当前位置:文档之家› 高一数学空间几何体测试题

高一数学空间几何体测试题

高一数学空间几何体测试题
高一数学空间几何体测试题

人教A 必修2空间几何体 测试题(二)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填

在题后的括号内(每小题5分,共50分).

1.若一个几何体的三视图都是等腰三角形,则这个几何体可能是 ( )

A .圆锥

B .正四棱锥

C .正三棱锥

D .正三棱台

2.在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的 一条侧棱和高作截面,正确的截面图形是 ( )

A B C D 3.下列说法正确的是 ( )

A .互相垂直的两条直线的直观图一定是互相垂直的两条直线

B .梯形的直观图可能是平行四边形

C .矩形的直观图可能是梯形

D .正方形的直观图可能是平行四边形

4.如右图所示,该直观图表示的平面图形为( )

A .钝角三角形

B .锐角三角形

C .直角三角形

D .正三角形 5.下列几种说法正确的个数是( )

①相等的角在直观图中对应的角仍然相等 ②相等的线段在直观图中对应的线段仍然相等 ③平行的线段在直观图中对应的线段仍然平行 ④线段的中点在直观图中仍然是线段的中点 A .1 B .2 C .3 D .4

6.一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为 ( )

A .

4

6

B .

4

3 C .

2

3

D .

2

6 7.哪个实例不是中心投影

( ) A .工程图纸 B .小孔成像 C .相片 D .人的视觉 8.关于斜二测画法画直观图说法不正确的是

( )

A .在实物图中取坐标系不同,所得的直观图有可能不同

B .平行于坐标轴的线段在直观图中仍然平行于坐标轴

C .平行于坐标轴的线段长度在直观图中仍然保持不变

D .斜二测坐标系取的角可能是135° 9.下列几种关于投影的说法不正确的是

( )

A .平行投影的投影线是互相平行的

B .中心投影的投影线是互相垂直的影

C.线段上的点在中心投影下仍然在线段上

D.平行的直线在中心投影中不平行

10.说出下列三视图表示的几何体是()

A.正六棱柱B.正六棱锥C.正六棱台D.正六边形

二、填空题:请把答案填在题中横线上(每小题6分,共24分).

11.平行投影与中心投影之间的区别是_____________;

12.直观图(如右图)中,四边形O′A′B′C′为

菱形且边长为2cm,则在xoy坐标中四边形ABCD

为_ ____,面积为______cm2.

13.等腰梯形ABCD,上底边CD=1, 腰AD=CB=2, 下底AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为________.

14.如图,一个广告气球被一束入射角为45°的平

行光线照射,其投影是一个最长的弦长为

5米的椭圆,则这个广告气球直径是米.

三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).

15.(12分)用斜二测画法作出边长为3cm、高4cm的矩形的直观图.

16.(12分)画出下列空间几何体的三视图.

①②

17.(12分)说出下列三视图所表示的几何体:

正视图侧视图俯视图

18.(12分)将一个直三棱柱分割成三个三棱锥,试将这三个三棱锥分离.19.(14分)画正五棱柱的直观图,使底面边长为3cm侧棱长为5cm.20.(14分)根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.正视图侧视图俯视图

参考答案(二)

一、CBDCB AACBA

二、11.平行投影的投影线互相平行,而中心投影的投影线相交于一点;12.矩形、8; 13.1; 14.22

5. 三、

15.分析探索:用统一的画图标准:斜二测画法,即在已知图形所在的空间中取水平平面,作X ′轴,Y ′轴使

∠X ′O ′Y ′=45°,然后依据平行投影的有关性质逐一作图.

解:(1)在已知ABCD 中取AB 、AD 所在边为X 轴与Y 轴,相交于O 点(O 与A 重合),画对应

X ′轴,Y ′轴使∠X ′O ′Y ′=45°

(2)在X ′轴上取 A ′,B ′使A ′B ′=AB ,在Y ′轴上取D ′,使A ′D ′=

2

1

AD ,过D ′作 D ′C ′平行X ′的直线,且等于A ′D ′长.

(3)连 C ′B ′所得四边形A ′B ′C ′D ′ 就是矩形ABCD 的直观图。

点评:斜二测画法坐标中,在轴方向上,线段的长度,轴平面上的线段长度是真实长度的一半.

16.解:(1)的三视图如下:

正视图 侧视图 俯视图 (2)的三视图如下:

正视图 侧视图 俯视图

17.分析: 从给定的信息来看,该几何体是一个正四棱台.

答:该三视图表示的是一个正四棱台.

18.解:如右图直三棱柱ABC- A ′B ′C ′,连结A ′B ,BC ,CA ′. 则截面A ′CB 与面A ′CB ′,将直三棱柱分割成三个三棱锥即A ′-ABC ,A ′-BCB ′,C-A ′B ′C ′.

19.分析:先作底面正五边形的直观图,再沿平行于Z 轴方向平移即可得. 解:作法:

(1)画轴:画X ′,Y ′,Z ′轴,使∠X ′O ′Y ′=45°(或135°),∠X ′O ′Z ′=90°.

(2)画底面:按X ′轴,Y ′轴画正五边形的直观图ABCDE.

D'

C'

B'

A'O'

Y'

X'

D

C

B A Y

X

C'

B'

A '

C

B

A

(3)画侧棱:过A、B、C、D、E各点分别作Z′轴的平行线,并在这些平行线上分别截取AA′,BB′,CC′,DD′,EE′.

(4)成图:顺次连结A′,B′,C′,D′,F′,加以整理,去掉辅助线,改被遮挡的部分为虚线。

点评:用此方法可以依次画出棱锥、棱柱、棱台等多面体的直观图.

20.分析:由几何体的三视图知道,这个几何体是一个上面小而底面大的圆台,我们可以先画出上、下底面圆,再画母线.

x轴、y轴、z轴, 三轴相交于点O,使∠xOy=45°,∠xOz=90°.

B

(2)画圆台的两底面画出底面⊙O 假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.

(3)成图连接A′A、B′B,去掉辅助线, 将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.

点评:做这种类型的题目,关键是要能够看懂给定的三视图所表示的空间几何体的形状,然后才能正确地完成.

空间几何体的表面积和体积测试题

《空 间 几 何 体 的 表 面 积 和 体 积 一、选择题(每小题 5分共50分) 1 ?已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为 4,体积 为16,则这个球的表面积是( ) A 16 E. 20 C. 24 D. 32 2、 已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为 V i 和V 2,则V : V 2= ( ) A. 1: 3 B. 1 : 1 C. 2 : 1 D. 3 : 1 3、 一个体积为8cm 3 的正方体的顶点都在球面上,则球的表面积是 A. 8 cm 2 B ? 12 cm 2 C ? 16 cm 2 D ? 20 cm 2 4?、如右图为一个几何体的三视图,其中府视图为正三角形, AB=2, AA=4,则该几何体的表面 积为( ) (A )6+ ,3 (B )24+ ,3 (C )24+2 ,.3 (D )32 A. —R 3 B ? 3 R 3 C ? 四5 R 3 D ? —R 3 24 ~8 24 8 8. 两个球体积之和为 12 n ,且这两个球大圆周长之和为 6 n, 那么这两球半径之差是( ) 10. 下列几何体各自的三视图中,有且仅有两个视图相同的(5.如果一个水 平放I 原平面图形的面积是 A C B 2 2 6.半径为R 的正圆卷成一个圆锥,侧它视体积为府视 450,腰和上底均为1的等腰梯形, 1 2 ) 那么 7. 圆台的一个底面周长是另一个底面周长的 较小底面的半径为( ) A. 7 E. 6 C. 5 3倍,母线长为3,圆台的侧面积为84 ,则圆台 D. 3 B . 1 C. 2 D. 3 9. 如图,一个封闭的长方体,它的六个表面各标出 种 不同的位置,所看见的表面上的字母已表明,则字母 A B 、C 、D E 、F 这六个字母,现放成下面三 A 、 B 、 C 对面的字母依次分别为 ( ???) ) 1 . 2 置的图形的斜 是'一个底面

高一数学单元测试题附答案

高一数学单元测试题 一、选择题 1.已知{}2),(=+=y x y x M ,{} 4),(=-=y x y x N ,则N M ?=( ) A .1,3-==y x B .)1,3(- C .{}1,3- D .{})1,3(- 2.已知全集U =N ,集合P ={ },6,4,3,2,1Q={}1,2,3,5,9则() P C Q =U I ( ) A .{ }3,2,1 B .{}9,5 C .{}6,4 D {}6,4,3,2,1 3.若集合{} 21|21|3,0,3x A x x B x x ?+? =-<=

空间几何体单元测试题

o' x' C A 《空间几何体》单元测试题 一.选择题(共10小题,每小题5分) 1、下列命题正确的是( ) A 、以直角三角形的一直角边为轴旋转所得的旋转体是圆锥; B 、以直角梯形的一腰为轴旋转所得的旋转体是圆台; C 、圆柱、圆锥、圆台都有两个底面; D 、圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆半径。 2、圆锥的底面半径为1,高为3,则圆锥的表面积为( ) A 、π B 、π2 C 、π3 D 、π4 3、关于斜二侧画法,下列说法不正确的是( ) A 、原图形中平行于x 轴的线段,其对应线段平行于x ’ 轴,长度不变; B 、原图形中平行于y 轴的线段,其对应线段平行于y ’ 轴,长度变为原来的 2 1; C 、在画与直角坐标系xoy 对应的x ‘o ’y ’时, x ’o ’y ’必须是?45 D 、在画直观图时由于选轴的不同,所得的直观图可能不同。 4、一个水平放置的平面图形的直观图是一个底角为?45,腰和上底长均为1的 等腰梯形,则该平面图形的面积等于( ) A 、2221+ B 、2 2 1+ C 、21 + D 、22+ 5、如图,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是( ). ①长方体 ②圆锥 ③三棱锥 ④圆柱 A .④③② B . ②①③ C . ①②③ D . ③②④ 6、如果两个球的体积之比为8:27,那么这两个球的表面积之比为( ) A 、8:27 B 、2:3 C 、4:9 D 、2:9 7如图是长宽高分别为3、2、1在A 处, C '处有一小虫被蜘蛛网粘住,则蜘蛛沿正 方体表面从A 点爬到点 C '的最短距离为( ) A 、31+ B 、102+ C 、23 D 、32

空间几何体测试题及答案

空间几何体测试题 (满分100分) 一、选择题(每小题6分,共54分) 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 3.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A .2倍 B . 4倍 C .2 倍 D .12倍 3.棱长都是1的三棱锥的表面积为( ) 4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 5.正方体的内切球和外接球的半径之比为( ) A B 2 C . D 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 7.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为1V 和2V ,则12:V V =( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 8.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A. 8:27 B. 2:3 C. 4:9 D. 2:9 9.圆锥平行于底面的截面面积是底面积的一半,则此截面分圆锥的高为上、下两段的比为 ( ) A .1:( 2 -1) B .1:2 C .1: 2 D .1:4 二、填空题(每小题5分,共20分) 10.半径为R 的半圆卷成一个圆锥,则它的体积为________. 主视图 左视图 俯视图

11.右面三视图所表示的几何体是 . 12.已知,ABCD 为等腰梯形,两底边为AB,CD 且AB>CD ,绕AB 所在的直线旋转一周所 得的几何体中是由 、 、 的几何体构成的组合体. 13.正方体1111ABCD A BC D - 中, O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为____________ 三、解答题(每小题13分,共26分) 14.将圆心角为0 120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积 15. (如图)在底半径为2,母线长为4 求圆柱表面积。 正视图 侧视图 俯视图

高一数学集合练习题及答案-经典

升腾教育高一数学 满分150分 姓名 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤ 9、 满足条件M U }{1=}{ 1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4

二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 三、解答题 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式 19、已知集合{}1,1A =-,B=} { 2 20x x ax b -+=,若B ≠?,且A B A ?= 求实数 a , b 的值。

空间几何体测试题及答案.doc

第一章《空间几何体》单元测试题 (时间:60分钟,满分:100分)班别座号姓名成绩 一、选择题(本大题共10小题,每小题5分,共50分) 1、图(1)是由哪个平面图形旋转得到的() A B C D 2、过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为() A.1:2:3 B.1:3:5 C.1:2:4 D1:3:9 3、棱长都是1的三棱锥的表面积为() A. 3 B. 23 C. 33 D. 43 4、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2= A. 1:3 B. 1:1 C. 2:1 D. 3:1 5、如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.8:27 B. 2:3 C.4:9 D. 2:9 6 A.24πcm2,12πcm3 B.15πcm2,12πcm3 C.24πcm2,36πcm3 D.以上都不正确 7、一个球的外切正方体的全面积等于6 cm2,则此球的体积为() A.3 3 4 cm π B. 3 8 6 cm π C. 3 6 1 cm π D. 3 6 6 cm π 8、一个体积为3 8cm的正方体的顶点都在球面上,则球的表面积是 A.2 8cm π B.2 12cm π C.2 16cm π D.2 20cm π 9、一个正方体的顶点都在球面上,此球与正方体的表面积之比是() A. 3 π B. 4 π C. 2 π D. π 10、如右图为一个几何体的 三视图,其中府视图为 正三角形,A1B1=2, AA1=4,则该几何体的表面积为 (A)6+3 (B)24+3 (C)24+23 (D)32 A B 1 C 正视图侧视图府视图

必修 立体几何单元测试题及答案

M D' D C B A 立体几何单元测验题 一、选择题:把每小题的正确答案填在第二页的答题卡中,每小题4分,共60分 1.一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为 A . 152 π B .10π C .15π D .20π 2.C B A ,,表示不同的点,l a ,表示不同的直线,βα,表示不同的平面,下列推理错误的是 A .ααα??∈∈∈∈l B l B A l A ,,, B .,,,AB l l AB l αβαβαβ=⊥?⊥?⊥I C .,l A l A αα?∈?? D .βαβα与不共线,,且?∈∈C B A C B A C B A ,,,,,,重合 3.直线c b a ,,相交于一点,经过这3条直线的平面有 A .0个 B .1个 C .3个 D .0个或1个 4.下列说法正确的是 A .平面α和平面β只有一个公共点 B .两两相交的三条直线共面 C .不共面的四点中,任何三点不共线 D .有三个公共点的两平面必重合 5. 直线b a 与是一对异面直线,a B A 是直线,上的两点,b D C 是直线,上的两点,N M ,分别是BD AC 和的中点,则a MN 和的位置关系为 A .异面直线 B .平行直线 C .相交直线 D .平行直线或异面直线 6.已知正方形ABCD ,沿对角线ABC AC ?将折起,设AD 与平面ABC 所成的角为α,当α最大时,二面角D AC B --等于( ) A .090 B .060 C .045 D .030 7.已知异面直线b a ,分别在平面βα,内,且βαI c =,直线c A .同时与b a ,相交 B .至少与b a ,中的一条相交 C .至多与b a ,中的一条相交 D .只能与b a ,中的一条相交 8.一个平面多边形的斜二侧图形的面积是S ,则这个多边形的面积是 A 2S B .2S C .22S D .4S 9.直线l 在平面α外,则 A .α//l B .α与l 相交 C .α与l 至少有一个公共点 D .α与l 至多有一个公共点 10.如图,BD AB BD M AC M AB BD AC AB ,,平面,平面,⊥⊥?===1与平面M 成030角,则 D C 、间的距离为( ) A .1 B .2 C .2 D .3 11.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

高一数学必修一测试题及答案

高中数学必修1检测题 一、选择题: 1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( ) A .{2,4,6} B .{1,3,5} C .{2,4,5} D .{2,5} 2.已知集合 }01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ?φ ④A ? -}1,1{ A .1个 B .2个 C .3个 D .4个 3.若 :f A B →能构成映射,下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; & (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B . A 、1个 B 、2个 C 、3个 D 、4个 4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是 ( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 5、下列各组函数是同一函数的是 ( ) ①()f x =()g x =f(x)=x 与()g x ; ③ 0()f x x =与0 1 ()g x x = ;④ 2()21f x x x =--与2()21g t t t =--。 A 、①② B 、①③ C 、③④ D 、①④ \ 6.根据表格中的数据,可以断定方程02=--x e x 的一个根所在的区间是 ( ) '

A .(-1,0) B .(0,1) C .(1,2) D .(2,3) 7.若=-=-33)2lg()2lg(,lg lg y x a y x 则 ( ) A .a 3 B .a 2 3 C .a D . 2 a 8、 若定义运算 b a b a b a a b

空间几何体单元测试卷答案

空间几何体单元测试卷答案 一、选择题 (每小题5分, 共30分) 1. D 2. B 3. C 4. B 5. C 6. C 、 填空题 (每小题5分, 共 20 分) 7. 球 8. R 9. . 2 10. 50cm 2 三、 解答题 (共3小题,共 50分) 11. 解:(1)设正四棱柱的底面边长为 a ,高为h , 由题意 2a 2 + h 2= 81 ① ............................................................................ 2 分 2a 2 + 4ah = 144 即 a 2 + 2ah = 72 ② ........................ 4 分 ①X 8 —②X 9 得 7a 2— 18ah + 8h 2= 0 即(7a — 4h ) ( a -2h )= 0, ......... 6 分 因此7a — 4h = 0或a = 2h ,由此可见由①②构成方程组有两组满足条件的解,故 满足这些条件的正四棱柱有 2个. .................................. 8分 (2)由(1)得,正四棱柱的底面边长 a 和高h 满足7a = 4h 或a = 2h , 当7a = 4h 时,代入①可求得 a = 4, h=7;此时正四棱柱的体积为 V=a 2h=42X 7=112(cm 3). 当a = 2h 时,同理可得 r 30 360 … 八 当x = cm 时,S 取到最大值 cm 2. ............................................... 16分 7 7 2 3 1 13.解:(1)依题意,可得—r - 108 ① ................................ 3分 3 6 且-r 3 r 2h 108 ② ................... 6分 3 3 r 27 ,.?? r 3 (cm);代入②可求得 h 10 (cm).…9分 (2)若将试管垂直放置,并注水至水面离管口 4cm 处,此时水的体积为 2 3 2 2 2 12分 a = 6, h=3;此时正四棱柱的体积为 V=a 2h=62X 3=108(cm 3). 12.解:如图SAB 是圆锥的轴截面,其中 SO = 12, OB = 5. 设圆 锥内接圆柱底面半径为 0Q = 乂,由厶SO 1CSOB , SO 1 _ SO O 1C OB ,SO 1 = SO OB OO 1 = SO — SO 1= 12—玛, 5 则圆柱的表面积 19分 S = S 侧+ 2S 底=2 n x + 2 n x 2 = 2 n 7 2 12x — X 5 由①得 16分

高一数学测试题及答案解析

高一数学第一次月考测试 (时间:120分钟满分:150分) 一、选择题(本题共12小题,每小题5分,满分60分) 1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是() A.一个算法只能含有一种逻辑结构 B.一个算法最多可以包含两种逻辑结构 C.一个算法必须含有上述三种逻辑结构 D.一个算法可能含有上述三种逻辑结构 2.下列赋值语句正确的是() A.M=a+1B.a+1=M C.M-1=a D.M-a=1 3.学了算法你的收获有两点,一方面了解我国古代数学家的杰出成就,另一方面,数学的机械化,能做许多我们用笔和纸不敢做的有很大计算量的问题,这主要归功于算法语句的() A.输出语句B.赋值语句 C.条件语句D.循环语句 4.如右图 其中输入甲中i=1,乙中i=1000,输出结果判断正确的是() A.程序不同,结果不同 B.程序不同,结果相同 C.程序相同,结果不同 D.程序相同,结果相同

5.程序框图(如图所示)能判断任意输入的数x的奇偶性,其中判断框内的条件是() A.m=0? B.x=0? C.x=1? D.m=1? 6.228和1995的最大公约数是() A.84 B.57 C.19 D.28 7.下列说法错误的是() A.在统计里,把所需考察的对象的全体叫做总体 B.一组数据的平均数一定大于这组数据中的每个数据 C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势 D.一组数据的方差越大,说明这组数据的波动越大 8.1001101(2)与下列哪个值相等() A.115(8)B.113(8) C.114(8)D.116(8) 9.下面程序输出的结果为()

必修 空间几何体单元测试题

人教A必修2第一章《空间几何体》单元测试题 (时间:60分钟,满分:100分) 班别座号姓名成绩 一、选择题(本大题共10小题,每小题5分,共50分) 1、图(1)是由哪个平面图形旋转得到的() A B C D 2、过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为() A.1:2:3 B.1:3:5 C.1:2:4 D1:3:9 3、棱长都是1的三棱锥的表面积为() A. 3 B. 23 C. 33 D. 43 4、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2= A. 1:3 B. 1:1 C. 2:1 D. 3:1 5、如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.8:27 B. 2:3 C.4:9 D. 2:9 6、有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为: A.24πcm2,12πcm3 B.15πcm2,12πcm3 C.24πcm2,36πcm3 D.以上都不正确 7、一个球的外切正方体的全面积等于6 cm2,则此球的体积为() A.3 3 4 cm π B. 3 8 6 cm π C. 3 6 1 cm π D. 3 6 6 cm π 8、一个体积为3 8cm的正方体的顶点都在球面上,则球的表面积是 A.2 8cm π B.2 12cm π C.2 16cm π D.2 20cm π 9、一个正方体的顶点都在球面上,此球与正方体的表面积之比是() A. 3 π B. 4 π C. 2 π D. 10、如右图为一个几何体的 三视图,其中府视图为 正三角形,A1B1=2, AA1=4,则该几何体的表面积为 (A)6+3 (B)24+3 (C)24+23 (D)32 选择题答题表 A B 1 正视图侧视图府视图

立体几何第一章空间几何体单元测试题(含详细标准答案解析)

第一章综合素能检测 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.(2016·菏泽市高一检测)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于错误!() A.2π? B.π C.2?D.1 [答案] A [解析]所得旋转体是底面半径为1,高为1的圆柱,其侧面积S侧=2πRh=2π×1×1=2π. 2.(2016·全国卷Ⅲ,文)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为\x(导学号)() A.18+36\r(5) B.54+18错误! C.90 D.81 [答案] B [解析]由三视图,知该几何体是一个斜四棱柱,所以该几何体的表面积S=2×3×6+2×3×3+2×3×35=54+18错误!,故选B. 3.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是导学号() A.3034 B.60\r(34) C.30错误!+135?D.135 [答案] A

[解析]由菱形的对角线长分别是9和15,得菱形的边长为错误!=错误!错误!,则这个菱柱的侧面积为4×错误!错误!×5=30错误!. 4.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=错误!() A.1:3?B.1:1 C.2:1?D.3:1 [答案]D [解析]V1:V2=(Sh):(错误!Sh)=3:1. 5.(2016·寿光现代中学高一月考)若两个球的表面积之比为1:4,则这两个球的体积之比为导学号( ) A.1:2?B.1:4 C.1:8 D.1:16 [答案]C [解析]设两个球的半径分别为r1、r2, ∴S1=4πr2,1,S2=4πr错误!. ∴\f(S1,S2)=错误!=错误!,∴错误!=错误!. ∴错误!=错误!=(错误!)3=错误!. 6.如图,△O′A′B′是水平放置的△OAB的直观图,则△OAB的面积为错误!() A.6?B.3 2 C.6\r(2) D.12 [答案] D [解析]△OAB是直角三角形,OA=6,OB=4,∠AOB=90°,∴S△OAB=\f(1,2)×6×4=12. 7.(2015·北京文)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为导学号( )

空间几何体的表面积和体积练习题

一、知识回顾 (1)棱柱、棱锥、棱台的表面积= 侧面积+ ______________; (2)圆柱:r为底面半径,l为母线长 侧面积为_______________;表面积为_______________. 圆锥:r为底面半径,l为母线长 侧面积为_______________;表面积为_______________. 圆台:r’、r分别为上、下底面半径,l为母线长 侧面积为_______________;表面积为_______________. (3)柱体体积公式:________________________;(S为底面积,h为高)锥体体积公式:________________________;(S为底面积,h为高)台体体积公式:________________________; (S’、S分别为上、下底面面积,h为高) 二、例题讲解 题1:如图(1)所示,直角梯形ABCD绕着它的底边AB所在的直线旋转一周所得的几何体的表面积是______________;体积是______________。 8

图(1) 题2:若一个正三棱柱的三视图如图(2)所示, 求这个正三棱柱的表面积与体积 图(2) 题3:如图(3)所示,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且ADE ?,BCF ?均为正三角形,EF//AB ,EF=2,则该多面体的体积为( ) A .32 B .33 C .34 D .2 3 E A B D C F 左视图 俯视图 主视图

图(3) 1、若圆柱的侧面积展开图是长为6cm ,宽为4cm 的矩形,则该圆柱的体积为 2、如图(4),在正方体1111D C B A ABCD -中, 棱长为2,E 为11B A 的中点,则 三棱锥11D AB E -的体积是____________. 图(4) C B A D C 1 B 1 E A 1 D 1

高一数学试题及答案解析

高一数学 试卷 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 第Ⅰ卷(选择题,满分 50分) 一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的,把正确的答案填在指定位置上.) 1. 若角αβ、满足9090αβ-<< B .cos2cos αα< C .tan 2tan αα> D .cot 2cot αα< 7. ABC ?中,若cot cot 1A B >,则ABC ?一定是( ) A .钝角三角形 B . 直角三角形 C .锐角三角形 D .以上均有可能 8. 发电厂发出的电是三相交流电,它的三根导线上的电流分别是关于时间t 的函数: 2sin sin()sin()3 A B C I I t I I t I I t πωωω?==+ =+且 0,02A B C I I I ?π++=≤<, 则? =( ) A .3π B .23π C .43π D .2 π 9. 当(0,)x π∈时,函数21cos 23sin ()sin x x f x x ++=的最小值为( )

高中数学-《空间几何体》单元测试题

高中数学 -《空间几何体》单元测试题 参考公式: 球的体积公式34 ,3 V R π= 球,其中R 是球半径. 锥体的体积公式V 锥体 1 3Sh =,其中S 是锥体的底面积,h 是锥体的高. 台体的体积公式V 台体1 ()3 h S SS S ''=++,其中,S S '分别是台体上、下底面的面积,h 是 台体的高. 一、选择题(每小题5分,共60分): 1.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) (A )2倍 (B ) 1 2 倍 (C )2倍 (D )2倍 2.下面哪一个不是正方体的平面展开图( ) (A ) (B ) (C ) (D ) 3.已知棱台的体积是76cm 3,高是6cm ,一个底面面积是18cm 2,则这个棱台的另一个底面面积为( ) (A )8cm 2 (B )7cm 2 (C )6cm 2 (D )5cm 2 4.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( ) 5.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后剩下的几何体的体积是( ) (A ) 67 (B )56 (C )45 (D )2 3 6.一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的2倍,圆锥的高与底面半径 之比为( ) (A )4:3 (B )1:1 (C )2:1 (D )1:2 7.圆柱的侧面展开图是矩形ABCD,母线为AD ,对角线AC=8cm ,AB 与AC 成角为30o ,则圆柱的表面积为( ) E F D I A H G B C E F D A B C 侧视 图1 图2 B E A . B E B . B E C . B E D .

精选高一数学集合测试题及答案

高一数学 集合 测试题 一、选择题(每小题5分,共60分) 1.下列八个关系式①{0}=φ ②φ=0 ③φ {φ} ④φ∈{φ} ⑤{0}?φ ⑥0?φ ⑦φ≠{0} ⑧φ≠{φ}其中正确的个数( ) (A )4 (B )5 (C )6 (D )7 2.集合{1,2,3}的真子集共有( ) (A )5个 (B )6个 (C )7个 (D )8个 3.集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( ) (A )(a+b )∈ A (B) (a+b) ∈B (C)(a+b) ∈ C (D) (a+b) ∈ A 、B 、C 任一个 4.设A 、B 是全集U 的两个子集,且A ?B ,则下列式子成立的是( ) (A )C U A ?C U B (B )C U A ?C U B=U (C )A ?C U B=φ (D )C U A ?B=φ 5.已知集合A={022≥-x x } B={0342≤+-x x x }则A B ?=( ) (A )R (B ){12≥-≤x x x 或} (C ){21≥≤x x x 或} (D ){32≥≤x x x 或} 6.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧ ={n ∈N |f (n )∈Q },则(P ∧∩N eQ ∧)∪(Q ∧∩N eP ∧ )=( ) (A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7} 7.已知A={1,2,a 2 -3a-1},B={1,3},A =?B {3,1}则a 等于( ) (A )-4或1 (B )-1或4 (C )-1 (D )4 8.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )?(C U B )=( ) (A ){0} (B ){0,1} (C ){0,1,4} (D ){0,1,2,3,4} 10.设A={x 0152=+-∈px x Z },B={x 052=+-∈q x x Z },若A ?B={2,3,5},A 、B 分别为( ) (A ){3,5}、{2,3} (B ){2,3}、{3,5} (C ){2,5}、{3,5} (D ){3,5}、{2,5} 11.设一元二次方程ax 2 +bx+c=0(a<0)的根的判别式042 =-=?ac b ,则不等式ax 2 +bx+c ≥0的解集为 ( ) (A )R (B )φ (C ){a b x x 2- ≠} (D ){a b 2-} ≠?

空间几何体测试题及答案

) C A B D ) ( ) 5 6 1 C B D 6 ) A i C B D 4 2 3: 9 A. 4 () .6 6 A.— 3 班别 第一章《空间几何体》单元测试题 (时间:60分钟,满分:100分) 座号 姓名 成绩 2、过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 3、棱长都是1的三棱锥的表面积为( A. 1 : 3 B. 1 : 1 C. 2 : 1 D. 3 : 1 A.8:27 B. 2:3 C.4:9 D. 2:9 选择题 1、图(1) (本大题共10小题, 每小题5分, 是由哪个平面图形旋转得到的( 的面积之比为( A. 、3 B. 2 、3 C. 3 .3 D. 4 3 4、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为 V 和 V 2,贝U V 1: V 2= 5、如果两个球的体积之比为 8:27,那么两个球的表面积之比为 6、有一个几何体的三视图及其尺寸如下(单位 cm ),则该几何体的表面积及体积为: 共 50 A.1 : 2: 3 B.1 : 3: 52: 4 D1 10、如右图为一个几何体的 府视图 8、 一个体积为8cm 3 的正方体的顶点都在球面上,则球的表面积是 A . 8 cm 2 B . 12 cm 2 C . 16 cm 2 D . 20 cm 2 9、 一个正方体的顶点都在球面上,此球与正方体的表面积之比是( C 1 B A C B 正视图 侧视图 .3 (D)32 2 3 n cm , 12 n cm D.以上都不正确 6 cm 2 ,则此球的体积为 三视图,其中府视图为 正三角形,A 1B 1=2, AA 1=4,则该几何体的表面积为 (A)6+ , 3 (B)24+ , 3 (C)24+2 7、一个球的外切正方体的全面积等于 3 cm 丄cm 3 3 cm 3 cm B.15 2 A.24 n cm, 3 12 n cm 2 C.24 n cm, 3 36 n cm

高一数学空间几何体综合练习题

人教A 必修2第一章空间几何体综合练习卷 本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 2.利用斜二测画法得到的 ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形; ③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上结论正确的是 ( ) A .①② B . ① C .③④ D . ①②③④ 3.棱台上下底面面积分别为16和81,有一平行于底面的截面面积为36,则截面戴的两棱台高 的比为 ( ) A .1∶1 B .1∶1 C .2∶3 D .3∶4 4.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是 ( ) A .正方体 B .正四棱锥 C .长方体 D .直平行六面体 5.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ?α,b ?β,a ∥b D .a ?α,b ?α,a ∥β,b ∥β 6.如图所示,用符号语言可表达为( ) A .α∩β=m ,n ?α,m ∩n =A B .α∩β=m ,n ∈α,m ∩n =A C .α∩β=m ,n ?α,A ?m ,A ? n D .α∩β=m ,n ∈α,A ∈m ,A ∈ n 7.下列四个说法 ①a //α,b ?α,则a // b ②a ∩α=P ,b ?α,则a 与b 不平行 ③a ?α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为 ( ) A .279cm 2 B .79cm 2 C .32 3cm 2 D .32cm 2 9.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧 面,则两圆锥体积之比为 ( ) A .3∶4 B .9∶16 C .27∶64 D .都不对 10.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D —ABC 的体积为 ( )

高一数学考试题及答案

第一学期10月检测考试 高一年级数学试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 第Ⅰ卷(选择题共60分) 注意事项:第一大题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用 橡皮擦干净后,再选涂其他答案标号。不能答在试卷上. 一.选择题(共12小题,每小题5分,共60分。在每小题列出的四个选项中,选出符合题目要求的一项) 1. 已知{}{}|24,|3A x x B x x =-<<=>,则A B =( ) A. {}|24x x -<< B. {} |3x x > C. {}|34x x << D. {}|23x x -<< 2.设集合A 和集合B 都是自然数集N ,映射:f A B →把集合A 中的元素n 映射到集合B 中的元素2n n +,则在映射f 下,B 中的元素20是A 中哪个元素对应过来的( ) .3 C 3.满足关系{}1{1,2,3,4}B ??的集合B 的个数 ( ) 个 个 个 个 4.方程260x px -+=的解集为M,方程260x x q +-=的解集为N,且M ∩N={2},那么p q +等于( ) B.8 5. 在下列四组函数中,()()f x g x 与表示同一函数的是 ( ) A. ()()211,1 x f x x g x x -=-=+ B. ()()()0 1,1f x g x x ==+ C. ()()2,f x x g x x == D. 4)(,22)(2-=-?+=x x g x x x f 6. 函数 1 23 ()f x x x =-+ -的定义域是( ) A. [)23, B.()3,+∞ C.[)()233,,+∞ D.()()233,,+∞ 7. 设0abc >,二次函数2()f x ax bx c =++的图象可能是

相关主题
文本预览
相关文档 最新文档