当前位置:文档之家› 基于LabVIEW的通信原理虚拟实验平台设计_唐万伟

基于LabVIEW的通信原理虚拟实验平台设计_唐万伟

基于LabVIEW的通信原理虚拟实验平台设计_唐万伟
基于LabVIEW的通信原理虚拟实验平台设计_唐万伟

-122-

基于LabVIEW的 通信原理虚拟实验平台设计

Design of Virtual Experiment Platform for Communication Principle Based on LabVIEW

唐山学院 唐万伟 高雅深 王金红

Tang Wanwei,Gao Yashen,Wang Jinhong

(Tangshan college,Hebei Tangshan,063000 China)

【摘要】为了避免学生受到传统实验教学局限于固定地点、固定时间的限制,开发一基于LabVIEW软件的通信原理实验教学平台,首先对平台的构架和设计目标进行了详细描述,然后以FM系统的仿真为例介绍实验平台在通信原理课程中的具体应用以及在远程教学中的应用。【关键词】LabVIEW;通信原理;虚拟实验;远程教育

Abstract:In order to avoid that the traditional experiment teaching is limited to ?

xed location and ? xed time,an experiment teaching platform for communication principle based on LabVIEW software is developed.Firstly,platform architecture and design goal are described in detail,and then as an example,FM system simulation experiment platform is cited to introduce the speci ? c application of this platform in communication principle course and its application in distance education.Key words:communication principle;LabVIEW;virtual experiment;distance education

1.引言

《通信原理》课程是我校通信工程专业、电子信息工程专业的一门专业基础课,学生对本门课程的掌握程度直接影响到后续专业课程的学习。在实际教学中认识到由于其理论性比较强,学生容易产生厌烦心理。因此,需要大量相关的实验操作实现对理论知识进行理解、消化。实际的通信系统实验又很难都在实验室中完成,通过进行虚拟实验平台的建设可以很好的解决这样的问题。虚拟实验除了具有在时间上和空间上的应用都非常灵活的特点,还可以减少实验室中实验设备的损坏维修费用。现已被越来越多的高等院校校所认可,并逐步实现采用虚拟实验室对传统的实验室进行补充和替代[1-3]。

2.通信原理虚拟实验平台总体结构

建设通信原理虚拟实验室平台的目标就是在结合理论教学的基础上,构造适合本校学生学习、运用及研究该课程的实验环境[4]。为了尽可能多的包括通信原理课程的实验,该平台设计了几乎涵盖了通信原理课程的所有重点理论内容。实验平台设计的总体结构如图1所示。

3.通信原理虚拟实验平台设计及实现3.1 设计目标

通信原理虚拟实验整体平台设计不能太复杂,以免使得学生望而生畏,应能较好的运用虚实结合的特点,给出参考范例,学生可以自图1 通信原理虚拟实验平台总体结构

具体的设计目标如下:努力使系统的内容将通信原理课程大多数实验内容都包含进去。整个实验平台应该保证每个子模块是相对独立的,以便进行后续的扩展;系统应具有较强的

健壮性,提供的实验环境应该是非常稳定的,避免由于学生的不正确操作而出现系统崩溃的情况;系统的用户界面要比较友好,具有较好的交互性,包含完整的帮助文档,操作简单,能够及时响应操作。

3.2 设计实例

LabVIEW程序主要包括前面板和方框图程序两部分。前者主要是模拟真实仪器的面板操作,可进行输入数值设置、文本显示等操作。方框图程序主要是应用图形编程语言进行编写,类似于传统程序(如C语言)的源代码,可以传送前面板输入的命令参数到具体仪器,然后进行相应的操作。LabVIEW的特点之一就是流程图程序设计语言,这与传统程序语言线性结构不同。下面以实验平台中模拟通信系统的非线性调制的仿真平台为例进行叙述。频率调制(FM)是一种载波频率随基带信号的变化而改变的一种调制方式,是参考教材第五章第三节的内容[5]。虚拟实验平台的进入界面如图2所示。

图2 虚拟实验平台的进入界面

图3 通信原理虚拟实验平台选择

图4 非线性调制实验平台前面板

点击入口按钮后进入实验系统选择模块,如图3所示。选择模拟通信系统→非线性调制进入非线性调制(FM)实验平台,对应的前面板及程序框图如图4、图5所示。

在给学生频率调制实验的讲解时,需要从

更实用的角度进行介绍,应该考察载波频率和FM偏移对于调制所得的FM信号产生的影响。

图5 非线性调制实验平台程序框图

在这里需要对基带频率、载波频率和FM偏移三个基本参数进行调整。基带频率可以调整信息信号的频率。

载波频率则是用来传输信息信号的频率。而FM偏移则确定了载波信号和调制信号的最大瞬时频率差。首先对基带频率进行调整,观察由此对FM调制波形图所产生的影响。然后改变载波频率,观察对FM调制信号的影响,频率偏移可以自动进行调整,以免超过载波频率。载波频率等于基带频率情况下的波形图如图6所示。由于这些频率是完全一致的,因此FM调制信号不再是纯粹的正弦信号。

图6 载波频率等于基带频率时的波形

图7 载波频率大于基带频率时的波形图

从图6中可以看出,调制后的信号已经不能清晰地表示基带信号。在理想情况下,载波频率应该远高于基带信号的频率。在图7中,能看到载波频率提升之后的结果。这里每个频率的整周期信号都已经被表示出来了。

下面考察调制指数对与FM信号的影响。将载波频率调整到最大值1MHz。注意到FM偏移的最大值已经自动调整为500kHz。然后拖动滑动条将FM偏移设定为1MHz,并观察结果。所得到的时域信号的频率波动非常明显。如图8所示,基带信号的最低电平是由0Hz频率所表示的,而基带信号的最高电平则是由2MHz频率所表示。

-123-

图8 较大的调制指数对FM信号的影响

图9 较大的调制指数对FM信号的影响

较大的FM偏移值从视觉上而言比较直观,而较小的FM偏移值则不然。为了证明这点,把FM偏移值设定为200kHz,在这种情况下,基带信号的不同电平将由800kHz至1.2MHz的频率表示。调制后的时域波形如图9所示。此时,频率偏移的变化在时域上不再那么明显。但是,这种影响对于通信系统而言则是至关重要的。理想情况下,一个通信系统应该采用最大的频率偏移,以便更精确地表示基带信号,但增加频率偏移的代价则是提高信号发生的功率以及所占用的频带宽度。

可以通过点击“频域”标签,观察调制后信号的FFT功率谱。同时逐渐调整频率偏移变量,观察对信道宽度的影响。注意到频率偏移较高的情况下,信道将占据较宽的频带。图10中是一个载波频率为1MHz,频率偏移为500kHz

的FM信号。可以从图10中看出,调制信号占据

了超过1MHz的带宽。

图10 调制后信号的FFT功率谱

实践证明通过这样的讲解,学生可以很轻松的掌握频率调制的原理,收到了实验辅助理论教学的作用。

4.虚拟实验室在远程教育中的应用

LABVIEW还具有非常强大的网络功能[6-7],本实验平台利用LabVIEW虚拟仪器技术与Web技术,将实验平台放在实验室服务器中,远程客户端可以通过网络访问服务器进行虚拟实验。实现了学生在宿舍也可以进行实验的目的。LabVIEW中集成了Remote panel技术,在实验室的服务器程序设计完成之后,可以通过LabVIEW程序中的网络发布工具将程序嵌入到HTML文件中,然后通过LabVIEW提供的网络服务器向网上进行发布,可以实现浏览器访问.此时,当用户在浏览器环境下键入产生的HTML文件网络路径后便可在自己的PC机上使用Web上的虚拟仪器进行通信原理的相关实验了。

5.结束语

通信原理虚拟实验平台涵盖了通信原理课程中的主要内容,提供了所有仿真实验的源代

码,学生可以自己进行程序的修改,可以充分调动学生的学习积极性,提高学生 对通信原理课程的学习兴趣。一方面可以弥补实验箱覆盖面有限的问题,另一方面又可以加深学生对通信原理理论的理解。使学生从被动应付实验变为主动设计实验,使学生脱离了固定实验室时间和地点的限制,有利于充分发挥学生的主观能动性和创造性。

参考文献

[1]魏芸.基于《微机原理与接口技术》的虚拟实验研究[J].自动化与仪器仪表,2013(2):32-33.

[2]杨勇,杨艳丽,罗海燕.基于LabView信号的处理网络虚拟实验室设计方法[J].沈阳农业大学学报,2009,40(5):627-629.

[3]王秀芳,魏宇恒,张昆,等.通信原理网络虚拟实验室的开发[J].实验室科学,2010,13(5):133-134.

[4]刘亚荣,谢晓兰,杨晓斐,等.通信原理虚拟实验平台开发[J].桂林理工大学学报,2013,33(2):345-348.

[5]樊昌信,曹丽娜.通信原理[M].北京:国防工业出版社, 2006.[6]刘君华.基于LABVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003.

[7]岂兴明.LabView 8.2虚拟仪器设计入门和开发[M].北京:人民邮电出版社,2008.

作者简介:

唐万伟,硕士,唐山学院讲师。

高雅深,大学本科,副教授,唐山学院主任。王金红,硕士,唐山学院讲师。

解读液晶显示产品窄边框薄型化设计方案

北京京东方显示技术有限公司IT/TV产品开发中心 刘 帅 吕志超 石广东

【摘要】在液晶显示产品市场中,窄边框和薄型化的华丽外观总是无往不利的,在液晶显示产品技术日趋成熟的当下,优化产品外观以提升产品的“吸引力”,已经成为所有面板与整机厂商重要的研发课题。本文从Array、Cell、Circuit、机械光学、Touch五大方向,总结了时下液晶显示领域窄边框和薄型化的常用设计方案。【关键词】窄边框;薄型化;液晶显示

2009~2012年四年时间,NB产品厚度从5.0mm降低到2.8mm,MNT产品厚度从36mm降低到10mm,随着Tablet PC、Ultrabook、Blade MNT 等产品概念的提出,以及,消费者对显示产品便携性及外观要求的提升,在厂商与消费者的共同推动下,薄型化设计已经成为显示产品发

展的重要趋势之一。另一方面,在面板与整机厂商的推动下,MNT、TV产品正在逐渐向窄边框、Borderless 的方向发展。同时,随着DID产品市场的兴起,客户对拼接屏窄边框的要求也越来越高。在消费者与厂商两者的推动下,市场对窄边框

产品的需求将进一步提升。

一、Array技术方案1.GOA

原理:GOA技术是将Gate Driver IC集成在Array玻璃基板上(请参照右图),即去除Gate Dr

i ver IC用TFT布线组成栅极电路形成GOA单

元,实现Gate Driver IC的驱动功能。

技术优势:去除了Gate fan-out Line,从而可以减小Sealing area,满足窄边框的设计需求。同时,GOA的实现工艺与液晶显示TFT 制作工艺相同(不需要增加新的工艺流程),而且,去除Gate DriverIC,可以降低产品成本。

2.交替布线

技术优势:a2<a1,由此可见,与传统单层布线方式相比,采用交替布线方式,可减小布线间距,有助于最小化Sealing Area,满足产品窄边框设计需求,同时,采用交替布线有

助于降低Line与Line间发生Short的风险。 3.双层布线

技术优势:a2<a1,由此可见,与传统单层布线方式相比,采用双层布线方式,可降低线电阻,将线宽做窄,从而缩小Vcom线宽,满

足产品窄边框设计需求。

二、Cell技术方案1.Slimming

原理:常用的打薄方式有两种,即物理打磨和化学腐蚀。

①物理打磨就是对玻璃进行机械打磨,使玻璃变薄;

②化学腐蚀就是将Panel置于强酸(氢氟酸)环境中,玻璃中的SiO2与强酸发生反应被

腐蚀,玻璃变薄;

学用DRVI可重构虚拟仪器实验平台

实验一学用DRVI可重构虚拟仪器实验平台 实验目地 通过本实验让学生了解虚拟仪器地概念和基于组件地装配式软件设计方法,掌握用DRVI可重构虚拟仪器平台进行计算机测试系统设计地方法.b5E2RGbCAP DRVI可重构虚拟仪器实验平台简介 1、概述 DRVI可重构虚拟仪器实验平台是华中科技大学何岭松教授工程组和深圳市德普施科技有限公司联合开发出地一种自主知识产权地新型装配架构地虚拟仪器,其设计思想是按照汽车和PC机地装配式生产模式,将计算机虚拟仪器测试系统分解为一个软件装配底盘和若干实现独立功能地软部件模块.然后,根据测量任务需求,用软体底盘把所需地软部件模块装配起来,形成一个满足特定需求地测试系统.当测试任务发生变化时,对软体底盘上装配地软部件模块进行重新组合和装配就可以快速调整为另一个新地测量系统.p1EanqFDPw DRVI地主体为一个带软件控制线和数据线地软主板,其上可插接软仪表盘、软信号发生器、软信号处理电路、软波形显示芯片等软件芯片组,并能与A/D卡、I/O卡等信号采集硬件进行组合与连接.直接在以软件总线为基础地面板上通过简单地可视化插/拔软件芯片和连线,就可以完成对仪器功能地裁减、重组和定制,快速搭建一个按应用需求定制地虚拟仪器测量系统.DXDiTa9E3d

图1、虚拟仪器软件总线结构图 2、软件安装和运行 从光盘启动DRVI可重构虚拟仪器实验平台安装程序DRVISetup.exe(或从深圳市德普施科技有限公司网站下载该软件>,运行该安装程序后出现如下界面,按提示进行软件安装,分别填写用户名、单位,并设定软件工作路径等参数,直至出现结束画面为止.RTCrpUDGiT 安装完成后在WINDOWS桌面上出现图标,在程序组中出现DRVI,双击该图标就可以启动DRVI软件. 图2、DRVI软件安装界面

《虚拟仪器设计实验》实验二

实验二、程序结构的使用 一、实验目的 掌握条件结构、循环结构、移位寄存器、顺序结构的使用; 二、实验内容 设计使用循环结构、条件结构、顺序结构控制程序运行的虚拟仪器。具体内容如下:1.求一个数的平方根,当该数大于等于0时,输出开方结果;当该数小于0时,用弹出式对话框报告错误,同时输出错误代码-99999。 2.产生100个随机数并求其最小值和平均值。 3.用随机数(0-1)连续产生0~1的随机数,计算这些随机数平均值达到所用时间。 三、实验步骤 1.求一个数的平方根 启动LabVIEW,打开一个空白的VI。 在前面板窗口适当位置放置一个数值型控制件和一个数值型显示件,并把它们的标签分别修改为“x”和“sqrt(x)”。用编辑文本工具在适当位置,用适当的字体、字号填写实验名称、班级和姓名,图所示前面板供参考。 在框图程序窗口中,从函数模板上找到“大于等于”、“单按钮对话框”,“平方根”和“条件结构”并放置到适当位置,设计框图程序如图所示。 用“姓名实验2-1”为文件名保存你所做工作,如:李红实验。输入x值,运行程序并记录程序运行结果。 图虚拟仪器1的前面板

图虚拟仪器1的框图程序 2.产生100个随机数并求其最小值和平均值 启动LabVIEW,打开一个空白的VI。 在前面板窗口适当位置放置两个数值型显示件,并把它们的标签分别修改为平均值和最小值。用自由“编辑文本”工具在适当位置,用适当的字体、字号填写实验名称、班级和姓名,图所示前面板供参考。 在框图程序窗口中从函数模板上找到“For 循环”并放置到适当位置,为记数端口连接一个32位整型数100;创建两个移位寄存器分别用来从一次循环向下一次循环传递当前最小值和当前随机数累加值;初始化移位寄存器即为移位寄存器左侧端口赋值,设置当前最小值移位寄存器初值为1,当前随机数累加值移位寄存器初值为0,所对应的程序框图如图所示。创建移位寄存器的方法是在循环的左边框或右边框上弹出快捷菜单,然后选择“添加移位寄存器”。 在框图程序窗口中从函数模板上找到“最大值与最小值”、“除”、“加”、“随机数(0~1)函数”,设计框图程序如图所示。

通信原理实验报告模拟调制

通信原理实验报告 HUNAN UNIVERSITY 实验报告 题目第五章数字基带传输 学生姓名谢琰 学生学号20110808223 指导老师肖玲

1.实验目的 通过使用MATLAB软件模拟模拟调制的过程使我们加深对几种模拟调制机制的原理和过程过程的理解。 在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢速度。由于数字符号是按码元间隔不断产生的,经过数字符号--映射为向银行的信号波形后,就形成了数字调制信号。根据映射后信号的频谱特性,可以分成基带信号和频带信号。 通常基带信号指信号的频谱为低通型,而频带信号为带通型。 2实验内容 脚本文件T2F.m定义了函数T2F.m,计算信号的傅里叶变换。 %T2F function [f,sf]=T2F(t,st) %This is a function using the FFT function to calculate a signal's Fourier %Translation %Input is th etime and the signal vectors,the length of time must greater %than 2 %Output is the frequence and the sihnal spectrum dt=t(2)-t(1); T=t(end);

df=1/T; N=length(st); f=-N/2*df:df:N/2*df-df; sf=fft(st); sf=T/N*fftshift(sf); 脚本文件F2T.m定义了函数F2T.m,计算信号的反傅里叶变换。 %F2T function [t,st]=F2T(f,sf) %Ths is function calculate the time signal using lfft function for the input %signal's spectrum df=f(2)-f(1); Fmx=(f(end)-f(1)+df); dt=1/Fmx; N=length(sf); T=dt*N; %-T/2:dt:T/2-dt; t=0:dt:T-dt; sff=ifftshift(sf); st=Fmx*ifft(sff); %st=real(st);

通信原理实验指导书(完整)

实验一:抽样定理实验 一、实验目的 1、熟悉TKCS—AS型通信系统原理实验装置; 2、熟悉用示波器观察信号波形、测量频率与幅度; 3、验证抽样定理; 二、实验预习要求 1、复习《通信系统原理》中有关抽样定理的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、概述 在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。因此,采取多路化制式是极为重要的通信手段。最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础的。在工作设备中,抽样过程是模拟信号数字化的第一步。抽样性能的优劣关系到整个系统的性能指标。 作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。 图1-1 单路PCM系统示意图 为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。 2、抽样定理 抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。因此,对于一个最高频率为3400Hz的语音信号m(t),可以用频率大于或等于6800Hz的样值序列来表示。抽样频率fs和语音信号m(t)的频谱如图1-2和图1-3所示。 由频谱可知,用截止频率为f H的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语音信号,通常采用8KHz抽样频率,这样可以留出1200Hz的防卫带,见图1-4。如果fs<2f H,就会出现频谱混迭的现象,如图1-5所示。 在验证抽样定理的实验中,我们用单一频率f H的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率f H,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

虚拟仪器实验报告四[1]

虚拟仪器实验报告四 专业年级电信081姓名李冬祥学号08808003成绩 一、实验目的:LabVIEW中字符串、数组、簇和矩阵 二、实验内容:LabVIEW基础学习 三、实验步骤:启动LabVIEW,创建VI程序,在前面板(用户界面)和后面板(程序框图)中进行试验。 三、实验结果: 练习1:组合字符串 练习2:字符串子集和数值的提取 练习3:Build Text Express VI

练习4:用循环创建数组 练习5:创建二维数组

练习6:多图区图形 练习7:使用创建数组功能函数 练习8:多态化练习

练习9:簇排序 练习10:簇 四、实验总结: 通过本次实验通作业了解Labview中的字符串、数组、簇和矩阵的用法掌握字符串及其函数在编程中的应用、列表和表格中创建字符串、利用字符串的功能函数组合新的字符串,同时掌握了字符串格式的编辑和Build Text Express VI的建

立与配置。掌握数组的建立和初始化,以及数组之间的基本算术运算。掌握簇的创建及簇操作函数的应用及使用簇与子VI传递数据。 五、实验作业: 1、为第3章的习题2连续温度采集监测添加报警信息,如下图所示,当报警发生时输出报警信息,例如“温度超限!当前温度78.23℃”,正常情况下输出空字符串。 思路:用第三章的 部分程序就可以 实现。 2、对字符串进行加密,规则是每个字母后移5位,例如A变为F,b变为g,x 变为c,y变为d… 思路:按照字母表实现这一加密功能,程序如下图:

3、产生一个3×3的整数随机数数组,随机数在0到100之间,找出数组的鞍点,即该位置上的元素在该行上最大,在该列上最小,也可能没有鞍点。如下图。 思路:按要求产生一个3×3的整数随机数数组,随机数在0到100之间,找出数组的鞍点,即该位置上的元素在该行上最大,在该列上最小,也可能没有鞍点。 4、利用簇模拟汽车控制,如右图所示,控制面板可以对显示面板中的参量进行控制。油门控制转速,转速=油门*100,档位控制时速,时速=档位*40,油量随VI运行时间减少。 思路:利用簇模拟汽车控制,如右图所示,控制面板可以对显示面板中的参量进行控制。油门控制转速,转速=油门*100,档位控制时速,时速=档位*40,油量随VI运行时间减少。

通信原理实验模拟调制系统(AM,FM)实现方法

实验一模拟调制系统(AM,FM)实现方法一、实验目的 实现各种调制与解调方式的有关运算 二、实验内容 对DSB,抑制载波的双边带、SSB,FM等调制方式下调制前后的信号波形及频谱进行观察。要求用system view 或Matlab中的基本工具组建各种调制解调系统,观察信号频谱。 三、实验原理 AM: 1)标准调幅就是常规双边带调制,简称调幅(AM)。将调制信号m(t)与一个直流分量A叠加后与载波相乘可形成调幅信号。AM信号的的频谱由载频分量、上边带、下边带组成。上边带的频谱结构与原调制信号的频谱结构相同,下边带是上边带的镜像。 2)DSB。若在AM调制模型中将A0去掉,即得到双边带信号(DSB)。与AM信号比较,因为不存在载波分量。 3)SSB。单边带调制(SSB)是将双边带信号中的一个边带滤掉而形成的。产生SSB信号的方法有:滤波法和相移法。SSB调制包括上边带调制和下边带调制。 解调: 解调是调制的逆过程,其作用是从接受的已调信号中恢复调制信号。解调的方法可分为两类:相干解调和非相干解调(包络检波)。 1)相干解调。解调与调制的实质一样,均是频谱搬移。即把在载频

位置的已调信号的浦搬回到原始基带位置。 2)包络检波。包络检波器就是直接从已调信号的幅度中提取预案调制信号。 FM: 调制中,若载频的频率随调制信号变化,称为频率调制或调频(FM)。调频信号的产生方法有两种:直接调频和间接调频。 1)直接调频。用调制信号直接控制载波振荡器的频率,使其按调制信号的规律线性变化。 2)间接调频。先将调制信号积分,然后对载波进行调相,即可产生一个NBFM信号,再经n次频倍器得到WBFM信号。 解调: 调频信号的解调也分为相干解调和非相干解调。相干解调仅适用于NBFM信号,而非相干解调对于NBFM和WBFM信号均适用。 四、实验内容 (一)标准调幅信号 实验代码: f=5; T=1/f; fc=500; A=1.5; ts=0.001; fs=1/ts; t=0:ts:2*T; mt=cos(2*pi*f*t)+cos(2*pi*2*f*t);%调制信号 ft=cos(2*pi*fc*t);%载波 yt=(mt+A).*ft;%调幅信号 N=2*T/ts;%设置抽样点数

通信原理实验指导书

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验 (1) 实验二FM调制与解调实验 (5) 实验三ASK调制与解调实验 (8) 实验四FSK调制与解调实验 (11) 实验五时分复用数字基带传输 (14) 实验六光纤传输实验 (19) 实验七模拟锁相环与载波同步 (27) 实验八数字锁相环与位同步 (32)

实验一 AM调制与解调实验 一、实验目的 理解AM调制方法与解调方法。 二、实验原理 本实验中AM调制方法:原始调制信号为1.5V直流+1KHZ正弦交流信号,载波为20KHZ正弦交流信号,两者通过相乘器实现调制过程。 本实验中AM解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解AM调制方法与解调方法。

实验一参考结果

实验二 FM调制与解调实验 一、实验目的 理解FM调制方法与解调方法。 二、实验原理 本实验中FM调制方法:原始调制信号为2KHZ正弦交流信号,让其通过V/F (电压/频率转换,即VCO压控振荡器)实现调制过程。 本实验中FM解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解FM调制方法与解调方法。

通信原理设计性实验

通信原理设计性实验 实验一常用信号及其频谱 一实验目的: 1 使学生掌握用MA TLAB语言获取通信常用信号的方法 2 使学生掌握编程获取信号频谱和功率谱的方法 二实验内容: 1 编程获取通信常用波形(矩形、三角形和抽样信号)及其频谱 2 获取常用信号的功率谱 三实验过程 1 简介MA TLAB 2 讲解矩阵的输入方法,矩阵的加、减、乘除运算 〉〉A=[1 2 3; 2 3 3;3 4 5]; 〉〉A+B; 〉〉A*B 〉〉A/B 〉〉A。*B 3 通信中常用的MA TLAB函数 >>ones(3) >> zeros (3) >> plot >> axis >> title 4 MA TLAB 的判断语句,循环语句,分支语句 1)判断语句 if 表达式1 命令 elseif表达式2 命令 … end 2) 分支语句switch和case switch (a) case 0 case 1 case 2 … Otherwise end 3) 循环语句 for n=3:32 r(n)=n; end

5 程序编写 点击工具栏最左边按钮或菜单栏File---》new- M file, 编程界面如下所示 1)主函数 clear all; close all; T=2*pi; t=0:0.01:T; st=sin(t); [f,sf]=T2F(t,st); subplot(311);plot(t,st); title('信号'); subplot(312);plot(f, abs(sf)); axis([-5 5 0 max(abs(sf))]); title('信号的频谱'); psf=(abs(sf).^2)/T; subplot(313);plot(f,psf); axis([-5 5 0 max(psf)]); title('信号的功率谱密度'); 2)子函数 function [f,sf]=T2F(t,st) dt=t(2)-t(1); T=t(end); df=1/T; N=length(st); f=-N/2*df:df:N/2*df-df; sf=fft(st); sf=T/N*fftshift(sf); 3) 将函数保存,函数名不能是数字或中文,必须英文字母开头,后面可跟数字,函数名

虚拟仪器实验三

虚拟仪器实验报告三 专业年级机电113 姓名胡燕学号2011012579 成绩 一、实验目的: 学习掌握LabVIEW的程序结构,并对基本的结构:顺序结构、for循环,while循环、case结构、事件结构、使能结构、公式节点进行应用。 二、实验内容: 1 顺序结构(Sequence Structure) 2 For循环 3 While循环 4 Case结构 5 事件结构(Event Structure) 6 使能结构 7 公式节点(Formula Node) 8 跟着实例学—模拟温度采集监测系统 9 完成课后习题 三、实验步骤: 1 针对每种程序结构,首先学习程序结构的基本原理以及使用方法。 2 学习怎么在LabVIEW中建立该种程序结构 3 了解该种程序结构的数据基本传送类型 4 学习编写LabVIEW程序 5 完成该程序结构的练习题,加深对该种结构的应用 6完成课后题 四、实验总结: 本次上机实验主要学习了LabVIEW的程序结构,通过多程序结构的学习更加加深了对LabVIEW的兴趣,与其它软件对比,更加了解到LabVIEW 程序结构变成的简单以及实用性。 本次主要学习顺序结构、for循环、while循环、case结构、事件结构、使能结构和公式节点的基本编程方法和原理,以及简单的应用。通过使用各个结构进行编程发现LabVIEW的实用性。老师演示各个例题时发现做题方法的多样性。通过本次编程也对LabVIEW的数据类型以及类型的基本变换更加深入的学习了 本次实验接触到了更多的新知识,实验过程中遇到很多问题,但在老

师的指导下和同学的帮助下都把这些问题一一解决了。本次实验过后对虚拟仪器这门课程有更浓厚的兴趣了。 五、实验作业: 1. 利用顺序结构和timing面板下的tick count VI,计算for循环1000000 次所需的时间。 前面板贴图 第0帧 第一帧

通信原理实验-抽样定理

学生实验报告

) 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。见图4。如果fs<fH,就会出现频谱混迭的现象,如图5所示。 在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。采用标准抽样频率fs=8KHZ。改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。 验证抽样定理的实验方框图如图6所示。在图8中,连接(8)和(14),就构成了抽样定理实验电路。由图6可知。用一低通滤波器即可实现对模拟信号的恢复。为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ

2、多路脉冲调幅系统中的路际串话 ~ 多路脉冲调幅的实验方框图如图7所示。在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。 分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。N路抽样脉冲在时间上是互不交叉、顺序排列的。各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。本实验设置了两路分路抽样电路。 多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。 图7 多路脉冲调幅实验框图 冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。这样大的衰减带来的后果是严重的。但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。但我们知道平顶抽样将引起固有的频率失真。 PAM信号在时间上是离散的,但是幅度上趋势连续的。而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。本实验仅提供一个PAM系统的简单模式。 3、多路脉冲调幅系统中的路标串话 路际串话是衡量多路系统的重要指标之一。路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。 在一个理想的传输系统中,各路PAM信号应是严格地限制在本路时隙中的矩形脉冲。但是如果传输PAM信号的通道频带是有限的,则PAM信号就会出现“拖尾”的现象。当“拖尾”严重,以至入侵邻路时隙时,就产生了路标串话。 在考虑通道频带高频谱时,可将整个通道简化为图9所示的低通网络,它的上截止频率为:f1=1/(2

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

虚拟仪器技术实验报告

成都理工大学工程技术学院 虚拟仪器技术实验报告 专业: 学号: 姓名: 2015年11月30日

1 正弦信号的发生及频率、相位的测量实验内容: ●设计一个双路正弦波发生器,其相位差可调。 ●设计一个频率计 ●设计一个相位计 分两种情况测量频率和相位: ●不经过数据采集的仿真 ●经过数据采集〔数据采集卡为PCI9112〕 频率和相位的测量至少有两种方法 ●FFT及其他信号处理方法 ●直接方法 实验过程: 1、正弦波发生器,相位差可调 双路正弦波发生器设计程序:

相位差的设计方法:可以令正弦2的相位为0,正弦1的相位可调,这样调节正弦1的相位,即为两正弦波的相位差。 2设计频率计、相位计 方法一:直接读取 从调节旋钮处直接读取数值,再显示出来。 方法二:直接测量 使用单频测量模块进行频率、相位的测量。方法为将模块直接接到输出信号的端子,即可读取测量值。 方法三:利用FFT进行频率和相位的测量 在频率谱和相位谱上可以直接读取正弦信号的主频和相位。 也可通过FFT求得两正弦波的相位差。即对信号进行频谱分析,获得信号的想频特性,两信号的相位差即主频率处的相位差值,所以这一方法是针对单一频率信号的相位差。 前面板如下:

程序框图: 2幅频特性的扫频测量 一、实验目的 1、掌握BT3 D扫频仪的使用方法。 2、学会用扫频法测量放大电路的幅频特性、增益及带宽。 二、工作原理 放大电路的幅频特性,一般在中频段K中最大,而且基本上不随频率而变化。在中频段以外随着频率的升高或降低,放大倍数都将随之下降。一般规定放大电路的频率响应指标为3dB,即放大倍数下降到中频放大倍数的70.7%,相应的频率分别叫作下限频率和上限频率。上下限频率之间的频率范围称为放大电路的通频带,它是表征放大电路频率特性的主要指标之一。如果放大电路的性能很差,在放大电路工作频带内的放大倍数变化很大,则会产生严重的频率失真,相应的

通信原理(虚拟仿真实验)

实验五双极性不归零码 一、实验目的 1.掌握双极性不归零码的基本特征 2.掌握双极性不归零码的波形及功率谱的测量方法 3.学会用示波器和功率谱分析仪对信号进行分析 二、实验仪器 1.序列码产生器 2.单极性不归零码编码器 3.双极性不归零码编码器 4.示波器 5.功率谱分析仪 三、实验原理 双极性不归零码是用正电平和负电平分别表示二进制码1和0的 码型,它与双极性归零码类似,但双极性非归零码的波形在整个码元持续期间电平保持不变.双极性非归零码的特点是:从统计平均来看,该码型信号在1和0的数目各占一半时无直流分量,并且接收时判决电平为0,容易设置并且稳定,因此抗干扰能力强.此外,可以在电缆等无接地的传输线上传输,因此双极性非归零码应用极广.双极性非归零码常用于低速数字通信.双极性码的主要缺点是:与单极性非归零码一样,不能直接从双极性非归零码中提取同步信号,并且1码和0码不等概时,仍有直流成分。 四、实验步骤

1.按照图3.5-1 所示实验框图搭建实验环境。 2.设置参数:设置序列码产生器序列数N=128;观察其波形及功率谱。 3.调节序列数N 分别等于6 4.256,重复步骤2. 图3.5-1 双极性不归零码实验框图 实验五步骤2图 N=128

实验五步骤3图N=64 N=256

六、实验报告 (1)分析双极性不归零码波形及功率谱。 (2)总结双极性不归零码的波形及功率谱的测量方法。 实验六 一、实验目的 1.掌握双极性归零码的基本特征 2.掌握双极性归零码的波形及功率谱的测量方法 3.学会用示波器和功率谱分析仪对信号进行分析 二、实验仪器 1.序列码产生器 2.单极性不归零码编码器 3.双极性归零码编码器

通信原理实验指导书161702

通 信 原 理 实 验 指 导 书 (2017版) 编者 张水英 汪泓 浙 江 理 工 大 学 2017年3月

目 录 实验一 常规双边带幅度调制系统设计及性能分析 (1) 实验二 模拟信号数字化传输系统的建模与分析 (6) 实验三 BPSK调制、解调实验 (9)

实验一 常规双边带幅度调制系统设计及性能分析 一、实验目的 1、熟悉常规双边带幅度调制系统各模块的设计; 2、研究常规双边带幅度调制系统的信号波形、信号频谱、信号带宽、输入信噪比、输出信噪比及两者之间的关系; 3、掌握 MATLAB 和SIMULINK 开发平台的使用方法; 4、熟悉 Matlab 与Simulink 的交互使用。 二、实验仪器 带有MATLAB 和SIMULINK 开发平台的微机。 三、实验原理 AM 信号产生的原理图如图1所示。AM 信号调制器由加法器、乘法器和带通滤波器(BPF )组成。图中带通滤波器的作用是让处在该频带范围内的调幅信号顺利通过,同时抑制带外噪声和各次谐波分量进入下级系统。 图1 AM 信号的产生 3.1 AM 信号时域表达式及时域波形图 AM 信号时域表达式为 0()[()]cos AM c s t A m t t ω=+ 式中0A 为外加的直流分量;为输入调制信号,它的最高频率为 ()m t

m f ,无直流分量;c ω为载波的频率。为了实现线性调幅,必须要求 0max ()m t A ≤ 否则将会出现过调幅现象,在接收端采用包络检波法解调时,会产生严重的失真。如调制信号为单频信号时,常定义0(/)AM m A A β1=≤为调幅指数。 AM 信号的波形如图2所示,图中认为调制信号是单频正弦信号,可以清楚地看出AM 信号的包络完全反应了调制信号的变化规律。 t t t t ()m t 0(A m t +cos c t ω s ()AM t 图2 AM 信号波形 3.2 AM 信号频域表达式及频域波形图 对AM 信号进行傅里叶变换,就可以得到AM 信号的频域表达式 ()ω如下: AM S 0()[(AM ()] 1 [)()][()()]2 AM c c c c S s t M M A ωωωωωπδωωδωω==++?+++?F 式中,()M ω是调制信号的频谱。 ()m t

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

虚拟仪器实验3

实验三程序结构 1.用两种方式求连续生成的10个随机数的最小值。答: 程序框图显示结果 方法1 方法2 2.产生100个随机数,求其中的最大值,最小值和这100个数的平均值。 答: 程序框图显示结果3.分析下列两个程序的不同: 答:第一个循环开始前读入数据,如3,之后产生100个15显示,循环过程中改变滑钮值对循环无影响;第二个循环过程中可随时改变,且在循环结束后输出波形。

4.分别利用for循环的移位寄存功能和反馈节点两种方法求0+5+10+15…+45+50的值(等差数列的和)。 答: 位移寄存器法 反馈节点法结果显示 5.用while循环结构产生随机数,画出当前随机数的波形以及当前值和前一次随机数的平均值的波形。 答: 程序框图波形显示图 6.创建一个VI,实现对按钮状态的指示和按钮“按下”持续时间简单计算功能,按下按钮时,对应的指示灯亮,对应的数字量显示控件中开始计时。松开

按钮时,指示灯灭,计时停止。 答: 程序框图显示结果 7.温度报警程序,当温度值大于30则报警,小于-25则退出运行状态。 答: 程序框图显示结果 8.建立一个布尔按钮以及一个字符串显示控件,要求当按钮被按下时,显示“按钮被按下”,当按钮被松开时,显示“按钮被松开”。 答: 程序框图显示结果 9.建立一个枚举控件,其内容为张三,李四,王五三位先生,要求当枚举控件显示“张三”时,输出“张三在这里”;同理,当枚举控件显示“李四”,“王五”时输出“李四在这里”和“王五在这里”。 答:

程序框图结果显示 10.设计一评分程序,输入不同的分数会得到不同的评论,分数小于60,“警告”指示灯会亮起来,同时显示字符串“你没有通过测试!”;分数在60~99之间,“通过”指示灯会亮起来,同时显示字符串“你测试通过了!”;分数为100,“恭喜”指示灯会亮起来,同时显示字符串“你是第一名!”;如果输入为0~100以外的数字,会有错误提示,同时显示字符串“错误!”。 答: 程序框图

通信原理软件仿真实验报告-实验3-模拟调制系统—AM系统

成绩 西安邮电大学 《通信原理》软件仿真实验报告 实验名称:实验三模拟调制系统——AM系统院系:通信与信息工程学院 专业班级:通工 学生姓名: 学号:(班内序号) 指导教师: 报告日期:2013年5月15日

实验三模拟调制系统——AM系统 ●实验目的: 1、掌握AM信号的波形及产生方法; 2、掌握AM信号的频谱特点; 3、掌握AM信号的解调方法; 4*、掌握AM系统的抗噪声性能。 ●仿真设计电路及系统参数设置: 图1 模拟调制系统——AM系统仿真电路 建议时间参数:No. of Samples = 4096;Sample Rate = 20000Hz 1、记录调制信号与AM信号的波形和频谱; 调制信号为正弦信号,Amp= 1V,Freq=200Hz; 直流信号Amp = 2V; 余弦载波Amp = 1V,Freq= 1000Hz; 频谱选择|FFT|; 2、采用相干解调,记录恢复信号的波形和频谱; 接收机模拟带通滤波器Low Fc = 750Hz,Hi Fc = 1250Hz,极点个数6;接收机模拟低通滤波器Fc = 250Hz,极点个数为9;

3、采用包络检波,记录恢复信号的波形和频谱; 接收机包络检波器结构如下: 其中图符0为全波整流器Zero Point = 0V; 图符1为模拟低通滤波器Fc = 250Hz,极点个数为9; 4、在接收机模拟带通滤波器前加入高斯白噪声; 建议Density in 1 ohm = 0.00002W/Hz; 观察并记录恢复信号波形和频谱的变化; 5*、改变高斯白噪声的功率谱密度,观察并记录恢复信号的变化。 仿真波形及实验分析: 1、记录调制信号与AM信号的波形和频谱; 图1-1 调制信号波形 图1-2 AM已调信号波形

2018通信原理实验指导书

实验1 CMI码型变换实验 一、实验目的 1、了解CMI码的编码规则。 2、观察输入全0码或全1码时各编码输出码型,了解是否含有直流分量。 3、观察CMI码经过码型反变换后的译码输出波形及译码输出后的时间延迟。 4、熟练掌握CMI与输入信号的关系。 二、实验器材 1、主控&信号源、2号、8号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 CMI/BPH编译码实验原理框图 2、实验框图说明 CMI编码规则是遇到0编码01,遇到1则交替编码11和00。由于1bit编码后变成2bit,输出时用时钟的1输出高bit,用时钟的0输出低bit,也就是选择器的功能。CMI译码首先也是需要找到分组的信号,才能正确译码。CMI码只要出现下降沿了,就表示分组的开始,找到分组信号后,对信号分组译码就可以得到译码的数据了。

四、实验步骤 概述:本项目通过改变输入数字信号的码型,分别观测编码输入输出波形与译码输出波形,测量CMI编译码延时,验证CMI编译码原理并验证CMI码是否存在直流分量。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。13号模块的开关S3置为0011,即提取512K同步时钟。 3、此时系统初始状态为:PN为256K。 4、实验操作及波形观测。 (1)观测编码输入的数据和编码输出的数据:用示波器分别观测和记录TH38#和TH68#的波形,验证CMI编码规则。 (2)观测编码输入的数据和译码输出的数据:用示波器分别观测和记录TH38#和TH138#的波形,测量CMI码的时延。 (3)断开电源,更改连线及设置。 开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。将模块13的开关S3置为0011即提取512K同步时钟。 将模块2的开关置为00000000 00000000 00000000 00000011,用示波器分别观测编码输入的数据和编码输出的数据,调节示波器,将信号耦合状况置为交流,观察记录波形。保持

通信原理实验报告

通信原理实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用 subplot(311); % 设置3行1列的作图区,并在第1区作图 plot(t,x1); title('占空比25%'); axis([0 ]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 ]); subplot(313); plot(t,x3);

title('占空比75%'); axis([0 ]); 图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4::4; T=4; % 设置信号宽度x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1);

相关主题
文本预览
相关文档 最新文档