可以看到网络的各种动作:如:呼叫流程、拥塞、用户忙、位置更新等,并且可以对路测中的各种问题如掉话、切换失败等网络事件的原因进行准确的分析。 系统信息一般有8个类型,分别是1、2、3、4、5、6、7、8,Type 1~4只出现在待机状态下,Type 5~6只出现在通话状态下,明白这点,对以后的分析至关重要。其中2中含有:2、2bis、2ter, 5中含有5、5bis、5ter,所以总共有12种系统信息,系统信息1仅用于跳频,所以称为选择项。其中1、2、3、4、 2bis、 2ter 、7、8都在BCCH上发送,由IDLE模式下的移动台接收。5、5bis、5ter、6在SACCH上发送,由ACTIVE模式下的移动台接收。一般来说所有系统信息在连续的8个51复帧中发送完,如下图示: 上图中的TC表示复帧序列号,可以看出,当TC=4、5时,发送的内容是可选的,其它是固定的。 TC=0固定发送跳频信息,当出现上图示的1(3)时,表示跳频时发类型1,不跳频时发类型3 当类型4中发送的关于小区重选信息不够完整时,由类型7、8补充。且在TC=7、3时发送(上图示) 对于类型5、6在下行的SACCH上发送,并没有复帧规范,除非切换完成后要立即发送类型5、6。 1、System Information Type1

说明:系统信息类型 1 (频率信息) 此类型仅用于跳频时,发送内容为: 第一、小区信道描述。用于通知移动,小区采用的频带与可以供跳频用的频点。对于GSM900与GSM1800采用的格式是不同的。对于GSM900: 有一个BIT MAP 0(比特位图)用于描述两方面信息,分别为: CA-NO,取值分别为:0、1、2,代表,GSM900、GSM1800、GSM1900。 CA-ARFCN,采用的有效射频频点,当为GSM900,将有一个相应于124个频点的124位图,当某个频点被采用时,相应的比特位被置为1,否则将被置为0. 对于GSM1800情况点不同。由于频点太多,不用位图,而用别的编码方式,FORMAD-IND=?来描述编码方式,后面跟一串编码比特来表示。 第二、RACH控制参数,描述的两个数据为;ACC、EC,ACC称为接入控制等级,分为0-9与 11-15,0-9表示普通级,所有移动台被定义为0-9,11-15为优先级,10表示EC,如果此位取0,表示所有移动台允许进行紧急呼叫,取1时,只有11-15优先级的移动台可以进行紧急呼叫。 CB——小区禁止标志,用一个比特表示。

TDLTE信令流程及信令解码比超详细还详细

TD-LTE信令流程及信令解码 (2013.03) 本文主要就PS业务建立流程和LTE系统内切换的信令及信令解码进行重点IE分析,并加以标注。所有信令为eNB侧跟踪的信令。 1.PS业务建立流程: 1.1RRC Connection Request UE上行发送一条RRC Connection Request消息给eNB,请求建立一条RRC连接,该消息携带主要IE有: -ue-Identity :初始的UE标识。如果上层提供S-TMSI,侧该值为S-TMSI;否则从0…240-1中抽取一个随机值,设置为ue-Identity。 -establishmentCause :建立原因。该原因值有emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, spare3, spare2, spare1。其中“mt”代表移动终端,“mo”代表 移动始端。 信令解码如下: -RRC-MSG : |_msg : |_struUL-CCCH-Message : |_struUL-CCCH-Message : |_message : |_c1 : |_rrcConnectionRequest : |_criticalExtensions : |_rrcConnectionRequest-r8 : |_ue-Identity : |_establishmentCause : ---- highPriorityAccess(1) UE初始标识,此处因为上层没有提供S-TMSI,所以为随机值。 建立原因,此处 highPriorityAccess 指的是AC11~AC15

TD-LTE信令流程及信令解码

TD-LTE信令流程及信令解码 TD-LT信令流程及信令解码 TD-LTE信令流程及信令解码 ,2013.03, 第1页共81页 TD-LT信令流程及信令解码 本文主要就PS业务建立流程和LTE系统内切换的信令及信令解码进行重点IE 分析,并加以标注。所有信令为eNB侧跟踪的信令。 1. PS业务建立流程, 1.1 RRC Connection Request UE上行发送一条RRC Connection Request消息给eNB,请求建立一条RRC连接,该消息携带主要IE有,

- ue-Identity :初始的UE标识。如果上层提供S-TMSI,侧该值为S-TMSI,否则从 第2页共81页 TD-LT信令流程及信令解码 400…2-1中抽取一个随机值,设置为ue-Identity 。 - establishmentCause :建立原因。该原因值有emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, spare3, spare2, spare1。其中“mt”代表移动终 端,“mo”代表移动始端。 信令解码如下, -RRC-MSG : |_msg : |_struUL-CCCH-Message : |_struUL-CCCH-Message : |_message : |_c1 : UE初始标识,此处因为 |_rrcConnectionRequest : |_criticalExtensions : 上层没有提供S-TMSI,所 |_rrcConnectionRequest-r8 : |_ue-Identity : 以为随机值。 | |_randomValue : ---- '0011000101001001011110110111100011000011'B(31 49 7B 78 C3 ) ----

层3信令分析及详解

Layer 3信令分析及流程详解汇编

Layer 3信令是看网络运行情况的信息层,从第三层可以看到网络的各种动作:如:呼叫流程、拥塞、用户忙、位置更新等,并且可以对路测中的各种问题如掉话、切换失败等网络事件的原因进行准确的分析。 系统信息一般有8个类型,分别是1、2、3、4、5、6、7、8,Type 1~4只出现在待机状态下,Type 5~6只出现在通话状态下,明白这点,对以后的分析至关重要。其中2中含有:2、2bis、2ter,5中含有5、5bis、5ter,所以总共有12种系统信息,系统信息1仅用于跳频,所以称为选择项。其中1、2、3、4、2bis、2ter 、7、8都在BCCH上发送,由IDLE模式下的移动台接收。5、5bis、5ter、6在SACCH上发送,由ACTIVE模式下的移动台接收。一般来说所有系统信息在连续的8个51复帧中发送完,如下图示: 上图中的TC表示复帧序列号,可以看出,当TC=4、5时,发送的内容是可选的,其它是固定的。 TC=0固定发送跳频信息,当出现上图示的1(3)时,表示跳频时发类型1,不跳频时发类型3 当类型4中发送的关于小区重选信息不够完整时,由类型7、8补充。且在TC=7、3时发送(上图示) 对于类型5、6在下行的SACCH上发送,并没有复帧规范,除非切换完成后要立即发送类型5、6。 1、System Information Type1

说明:系统信息类型1 (频率信息) 此类型仅用于跳频时,发送内容为: 第一、小区信道描述。用于通知移动,小区采用的频带与可以供跳频用的频点。对于GSM900与GSM1800采用的格式是不同的。对于GSM900: 有一个BIT MAP 0(比特位图)用于描述两方面信息,分别为: CA-NO,取值分别为:0、1、2,代表,GSM900、GSM1800、GSM1900。 CA-ARFCN,采用的有效射频频点,当为GSM900,将有一个相应于124个频点的124位图,当某个频点被采用时,相应的比特位被置为1,否则将被置为0. 对于GSM1800情况点不同。由于频点太多,不用位图,而用别的编码方式,FORMAD-IND=?来描述编码方式,后面跟一串编码比特来表示。 第二、RACH控制参数,描述的两个数据为;ACC、EC,ACC称为接入控制等级,分为0-9与11-15,0-9表示普通级,所有移动台被定义为0-9,11-15为优先级,10表示EC,如果此位取0,表示所有移动台允许进行紧急呼叫,取1时,只有11-15优先级的移动台可以进行紧急呼叫。 CB——小区禁止标志,用一个比特表示。

信令流程与GT翻译对应关系详解

信令流程与GT翻译详解 MSC与HLR、MSC间进行通信,用到MTP、SCCP、TCAP、CAP各层协议栈,其中MTP层只识别各设备的信令点,SCCP层只识别MSC/VLR/GCR/SSP、HLR/AuC、SCP、SMSC等各个网元的设备识别码(俗称设备号),IMSI、MSISDN等。所以如果要实现MSC与HLR、MSC、SCP(智能网)等网元的通讯(信令流程传递的过程)。就要把SCCP层识别的MSC/VLR/GCR/SSP、HLR/AuC、SCP、SMSC设备识别码、IMSI、MSISDN翻译成相应网元信令点,实现个网元之间的通信和业务通信,即所谓的GT翻译(GT指向)。如下图所示即各个网元间的协议通信模型。 下面用位置更新流程中使用的IMSI,被叫分析流程中使用的MSISDN以及在各网元传递消息时使用的MSC/VLR/GCR/SSP、HLR/AuC、SCP、SMSC识别码,结合信令流程特点分析各网元间的GT翻译(即把各类转换成相应设备的信令点)是如何实现的。

图1:新用户开机位置更新与相关号码GT 翻译对应关系流程分析 1、新用户第一次开机,收到该小区的广播消息中携带的LAI+CGI 值,向网络侧发起位置更新请求消息,消息中携带IMSI 号码,LAI+CGI 信息。 2、MSC/VLR 根据手机上报的IMSI 号码,进行GT 翻译,找到该IMSI 所对应的归属HLR 信令点。并存储移动台的LAI (IMSI 号码对HLR 信令点的GT 翻 译) 、MSC 根据IMSI 翻译出的HLR 信令点向HLR 请求识别号,IMSI 、MSISDN 号码 4、HLR 记录该MSC/VLR 识别码,并建立该移动台IMSI 、MSISDN 号码与 MSC/VLR 识别码的对应关系。以便进行语音呼叫。(即移动台完成了HLR 里的位置登记) 图2 :跨局位置更与相关号码对应关系流程分析 1、移动台漫游到MSC/VLR (2)局,收到该小区BCCH 信道广播消息中携带的LAI+CGI 值,发现与本移动台存储的LAI 值不符,触发位置更新请求,向MSC/VLR (2)请求位置更新,消息中携带该移动台的IMSI 号码 2、MSC/VLR (2)根据移动台上报的IMSI 号码,进行GT 翻译,找到该IMSI 所对应的归属HLR 信令点。并存储移动台的LAI 、MSC (2)向HLR 请求该用户的用户MSC/VLR IMSI 、MSISDN 号码 4、HLR 记录该MSC/VLR (2 )识别码,并建立该移动台IMSI 、MSISDN 号码与(2)识别码的对应关系。以5、HLR 把该MSC/VLR (2)识别号码翻译成MSC/VLR (2)的信令点,找到该MSC/VLR (2),向MSC/VLR 插入该用户的用户数据。并在消息中携带该HLR 的识别号。 6、MSC/VLR (2)把HLR 识别号码翻译成HLR 信令点,向HLR 发送插入数据响应消息8、HLR 5、HLR 把该MSC/VLR 翻译成MSC/VLR 的信令点,找到该MSC/VLR ,向MSC/VLR 插入该用户的用户数据(HLR 中需要做的MSC/VLR 识别号与 MSC/VLR 信令点的GT 翻译) 7、HLR 根据记录的MSC/VLR (1)识别号,翻译成MSC/VLR (1)的信令点,向MSC(1)发送删除用户数据的消息。消息中携带HLR 识别号。

TDLTE信令流程及信令解码详解

TD-LTE信令流程及信令解码 本文主要就PS业务建立流程和LTE系统内切换的信令及信令解码进行重点IE分析,并加以标注,所有信令为eNB侧跟踪的信令。 PS业务建立流程: 1.1RRC Connection Request UE上行发送一条RRC Connection Request消息给eNB,请求建立一条RRC连 接,该消息携带主要IE有: -ue-Identity :初始的UE标识。如果上层提供S-TMSI,侧该值为S-TMSI; 否则从0…240-1中抽取一个随机值,设置为ue-Identity。 -establishmentCause:建立原因。该原因值有emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, spare3, spare2, spare1。其中“mt”代表移动终端,“mo”代表移动始端。 信令解码如下: -RRC-MSG : |_msg : |_struUL-CCCH-Message : |_struUL-CCCH-Message : |_message : |_c1 : |_rrcConnectionRequest : |_criticalExtensions : |_rrcConnectionRequest-r8 : |_ue-Identity : |_establishmentCause : ---- highPriorityAccess(1) |_spare : ---- '0'B(00 ) 04 53 14 97 b7 8c 32 1.2RRC Connection Setup UE初始标识,此处因为上层没有提供S-TMSI,所以为随机值。 建立原因,此处 highPriorityAcces s指的是AC11~AC15

GSM信令分析及流程详解大全

Layer 3信令分析及流程详解 汇编 Layer 3信令是看网络运行情况的信息层,从第三层可以看到网络的各种动作:如:呼叫流程、拥塞、用户忙、位置更新等,并且可以对路测中的各种问题如掉话、切换失败等网络事件的原因进行准确的分析。 系统信息一般有8个类型,分别是1、2、3、4、5、6、7、8,Type 1~4只出现在待机状态下,Type 5~6只出现在通话状态下,明白这点,对以后的分析至关重要。其中2中含有:2、2bis、2ter, 5中含有5、5bis、5ter,所以总共有12种系统信息,系统信息1仅用于跳频,所以称为选择项。其中1、2、3、4、 2bis、 2ter 、7、8都在BCCH上发送,由IDLE模式下的移动台接收。5、5bis、5ter、6在SACCH上发送,由ACTIVE模式下的移动台接收。一般来说所有系统信息在连续的8个51复帧中发送完,如下图示:上图中的TC表示复帧序列号,可以看出,当TC=4、5时,发送的内容是可选的,其它是固定的。 TC=0固定发送跳频信息,当出现上图示的1(3)时,表示跳频时发类型1,不跳频时发类型3 当类型4中发送的关于小区重选信息不够完整时,由类型7、8补充。且在TC=7、3时发送(上图示) 对于类型5、6在下行的SACCH上发送,并没有复帧规范,除非切换完成后要立即发送类型5、6。 1、System Information Type1 说明:系统信息类型 1 (频率信息) 此类型仅用于跳频时,发送内容为: 第一、小区信道描述。用于通知移动,小区采用的频带与可以供跳频用的频点。对于GSM900与GSM1800采用的格式是不同的。对于GSM900: 有一个BIT MAP 0(比特位图)用于描述两方面信息,分别为: CA-NO,取值分别为:0、1、2,代表,GSM900、GSM1800、GSM1900。 CA-ARFCN,采用的有效射频频点,当为GSM900,将有一个相应于124个频点的124位图,当某个频点被采用时,相应的比特位被置为1,否则将被置为0.

非常详细的LTE信令流程

LTE信令流程

目录 第一章协议层与概念 (5) 1.1控制面与用户面 (5) 1.2接口与协议 (5) 1.2.1NAS协议(非接入层协议) (7) 1.2.2RRC层(无线资源控制层) (7) 1.2.3PDCP层(分组数据汇聚协议层) (8) 1.2.4RLC层(无线链路控制层) (8) 1.2.5MAC层(媒体接入层) (9) 1.2.6PHY层(物理层) (10) 1.3空闲态和连接态 (12) 1.4网络标识 (13) 1.5承载概念 (14) 第二章主要信令流程 (16) 2.1 开机附着流程 (16) 2.2随机接入流程 (19) 2.3 UE发起的service request流程 (23) 2.4寻呼流程 (26) 2.5切换流程 (27) 2.5.1 切换的含义及目的 (27) 2.5.2 切换发生的过程 (28) 2.5.3 站内切换 (28) 2.5.4 X2切换流程 (30) 2.5.5 S1切换流程 (32) 2.5.6 异系统切换简介 (34) 2.6 CSFB流程 (35) 2.6.1 CSFB主叫流程 (36) 2.6.2 CSFB被叫流程 (37) 2.6.3 紧急呼叫流程 (39) 2.7 TAU流程 (40) 2.7.1 空闲态不设置“ACTIVE”的TAU流程 (41)

2.7.2 空闲态设置“ACTIVE”的TAU流程 (43) 2.7.3 连接态TAU流程 (45) 2.8专用承载流程 (46) 2.8.1 专用承载建立流程 (46) 2.8.2 专用承载修改流程 (48) 2.8.3 专用承载释放流程 (50) 2.9去附着流程 (52) 2.9.1 关机去附着流程 (52) 2.9.1 非关机去附着流程 (53) 2.10 小区搜索、选择和重选 (55) 2.10.1 小区搜索流程 (55) 2.10.1 小区选择流程 (56) 2.10.3 小区重选流程 (57) 第三章异常信令流程 (60) 3.1 附着异常流程 (61) 3.1.1 RRC连接失败 (61) 3.1.2 核心网拒绝 (62) 3.1.3 eNB未等到Initial context setup request消息 (63) 3.1.4 RRC重配消息丢失或eNB内部配置UE的安全参数失败 (64) 3.2 ServiceRequest异常流程 (65) 3.2.1 核心网拒绝 (65) 3.2.2 eNB建立承载失败 (66) 3.3 承载异常流程 (68) 3.3.1核心网拒绝 (68) 3.3.2 eNB本地建立失败(核心网主动发起的建立) (68) 3.3.3 eNB未等到RRC重配完成消息,回复失败 (69) 3.3.4 UE NAS层拒绝 (70) 3.3.5上行直传NAS消息丢失 (71) 第四章系统消息解析 (72) 4.1 系统消息 (73) 4.2 系统消息解析 (74) 4.2.1 MIB (Master Information Block)解析 (74) 4.2.2 SIB1 (System Information Block Type1)解析 (75) 4.2.3 SystemInformation消息 (77) 第五章信令案例解析 (83) 5.1实测案例流程 (84)

TD-LTE呼叫信令流程分析

TD-LTE呼叫信令流程分析2011年评审通过

1文档介绍 1.1 文档目的 预期的读者是ENODEB软件工程师、软件测试工程师以及网规网优人员。 1.2 文档范围 本文分析了SERVICE REQUEST、专用承载建立、修改和释放过程中涉及的各条消息以及每条消息中包含的IE。 1.3 参考资料 【1】LTE_call_processing_entity_msg_flow_zengzhaohui.vsd 【2】3GPP TS 36.413 S1 Application Protocol (S1AP)(Release 9) 【3】3GPP TS 24.301 Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS) (Release 9) 【4】3GPP TS 36.331 Radio Resource Control (RRC) (Release 9) 1.4 术语和缩略语定义 略。

2公用子流程 2.1.1RRC连接建立 2.1.1.1 RRC连接建立相关流程 图 2-1: RRC连接的成功建立流程 图2-2: RRC连接建立,网络侧发起拒绝 2.1.1.2 关键消息 RRCConnectionRequest RRCConnectionRequest消息用于请求建立RRC连接。该消息的一些具体信息为: 信令承载: SRB0 RLC-SAP:TM 逻辑信道:CCCH 消息的主要IE:第四节所附EXCEL文档 RRCConnectionSetup RRCConnectionSetup消息用于建立SRB1。该消息的一些具体信息为: 信令承载: SRB0 RLC-SAP:TM 逻辑信道:CCCH 消息的主要IE:第四节所附EXCEL文档 RRCConnectionSetupComplete RRCConnectionSetupComplete消息表示成功建立RRC连接。该消息的一些具体信息为:

TD-LTE信令流程及信令解码 (1)

TD-L T信令流程及信令解码 TD-LTE信令流程及信令解码 (2013.03) 第1页共81页

TD-L T 信令流程及信令解码 第2页 共81页 本文主要就PS 业务建立流程和L TE 系统内切换的信令及信令解码进行重点IE 分析,并加以标注。所有信令为eNB 侧跟踪的信令。 1. PS 业务建立流程: 1.1 RRC Connection Request UE 上行发送一条RRC Connection Request 消息给eNB,请求建立一条RRC 连接,该消息携带主要IE 有: - ue-Identity :初始的UE 标识。如果上层提供S-TMSI ,侧该值为S-TMSI ;否则从

TD-L T 信令流程及信令解码 第3页 共81页 0…240-1中抽取一个随机值,设置为ue-Identity 。 - establishmentCause :建立原因。该原因值有emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, spare3, spare2, spare1。其中“mt”代表移动终端,“mo”代表移动始端。 信令解码如下: -RRC-MSG : |_msg : |_struUL-CCCH-Message : |_struUL-CCCH-Message : |_message : |_c1 : |_rrcConnectionRequest : |_criticalExtensions : |_rrcConnectionRequest-r8 : |_ue-Identity : | |_randomV alue : ----'0011000101001001011110110111100011000011'B(31 49 7B 78 C3 ) ---- |_establishmentCause : ---- highPriorityAccess(1) |_spare : ---- '0'B(00 ) 04 53 14 97 b7 8c 32 1.2 RRC Connection Setup eNB 在下行方向发送RRCConnectionSetup 消息给UE ,包含建立SRB1承载和无线资源配置信息。该消息携带主要IE 详细见信令解码。 信令解码如下: -RRC-MSG : |_msg : |_struDL-CCCH-Message : |_struDL-CCCH-Message : |_message : |_c1 : |_rrcConnectionSetup : |_rrc-TransactionIdentifier : ---- 0x1(1) ---- |_criticalExtensions : UE 初始标识,此处因为上层没有提供S-TMSI,所以为随机值。 建立原 因, 此处 highPriorityAccess 指的是AC11~AC15

相关主题
文本预览
相关文档 最新文档