当前位置:文档之家› 各种缺陷分析与产生原因

各种缺陷分析与产生原因

各种缺陷分析与产生原因
各种缺陷分析与产生原因

锻造成形过程中的缺陷及其防止方法

一、钢锭的缺陷

钢锭有下列主要的缺陷:

(1)缩孔和疏松

钢锭中缩孔和疏松是不可避免的缺陷,但它们出现的部位可以控制。钢锭中顶端的保温冒口,造成钢液缓慢冷却和最后凝固的条件,一方面使锭身可以得到冒口中钢液的补缩,另一方面使缩孔和疏松集中于此处,以便锻造时切除。

(2)偏析

钢锭中各部分化学成分的不均匀性称为偏析。偏析分为枝晶偏析和区域偏析两种,前者可以通过锻造以及锻后热处理得到消除,后者只能通过锻造来减轻其影响,使杂质分散,使显微孔隙和疏松焊和。

(3)夹杂

不溶于金属基体的非金属化合物称为夹杂。常见的夹杂如硫化物、氧化物、硅酸盐等。夹杂使钢锭锻造性能变化,例如当晶界处低熔点夹杂过多时,钢锭锻造时会因热脆而锻裂。夹杂无法消除,但可以通过适当的锻造工艺加以破碎,或使密集的夹杂分散,可以在一定程度上改善夹杂对锻件质量的影响。

(4)气体

钢液中溶解有大量气体,但在凝固过程中不可能完全析出,以不同形式残存在钢锭内部。例如氧与氮以氧化物、氮化物存在,成为钢锭中夹杂。氢是钢中危害最大的气体,它会引起“氢脆”,使钢的塑性显著下降;或在大型锻件中造成“白点”,使锻件报废。

(5)穿晶

当钢液浇注温度较高,钢锭冷却速度较大时,钢锭中柱状晶会得到充分的发展,在某些情况下甚至整个截面都形成柱状晶粒,这种组织称为穿晶。在柱状晶交界处(如方钢锭横截面对角线上),常聚集有易熔夹杂,形成“弱面”,锻造时易于沿这些面破裂。在高合金钢锭中容易遇到这种缺陷。

(6)裂纹

由于浇注工艺或钢锭模具设计不当,钢锭表面会产生裂纹。锻造前应将裂纹消除,否则锻造时由于裂纹的发展导致锻件报废。

(7)溅疤

当钢锭用上注法浇注时,钢液冲击钢锭模底而飞溅到钢锭模壁上,这些附着的溅沫最后不能和钢锭凝固成一体,便成溅疤。溅疤锻造前必须铲除,否则会形成表面夹层。

二、轧制或锻制的钢材中的缺陷

轧制或锻制的钢材中往往存在如下缺陷:

(1)裂纹和发裂

裂纹是由于钢锭缺陷未清除,经过轧制或锻造使之进一步发展造成的。由于轧制或锻造的工艺规范不当,在钢材内引起很大的内应力,也会造成裂纹。断面大、合金元素多的钢材容易产生裂纹。

发裂是深度为0.50~1.50mm的发状裂纹,它是轧制或锻造时由于钢锭皮下气泡沿变形方向被拉长或夹杂物沿变形方向伸长而形成。发裂一般需经酸洗后才能发现。

(2)伤痕和折叠

伤痕是钢材表面上深约0.2~0.30mm的擦伤、划伤细痕。

折叠一般由于轧制或锻造工艺不当造成。

(3)非金属夹杂和疏松

钢材中的非金属夹杂是直接由钢锭中的非金属夹杂物保留下来的。钢材锻造变形时,夹杂物聚集的部位会形成裂纹。

钢锭中的疏松,由于轧制工艺不当,仍会在钢材中保留下来。

(4)白点

含氢量高的大钢锭,轧制或锻造后由于冷却工艺不当,内部过饱和的氢原子析出聚集在疏松等间隙中成为氢分子,造成巨大的压力,并与钢相变时的组织应力相叠加,使钢材内部产生许多细小裂纹,即为“白点”。但“白点”仅出现在对“白点”敏感性较强的钢种上,例如40CrNi、35CrMo、GCr15等牌号的钢。

裂纹、发裂、伤痕和折叠是表面缺陷,这些缺陷在锻造变形时会进一步发展,使锻件报废,故事先必须清除。非金属夹杂、疏松和“白点”等是内部缺陷,有这方面缺陷的钢材根本不能使用。

加热过程中的缺陷及其防止方法

金属在锻造加热过程中可能产生的缺陷有氧化、脱碳、过热、过烧和开裂等。正确的加热应尽量减少或根本防止这些缺陷的产生。

一、氧化

氧化是金属加热时炉气中的氧化性气体(如O2、CO2、H2O、SO2)与金属发生化学反应,在金属表面形成氧化皮的现象。

1、氧化皮的形成过程

钢材表层的铁以离子状态由里向外表面扩散,而氧化性气体中的氧以原子状态由钢材外表面经吸附后向里层扩散。

氧化皮分为三层,如图17.1所示。其最外层是含氧较高的Fe2O3,约占氧化皮厚度的10%;中间层是粗大颗粒的Fe3O4,约占氧化皮厚度的50%;最里层是含氧较低的FeO,约占氧化皮厚度的40%。

图17.1 氧化皮形成过程示意图

由于氧化皮的膨胀系数和钢材不同,因此较易脱落;同时氧化皮的熔点(1300~1350℃)较低,高

温时易熔化。氧化皮的脱落和熔化,使新暴露的钢料表面继续氧化,增加金属的损耗。

2、氧化皮的危害

(1)它直接造成了金属的损耗(称为火耗);

(2)降低模锻件的表面质量;

(3)锻件表面附着氧化皮,热处理时导致锻件组织和性能的不均匀;

(4)氧化皮的硬度较高,模锻时会加速锻模型腔的磨损,机加工时会加速刀具的损坏;

(5)氧化皮呈碱性,脱落在加热炉的炉膛内会和酸性的耐火材料起化学反应,缩短加热炉寿命;

(6)使模锻件增加酸洗或喷丸等清理工序。

3、防止和减少氧化的具体措施

火焰炉加热时为了防止或减少氧化皮的产生,可采取以下措施:

(1)在确保金属加热质量的前提下,尽量采用高温下装炉的快速加热方法,缩短金属在炉内的停留时间,特别是缩短金属在高温下的保温时间;

(2)严格控制进入炉内的空气量,在燃料完全燃烧的条件下,尽可能减少过剩空气量;

(3)注意消除燃料中的水分,避免水蒸气对金属表面的氧化作用;

(4)炉膛应保持不大的正压力,防止炉外冷空气吸入炉内;

(5)操作上应做到少装炉、勤装炉及适时出炉;

(6)采用少、无氧化火焰加热炉。

二、脱碳

脱碳是钢材表层的碳在高温下与氧化性炉气(如O2、CO2、H2O)和H2发生化学反应,生成CO 和CH4等可燃气体而被烧掉,使钢材表层碳成分降低的现象。

1、脱碳的危害

(1)使锻件加工后的零件表面变软,强度和耐磨性降低;

(2)使锻件加工后的零件疲劳强度降低,零件在长期交变应力作用下易发生疲劳断裂。但是,如果脱碳层的厚度没有超过模锻件的机械加工余量,则脱碳层可随切屑除去而无危害。

2、防止脱碳的具体措施

坯料加热时应防止和减少脱碳,尤其对于弹簧钢、工具钢和轴承钢等锻件以及精密模锻件更应尽可能防止脱碳。

火焰炉加热时防止和减少脱碳的措施有:

(1)采用高温下装炉的快速加热方法,尤其应缩短坯料在加热炉内高温阶段的停留时间;

(2)加热前坯料表面涂刷上保护涂层,例如石墨粉与水玻璃混合剂、硼砂水浸液、玻璃粉涂料等。

三、过热

钢材在加热过程中的加热温度超过某一温度,或在高温下保温时间过长,导致奥氏体晶粒急剧粗大的现象,称为过热。

钢材的过热受到加热温度和保温时间两个因素的影响,其中前者对奥氏体晶粒的粗大有更大的影响。通常,将钢材加热时晶粒开始急剧长大的温度,称为晶粒长大的临界温度。

几种钢材加热时晶粒长大的临界温度见表17-1。

表17-1 几种钢材加热时晶粒长大的临界温度

过热会引起以下问题:

(1)过热严重的钢材,锻造时边角可能产生裂纹;

(2)一般性过热的钢材,并不影响锻造;但过热的钢材锻造的锻件,其晶粒度比正常的锻件粗大,使锻件的冲击韧性、塑性和强度等机械性能降低;

(3)过热的钢材锻造的锻件在淬火过程容易引起变形和开裂。

过热的钢材,如果条件允许,可用热处理或再次锻造的方法使晶粒细化;但是有一些钢材过热后是无法用热处理改正的。所以,严格控制钢材的加热温度和保温时间,是防止过热的最好措施。

四、过烧

当钢材加热到接近熔点时,不仅奥氏体晶粒粗大,而且炉气中的氧化性气体渗入晶粒边界,使晶间物质Fe、C、S发生氧化,形成易熔的共晶体,破坏了晶粒间的联系,这种现象称为过烧。

过烧的钢材,强度很低,失去塑性,不能锻造;若进行锻造,在锻造时一击便破裂成碎块,断口晶粒粗大,呈浅灰蓝色。可见,过烧的钢材是不可补救的废品,只有回炉重新冶炼。

钢材的过烧温度因钢种而不同。由表17-2可见,碳钢含碳量越高,过烧温度越低,越易过烧;低碳合金钢中含Mn、Ni、Cr等元素,使钢较易过烧。例如0.2%C的碳钢,过烧温度为1470℃;0.5%C 的碳钢,过烧温度为1350℃;1.1%C的碳钢,过烧温度为1180℃。

表17-2 部分钢材的过烧温度

防止钢材过烧的措施有:

(1)严格控制加热温度和高温下的保温时间;

(2)控制炉内气体成分,尽量减少过剩的空气量,造成弱氧化性炉气;

(3)使钢材与喷火口保持一定的距离,严禁火焰与钢材直接接触,以防止局部过烧;

(4)采用电阻炉加热时,钢材和电阻丝的距离不应小于100mm ,以免局部过烧。

五、开裂

如果金属在锻造加热过程的某一温度下,其内应力(一般指拉应力)超过它的强度极限,那么就要产生裂纹。通常内应力有温度应力、组织应力和残余应力。

1、温度应力

金属在加热时,其表面和中心部位之间存在温度差而引起不均匀膨胀,使表面受到压应力、中心部位受到拉应力;这种由于温度不均匀而产生的内应力叫温度应力。

温度应力的大小与金属的性质和断面温度有关。一般只有金属出现温度梯度,并处在弹性状态时,才会产生较大的温度应力并引起裂纹。

钢材在温度低于500~550℃时处在弹性状态,在这个温度范围以下,必须考虑温度应力的影响;当温度超过500~550℃时,钢的塑性比较好,变形抗力较低,通过局部塑性变形可以使温度应力得到消除,此时就不会产生温度应力。

温度应力一般都是处于三向拉应力状态。加热时圆柱坯料中心部位受到的轴向温度应力较径向和切向温度应力都大,因此金属加热时心部产生裂纹的倾向性较大。

2、组织应力

具有相变的钢材在加热过程中,表层首先发生相变,心部后发生相变,并且相变前后组织的比容发生变化,这样引起的内应力叫组织应力。

在钢材加热过程中,表层首先发生相变,珠光体变为奥氏体;由于比容的减小,在表层形成拉应力,心部为压应力。当温度继续升高时,心部也发生相变;这时心部为拉应力,表层形成压应力。由于相变时钢材已处在高温,其塑性较好,尽管产生组织应力,也会很快被松弛消失;因此在钢材的加热过程中,组织应力无危险性。

3、残余应力

金属在凝固和冷却过程中,由于外层和中心的冷却次序不同,各部分间的相互牵制将产生残余应力。外层冷却快,中心冷却慢,因此残余应力在外层为压应力,在中心部分为拉应力。当残余应力超过了金属的强度极限时,金属将产生裂纹。

综合上述,金属在锻造加热过程中,由于内应力引起的裂纹,主要是温度应力造成的。一般来讲,裂纹发生在加热低温阶段,且裂纹发生的部位在心部。因此,钢在500~550℃以下加热时,应避免加热速度过快,降低装炉温度。

自由锻件的主要缺陷

在自由锻造生产中,锻件的缺陷产生与如下因素有关: (1)原材料及下料所产生的缺陷未加清除; (2)锻造加热不当;

(3)锻造操作不当或工具不合适; (4)锻后冷却或热处理不当等。 所以,在自由锻造生产过程应掌握各种情况下产生缺陷的特征,以便在发现锻件缺陷时进行综合分析,找出锻件产生缺陷的原因,采取改进锻造工艺等措施来防止缺陷的产生。

一、横向裂纹

1、表面横向裂纹

锻造时坯料表面出现较浅的横向裂纹,是由于钢锭皮下气泡暴露于空气中不能焊合而形成,其深度可达10mm 以上。一些塑性较差的金属,相对送进量

h

l

过大时也会产生这种缺陷。 锻造时坯料表面出现较深的横向裂纹,是由于钢锭浇注不当所造成。例如,钢锭模内壁有缺陷,产生“挂锭”现象,冷却时便拉裂;高速、高温浇注,钢锭外皮成形较慢及钢锭模受到摆动;钢锭与锭模铸合等原因。

表面横向裂纹往往在锻造时第一火即出现。一经发现,大型锻件可用吹氧除去,以免裂纹在以后锻造中扩大。

2、内部横向裂纹

这是锻件内部的缺陷,只能通过磁力探伤、超声波检查才能发现。

产生的原因是:冷钢锭加热时在低温区加热速度过快,中心引起较大拉应力造成;或者塑性较差的高碳钢、高合金钢在锻造操作时相对送进量

h l (或D

l

)过小造成。 二、纵向裂纹

1、表面纵向裂纹

在第一火拔长或镦粗时出现。

产生的原因是:钢锭模内壁有缺陷或新钢锭模使用前未很好退火;浇注操作不当,例如高温、高速浇注,引起凝固外皮破裂;钢锭脱模后冷却方式不当或脱模过早;倒棱时压下量过大;钢锭轧制时产生纵向划痕等。

表面纵向裂纹锻造时一经发现立即用吹氧除去,以免裂纹在以后锻造中扩大。 2、内部纵向裂纹

锻件内部纵向裂纹有三种情况:

(1)坯料近冒口端中心出现的纵向裂纹

这是由于钢锭凝固时缩孔未集中于冒口部分,或者锻造时冒口端的切头量过少,使坯料近冒口端存在二次缩孔或残余缩孔,锻造后引起内部纵向裂纹。

(2)坯料内部出现的中空纵向裂纹

这是由于平砧拔长圆截面坯料,中心部分金属受拉应力作用所致;或者由于坯料加热未透,内部温度过低,拔长时内部沿纵向开裂等。

(3)坯料内部出现的纵向“十字”裂纹

这是由于拔长时送进量过大,或在同一部位反复拔长所致。这种内部纵向“十字”裂纹多出现在高合金钢中。

三、炸裂

系坯料在锻造前加热时或锻件在冷却、热处理后表面或内部炸开而形成的裂纹。

产生炸裂的原因是:由于坯料具有较高的残余应力,在未予消除的情况下,错误地采用快速加热或不适当的冷却所致。

四、自行开裂

系锻件在锻造或热处理后产生,或锻后经过长时间后发生。

发生的原因是:坯料在锻造过程中已形成微小裂纹,冷却或热处理使之加剧;或由于锻件内部有较大残余应力所致。

五、龟裂

系锻造时在锻件表面出现的“龟甲状”浅裂纹。

产生的原因是:由于钢中Cu、Sn、As、S的含量较多,或者在加热炉中加热铜料后未除尽炉渣,溶化的铜渗入钢坯的晶界,造成钢坯热脆;或者是由于坯料始锻温度过高、开始锻造时锤击过重等原因造成。

钢坯表面较浅的龟裂裂纹应及时清除,清除后不妨碍继续锻造。

六、过烧

系加热时氧化性气体渗入钢坯的晶界,使Fe、C、S发生氧化,形成易熔共晶体氧化物,锻造时一锤击钢坯便破碎的现象。

过烧钢坯的断裂面,晶粒粗大,失去金属的光泽。

产生过烧的条件是加热温度过高,或加热时间过长,在这种条件下,易于使晶界氧化和熔融。

七、晶粒度局部粗大

系锻件表面或内部在局部区域发生的晶粒粗大现象。对于结构钢来说,是由于钢中残余铝的含量不够,影响钢坯的本质晶粒度(本质晶粒度是反映钢加热时奥氏体晶粒长大倾向的一个指标,一般冶炼时用铝脱氧的钢都是本质细晶粒钢);或者是由于坯料加热温度过高,锻造比又较小,也会出现这种缺陷。对于奥氏体类高合金钢来说,锻造时变形不均匀、工具预热温度低、坯料与工具间接触摩擦大等原因,便会导致锻件晶粒度局部粗大的现象。

八、白点

系锻件内部银白色、灰白色的圆形裂纹,含Ni、Cr、Mo、W等元素的合金钢大型锻件中容易产生。

其产生原因是:钢中含氢量过高,而锻后的冷却或热处理工艺不恰当,便会产生这种缺陷。

九、疏松

系指沿钢锭中心的疏松组织锻造时未锻合。

其产生原因是:钢锭本身疏松较严重;或者是锻造比不适当、变形方案不佳;或者是相对送进量过小,不能锻透等。

十、非金属夹杂

锻件内部有较集中的非金属夹杂,是一个严重缺陷。有显微非金属夹杂是不可避免的,可不认为是缺陷。锻件内部非金属夹杂的含量和分布情况,与钢的精炼和铸锭有关;而锻件内部非金属夹杂的分散和破碎程度,与锻造时变形量和变形方案有关。

十一、化学成分不合适

锻件的化学成分不符合要求,是属于炼钢的问题,或由于备料时产生差错。

十二、机械性能达不到要求

锻件的强度不合格,主要与炼钢和热处理有关,不是锻造引起的。锻件的塑性指标和冲击韧性不合格,可能是由于钢冶炼时杂质太多;也可能由于锻造比不够大,例如锻件横向试件的塑性和冲击韧性不够,往往是由于锻造时镦粗比偏小造成。

十三、折叠

锻件表面的折叠缺陷,是金属不合理流动造成。

其形成原因是:砧子形状不适当,砧边圆角半径过小;拔长时送进量小于单边压下量等。

十四、歪斜和偏心

锻件的端部歪斜和中心线偏移等缺陷,是由于锻造工艺不合理、操作方法不当或坯料加热不均匀(例如有阴阳面)等原因造成。

十五、弯曲和变形

锻件产生弯曲或变形,主要是由于锻造时的修整工序没有做好,或由于锻后冷却或热处理工序操作不当所造成。

模锻件的常见缺陷

在模锻生产中,锻件会产生各种各样的缺陷。而产生缺陷的原因,也是多方面的。例如原材料本身有缺陷,备料质量不好,模具设计不合理,模具加工不符合技术要求,加热、锻造、热处理、清理等操作不正确。所以,在分析模锻件缺陷时应从多方面来考虑缺陷产生的原因,以便采取正确的对策。

一、错移

错移是锻件沿分模面上半部对下半部产生了位移。

产生错移的原因有:

(1)锻锤导轨的间隙过大;

(2)上、下模安装调整不当或锻模检验角有误差;

(3)锻模紧固部分有问题,例如燕尾磨损、斜楔松动等。

在模锻成形过程中,锻模常易产生错移。因此,在模锻成形过程中,正确的找出锻模错移的原因,迅速而准确地调整好锻模,是非常重要的。

二、充不满

金属未完全充满锻模型腔,造成锻件局部地区“缺肉”的现象,称为充不满。

出现充不满的原因有:

(1)坯料尺寸偏小,体积不够;

(2)坯料放偏,造成锻件一边“缺肉”,另一边因料过多而形成大量飞边;

(3)加热时间过长,火耗太大;

(4)加热温度过低,金属流动性差;

(5)锻造设备吨位不足,锤击力太小;

(6)润滑不当;

(7)制坯、预锻型腔设计不合理,或终锻型腔飞边槽阻力小;

(8)操作方法不正确,例如滚挤时,操作者打击次数过少,没有达到滚挤的要求,或是误将坯料前后移动,使已经滚挤出来的大截面压扁压小,这样终锻时就充不满型腔;

(9)氧化皮清除不及时,例如滚挤型腔内氧化皮积存过多。使滚挤的坯料不能形成最大截面,终锻时就会充不满型腔;

(10)终锻型腔磨损严重。

三、锻不足

锻不足又称“欠压”,是指模锻件高度方向尺寸全部超过图纸的规定。

出现锻不足的原因有:

(1)原坯料重量过大;

(2)设备吨位不足,锤击力太小;

(3)加热温度偏低;

(4)制坯型腔设计不当或飞边阻力过大。

四、压伤

压伤是指模锻过程中锻件被局部压坏。

出现压伤的原因有:

(1)锤击中锻件跳出型腔被连击压坏;

(2)设备失控,单击时发生连击;

(3)切边时锻件在凹模内未放正。

五、折叠

由于模锻时金属流动不合理在锻件表面形成重叠层的现象称为折叠,也称折纹或夹层。

产生折叠的原因有:

(1)拔长、滚挤时坯料未放正,放在型腔边缘,一锤击便形成压痕,再翻转锤击时便形成折叠;

(2)拔长、滚挤时最初几次锤击过重,使坯料压扁展宽过长,随后翻转锤击时扁料便失稳而弯折,形成折叠;

(3)有轮毂、轮幅、轮缘的齿轮锻件,坯料中间镦粗的直径尺寸过小,终锻时会在轮缘转角处形成折叠;

(4)带有连皮或幅板的复杂模锻件,预锻型腔设计不当,模锻时造成金属回流,形成折叠。

六、表面凹坑

凹坑是指锻件表面形成的局部凹陷。

产生凹坑的原因有:

(1)坯料加热时间过长或粘上炉底熔渣,锻出的锻件清理后表面出现局部凹坑或麻点;

(2)型腔氧化皮未除净,模锻时氧化皮压入锻件表面,经清理后出现凹坑。

七、尺寸不足

尺寸不足是指锻出的锻件尺寸偏差小于负公差。

出现尺寸不足的原因有:

(1)终锻温度过高或设计终锻型腔时考虑收缩率不足;

(2)终锻型腔变形;

(3)切边模调整不当,锻件局部被切。

八、翘曲

翘曲是指锻件中心线发生弯曲,细长或扁薄的锻件一般易产生翘曲变形。

产生翘曲的原因有:

(1)锻件从型腔中撬起时发生弯曲变形;

(2)切边时由于受力不均;

(3)冷却时收缩不一致;

(4)热处理操作不当。

九、氧化皮压入锻件

钢加热后在其表面都附有氧化皮,虽然经镦粗、拔长或滚挤工序后可以消除,但有时会将脱落的氧化皮吹入终锻模膛内,一经锻造就将氧化皮压入锻件表面,往往造成锻件的报废。

十、残余飞边

锻件切边未净,有残余飞边。

出现残余飞边的原因有:

(1)切边模与终锻型腔尺寸不符;

(2)切边模磨损或锻件切边时放置不正;

(3)锻件本身错移量大。

十一、锻件流线分布不正确

由于操作者违反锻造工艺规程使锻件纤维组织的纤维分布紊乱,造成锻件达不到锻件技术条件上对锻件流线分布的规定,称为锻件流线分布不正确。

不是所有的零件都有流线要求,只是重要零件才有这种要求。所以在操作时要按照锻造工艺规程上规定的操作方法进行,否则会造成锻件流线分布不均匀或方向不正确而影响锻件机械性能,造成零件报废。

其产生原因有:

(1)毛坯镦粗方法不正确,如发动机上的齿轮就有流线要求,若违反了锻造工艺规程中的镦粗后终锻这一工序的要求,虽然也能得到外形轮廓完整的锻件,但其金属纤维分布紊乱或不正确,严重地影响锻件机械性能,造成锻件报废。

(2)毛坯在模膛中放歪,往往造成锻件流线分布紊乱不均,以至达不到零件质量要求。

十二、发裂和裂纹

锻件表面产生发裂和裂纹的原因有:

(1)钢锭皮下气泡被轧长,模锻及酸洗后呈现出细小长裂纹,即发裂;

(2)坯料剪切下料不当,造成端部裂纹,经模锻后裂纹不仅不能消除,而且可能发展;

(3)原坯料的表面伤痕,经模锻后发展为裂纹;

(4)合金钢锻件冷却或热处理不当。

十三、夹渣

夹渣是原材料断面上有夹渣造成。由于冶炼时耐火材料等杂质熔入钢液,轧制成钢材后内部就保留有夹渣。

十四、过热和过烧

坯料加热不当,轻则使坯料过热,得到晶粒粗大的锻件;重则使坯料过烧,锻出的锻件报废。

十五、晶粒粗大

锻件产生晶粒粗大的原因,除坯料加热时发生过热外,终锻温度过高也会使锻件在冷却过程中发生晶粒粗大。

高速钢锻件的裂纹

高速钢的锻造缺陷主要是裂纹。

一、碎裂

碎裂的特征是初锻时便裂成碎块,如图17.2所示。其产生原因是加热温度过高或在高温下停留时间过长,使锻件发生过烧而造成的。

图17.2 碎裂

二、对角线十字裂纹

矩形截面坯料拔长时,在端面或内部产生的对角线十字裂纹,如图2.78(a )所示。其产生原因是平砧拔长时坯料截面对角线上产生剧烈的交变剪切变形(如图2.78(b )和图2.78(c )所示),如果坯料心部有疏松、偏析、夹杂等缺陷,加热时坯料心部已发生了过烧或过热,拔长送进量过大,锤击过重等,都可能使高速钢锻件产生对角线十字裂纹。

三、中心裂纹

这是一种出现在锻件内部和两端面中心位置上的裂纹,如图17.3所示。它产生于圆截面坯料开始拔长,即由圆形拔成方形时,或在拔长以后滚圆锻件时。其产生原因是由于在拔长、倒角或滚圆时坯料的水平方向出现拉应力(如图2.76所示),愈靠近轴心部分受到的拉应力愈大;再加上坯料本身心部有缺陷,或加热时心部已过烧或过热,或坯料温度过低等,都会造成中心裂纹。

图17.3 中心裂纹

因此,高速钢锻造成形过程中,开始拔长时或倒角、滚圆时应控制锤击力,滚圆最好在摔模里进行。

四、横向裂纹

横向裂纹是指在锻件内部存在的裂纹方向垂直于拔长坯料轴线方向的裂纹。横向裂纹有两种:横向内裂和横向外裂。如图17.4所示,如果拔长时送进量

5.0

L

,则会由于坯料中心纵向拉应力造成横向内裂;如果拔长时送进量

8.0>h

L

,则会由于坯料外侧的切向拉应力造成横向外裂。

(a )拔长送进量

h

L (b )横向内裂

(c )横向外裂

图17.4 横向裂纹

五、角裂

角裂是反复镦拔时出现于与轴线方向垂直的表面裂纹,往往从棱角处开始产生,如图17.5所示。由于拔长锤击的印痕未压平,随后镦粗时沿印痕弯曲或皱折而引起裂纹;锤砧圆角半径太小,拔长时送进量小、压下量大,产生夹层。由于拔长棱角处温度容易下降,塑性降低,所以往往就从棱角处开始裂开。

图17.5 角裂

六、表面纵向裂纹

表面纵向裂纹常见于扁薄形锻件(如图17.6所示)。其产生原因是由于拔长扁方坯料时,如果宽度超过厚度3倍,则翻转90°锻造侧面时就产生弯曲现象,出现折叠,随后形成裂纹。

图17.6 表面纵向裂纹

七、萘状断口

萘状断口的特征是断口上呈鱼鳞状白亮闪点,晶粒粗大(如图17.7所示)。其产生原因是终锻温度过高(超过1000℃),终锻时变形量又小(%15~%10<ε

),达到了临界变形程度的范围;此

时钢的韧性很低,使用时容易崩刃和折断。

这种缺陷热处理无法消除。只有将最后一火的终锻温度严格控制在930℃以下,并保证有足够的变形量,才能防止。

图17.7 萘状断口

有色金属锻件的缺陷

除了充不满、变形等几何尺寸不合格外,有色金属锻件还会出现一些特殊缺陷。

一、铝合金锻件的缺陷

表17-3为铝合金锻件的主要缺陷、形成原因和防止方法。

表17-3 铝合金锻件的主要缺陷、形成原因及防止方法

二、铜合金锻件的缺陷

表17-4为铜合金锻件的主要缺陷、形成原因和防止方法。

三、钛合金锻件的缺陷

表17-5为钛合金锻件的主要缺陷、形成原因和防止方法。

锻件的质量检验

锻件的质量检验包括锻件的外观检验、机械性能检验和内部质量检验等。为了保证锻件的质量,除在生产过程中要随时对锻件作外观检验外,对锻后的锻件还必须根据技术要求进行外观、机械性能或内部质量的检验。至于检验的数量,应根据锻件的重要性、批量大小因素而定,进行100%检验或一定数量的抽查。

一、锻件的外观检验

锻件的外观检验包括表面质量检验及尺寸和形状的检验。

1、表面质量检验

表面质量的检验方法是用肉眼或5~10倍放大镜观察锻件表面有无裂纹、折叠、凹坑、“缺肉”、压坏、表面过烧等缺陷。如有裂纹、折叠、凹坑等缺陷,经打磨后按锻件图技术要求判断验收与否。

为了便于发现表面缺陷,最好将锻件进行酸洗或喷砂清理后检验。

2、尺寸和形状的检验

锻件尺寸和形状的检验,应以锻件图为依据。

一般锻件尺寸和形状的检验,采用通用的测量工具或专用的测量工具进行。通用的测量工具有钢尺、卡钳、游标卡尺、深度尺、角尺等。专用的测量工具有卡规、塞规、样板及各种检验夹具等。

其检验内容和方法如下:

(1)锻件长、宽、高尺寸和直径的检验

可用卡钳、卡尺等进行检验,也可使用样板、卡规等进行检验。图15.1表示用样板检验台阶轴锻件的长度尺寸。图15.2表示用卡规检验锻件的直径或高度。

(2)锻件内孔的检验

无斜度时可用卡尺、卡钳等,有斜度时可用塞规。

(3)锻件弯曲的检验

通常将锻件放在平台上滚动,或用两个支点将锻件支起并转动锻件,用千分表或划线盘测量其弯曲的数值,如图15.3所示。

(4)锻件翘曲度的检验

就是检验锻件一平面与另一平面是否在同一平面上或保持一定的位置。通常是将锻件放在平台上,将它的一端放平,测量另一端翘起的高度 ,如图15.4所示。

(5)锻件特殊曲面的检验

例如叶片的型线部分,可用专门的型线样板检验。

(6)锻件错差的检验

就是检验锻件的错移量。对于简单的锻件,可凭经验或借助于简单工具观察其错差是否在允许的范围之内,也可以用样板检验,如图15.5所示。对于复杂的锻件,可用划线检验方法。

形状复杂的模锻件,其尺寸和形状的检验,可用划线检验方法。由于模锻件的划线检验工作量较大,一般只用于新锻模(或锻模修磨后)的首件检验,以便确定锻件是否合格及新锻模的制造精度;在锻模使用过程中以及生产到最后的几个锻件,也使用划线检验,用以检验锻件的尺寸形状及了解锻模型腔的磨损情况。

划线检验除使用通用测量工具及一些专用测量工具外,还需用划线平台、方箱、V形块、划线盘等。划线前应做好如下准备工作:

1)、除去锻件表面的污垢、氧化皮以及飞边等;

2)、在锻件表面拟划线之处涂色,例如涂酒精色溶液或粉浆;

3)、凡是孔、凹坑,需要测量其直径或中心距时,需塞以木、铅、铝或铜制的塞块。

划线时,通常要利用锻件中心线或某一平面作为划线基准,然后利用V形块、小千斤顶等工具将作基准的中心线或某一平面调成水平,或将锻件压在方箱上调成垂直,锻件的其他加工界线都以此为基准进行测量和划线。划线基准有时与锻件图上的尺寸基准一致辞。划线基准选择得合理,可使划线方便、

准确。

图15.6(a )所示是用划线法检验锻件错差的例子,先划出锻件上半部的中心线,再划出下半部的中心线,便可测量出错差?。图15.6(b )所示是用划线法测出连杆锻件大头及大头孔的偏移量。

二、锻件的机械性能检验

锻件的机械性能检查是按照锻件技术要求所进行的检验项目。一般重要的锻件需进行此项检验。 锻件机械性能检验的内容有:硬度试验、拉伸试验、冲击韧性试验、疲劳试验及高温蠕变试验等。 1、硬度试验

硬度试验是在锻件表面上用砂轮磨出一块光洁的试验平面,在硬度机上测试,得出硬度值HB 或HRC 的大小。硬度试验常在热处理工段进行。硬度试验是生产中最常用的,也是判断机械性能最简单的方法。 2、拉伸试验

拉伸试验用来检验金属材料的强度和塑性,是机械性能试验中最基本的方法。进行拉伸试验,必须在锻件上切取预留的试棒,制备好试件,在材料试验机上进行试验,以获得强度极限b σ、屈服极限s σ、断面缩减率

δ及延伸率ψ

等数据。

3、冲击韧性试验

进冲击韧性试验,也必须在锻件上切取预留的试棒,制备好试件,在冲击试验机上进行试验,以测出冲击韧性

k α的数据。受冲击载荷与振动载荷的零件,或在高温高速下工作的零件,一般需进行冲

击试验。

一些重要的大型锻件,或在特殊条件下工作的零件,根据技术要求还要进行疲劳、高温、蠕变等试验。

三、锻件内部质量检验

锻件内部质量检验的目的,是检验锻件内部的缺陷和组织状态。其检验方法有:磁粉检验、荧光检验、超声波检验、宏观(低倍组织)检验、微观(高倍组织)检验等。 1、磁粉检验

磁粉检验也称磁力探伤,可用来发现锻件表面层中微小的缺陷,如发裂、折叠、夹杂等。

磁粉检验方法是将模件置于两磁极之间,就有磁力线通过;若锻件有裂纹、气孔及非磁性夹杂等存在,则磁力线将绕过这些缺陷而发生弯曲现象;若缺陷在表面层,则弯曲的磁力线将漏到空气中,绕过缺陷,再回到锻件内部。这种漏磁现象在漏磁部位产生一个局部磁极,如图15.7中a 、

b 两处所示。

当移去外加磁极后,局部漏磁磁极仍保持相当长的时间,如将磁粉撒在锻件表面,则磁粉被吸于漏磁处,就会堆积成和缺陷的大小、形状相似的痕迹,这样就能探测到锻件表层的缺陷。但如果缺陷较深,磁力线不漏到锻件表面之外,则无法产生局部漏磁磁极,也就不能吸引磁粉来显示锻件内的缺陷,如图15.7中c 、

d 两处所示。因此,磁粉检验只能显示出锻件表面上和表层一定深度处的缺陷,无法探查出过

深的内部缺陷;此外,磁粉检验也不能用来检验非铁磁性材料的内部缺陷。

图15.7 磁力线在锻件上的弯曲现象

磁粉检验时应使磁场方向和裂纹方向垂直。若方向平行,则不能产生局部漏磁磁极,或因磁极微弱难以显示缺陷。如图15.8(a)所示为试样纵向磁化,可以清晰显示横向裂纹;图15.8(b)为试样周向磁化,可以显示纵向裂纹。如果锻件上有不同方向的缺陷,则应使锻件受到两个垂直方向的磁化,以便检验出这些缺陷。

磁粉检验要求试件表面光滑,其表面粗糙度参数≤Ra1.6μm。

为了便于切削加工,磁粉检验后锻件还应进行退磁处理。

(a)纵向磁化

(b)横向磁化

图15.8 磁化方向与缺陷方向

2、荧光检验

对非磁性锻件的表层缺陷,可采用荧光检验,即荧光探伤。

荧光检验是用荧光液渗透到锻件裂纹中,借助显示剂在荧光探伤仪紫外线的照射下,锻件缺陷处便发出清晰的荧光。

荧光检验可以显示肉眼看不到的、宽度小于0.005mm的表面裂纹,适用于各种金属材料和不同大小锻件的检验。

3、超声波检验

超声波能迅速而准确地发现锻件表层以内的宏观缺陷,如裂纹、夹杂、缩孔、白点以及气泡的形状、位置和大小,但对缺陷性质不易判断,必须配合以标准试块、或积累经验进行推断。

超声波检验具有穿透能力大(探测深度可达10m)、灵敏度高、操作简单迅速、对人体无害等优点,同时能探测出缺陷的位置、形状和大小(但不能判断缺陷的性质),所探缺陷可小至1~2mm,目前已成为大型锻件内部缺陷的主要检验方法。

使用超声波探伤时,锻件的探测表面一般须具有表面粗糙度参数Ra3.2μm。

超声波检验是以石英转换器,将电能通过石英转化为相同频率的声能,以油或水层为介质,使声波射入锻件内部。如无缺陷,超声波穿透锻件后反射回来;如果在锻件内部碰到裂纹、夹杂等缺陷,则一部分超声波首先反射回来,而另一部分一直穿透到锻件的底部再反射回来。反射回来的超声波又通过石英转换器转换为电能,再通过接受、放大、检波输送到示波器的荧光屏上。荧光屏首先接到的是缺陷脉冲反射讯号,然后才接受到锻件底部反射回来的脉冲讯号。由这些讯号的比较,可判断锻件内的缺陷。

探测裂纹、夹杂等缺陷时,超声波穿透方向应与缺陷方向垂直,否则无缺陷讯号输出,如图15.9中的探头放在1的位置上,荧光屏上没有缺陷讯号。若探头处于2的位置上,则能接受到缺陷讯号。对于气孔,疏松之类缺陷,可以从四个方向进行探测。

图15.9 超声波检验示意图

4、锻件宏观(低倍组织)检验

宏观检验就是用肉眼或借助低倍放大镜观察锻件表面或截面上的缺陷,如裂纹、偏析、白点、非金属夹杂、过热和过烧等。生产中常用的检验方法有:酸蚀、断口、硫印等。

酸蚀检验是利用酸液将材料的宏观组织显示,可以检验锻件的流线、偏析、缩孔、空洞、白点、夹杂、裂纹等。酸蚀方法有热酸蚀和冷酸蚀两种。热酸蚀适用于中小型锻件或切片。热酸蚀时,一般钢锻件用1:1的工业浓盐酸水溶液,工作温度为65~80℃,浸蚀时间为10~30min.。

断口检验可以检验由于原材料有缺陷,或由于加热、锻造、热处理不当所造成的缺陷。断口检验可直接观察锻件的断口,或从锻件切取试棒按YB46-64规定制备断口试样进行观察。

硫印检验是检验钢中硫化物杂质及其分布情况。方法是将试样用砂纸磨平并保持磨面潮湿,另将相纸浸入5%硫酸水溶液中约5min.,取出相纸贴到试样磨面上压紧,约3~5min. 后揭下相纸用水冲洗,经定影、晾干后,相纸上黑褐斑点即表示试样上硫的分布。

5、锻件微观(高倍组织)检验

微观检验是在光学显微镜下观察模锻件切片试样的组织状态和各种微观缺陷。试样切取部位及方向应符合检验的目的,并具有代表性。如检验金相组织、夹杂物和带状组织的伸长或破碎情况,应切取纵向试样;如检验脱碳、过烧、表面淬透层及渗碳层深度等,则应切取横向试样;如检验晶粒度,则可按

如何高效填写软件缺陷报告

如何高效填写软件缺陷报告 测试工程师需要利用对需求的理解、高效的执行力以及严密的逻辑推理能力,迅速找出软件中的潜在缺陷,并以缺陷报告的形式递交给开发团队。缺陷报告是测试工程师与开发工程师交流沟通的重要桥梁,也是测试工程师日常工作的重要输出。作为优秀的测试工程师,最基本的一项技能就是,把发现的缺陷准确无歧义地表达清楚。 “准确无歧义地表达”意味着,开发工程师可以根据缺陷报告快速理解缺陷,并精准定位问题。同时,通过这个缺陷报告,开发经理可以准确预估缺陷修复的优先级、产品经理可以了解缺陷对用户或业务的影响以及严重性。 可见,缺陷报告本身的质量将直接关系到缺陷被修复的速度以及开发工程师的效率,同时还会影响测试工程师的信用、测试与开发人员协作的有效性。 那么,如何才能写出一份高效的缺陷报告呢?或者说,一份好的缺陷报告需要包括哪些具体内容呢? 你可能觉得这并不是什么难事,毕竟软件企业通常都有缺陷管理系统,比如典型的ALM(以前的Quality Center)、JIRA、Bugzilla、BugFree和Mantis等。当使用这类系统递交缺陷时,会自动生成模板,你只要按照其中的必填字段提供缺陷的详细信息就可以了。

很多时候,你不用想应该提供说明信息,系统会引导你提供相关的信息。但是,你有仔细想过为什么要填写这些字段,这些字段都起什么作用,以及每个字段的内容应该怎么填写吗? 你必须牢牢记住的是,好的缺陷报告绝对不是大量信息的堆叠,而是以高效的方式提供准确有用的信息。 缺陷标题 缺陷标题通常是别人最先看到的部分,是对缺陷的概括性描述,通常采用“在什么情况下发生了什么问题”的模式。 首先,对“什么问题”的描述不仅要做到清晰简洁,最关键是要足够具体,切忌不能采用过于笼统的描述。描述“什么问题”的同时还必须清楚地表述发生问题时的上下文,也就是问题出现的场景。 “用户不能正常登陆”“搜索功能有问题”和“用户信息页面的地址栏位置不正确”等,这样的描述会给人“说了等于没说”的感觉。这样的描述,很容易引发开发工程师的反感和抵触情绪,从而造成缺陷被拒绝修改(reject)。同时,还会造成缺陷管理上的困难以及过程的低效。 比如,当你发现了一个菜单栏上某个条目缺失的问题,在递交缺陷报告前,通常会去缺陷管理系统搜索一下是否已经有人递交过类似的缺陷。当你以“菜单栏”为关键字搜索时,你可能会得到一堆“菜单栏有问题”的缺陷,如果缺陷标题的描述过于笼统,你就不得不点击进入每个已知缺陷点去看细节描述,这就会大大降低你的工作效率。所以,如果

锻件缺陷的主要特征及产生的原因

绪论 国家的装备制造能力的整体能力和发展水平决定着国家的经济实力、国防实力、综合国力和全球经济形势的竞争力与合作能力,决定着国家实现现代化和民族复兴的过程。制造业是国民经济建设的基础,锻造在现代制造业中占有举足轻重的地位。锻造在机床、重型机械、矿山机械、石油机械、水电设备、汽车、航空航天、核能及军工产品中占有比较大的比重。由于锻压生产具有生产效率高、材料利用率和改善制件的内部组织及机械性能等显著特点,因此采用锻压生产零件的制造方法在各行各业中所占的比例很大。随着精密成型、少无切削技术的发展,降低生产成本、减少产品质量、提高产品性能和质量要求的不断提高,锻压生产在工业、国防、航空航天以及其他各种装备制造业中的作用会越来越大。

锻件缺陷的主要特征及产生的原因 制造业是国民经济建设的基础,锻造在现代制造业中占有举足轻重的地位。锻造在机床、重型机械、矿山机械、石油机械、水电设备、汽车、航空、核能及军工产品中占有比较大的比重。国家的装备制造能力的整体能力和发展水平决定着国家的经济实力、国防实力、综合国力和全球经济形势的竞争力与合作能力,决定着国家实现现代化和民族复兴的过程。由于锻压生产具有生产效率高、材料利用率和改善制件的内部组织及机械性能等显著特点,因此采用锻压生产零件的制造方法在各行各业中所占的比例很大。随着精密成型、少无切削技术的发展,降低生产成本、减少产品质量、提高产品性能和质量要求的不断提高,锻压生产在工业、国防、航空航天以及其他各种装备制造业中的作用会越来越大。 一锻造概述 锻造 利用冲击力或静压力使加热后的坯料在锻压设备上、下砧之间产生塑性变形,以获得所需尺寸、形状和质量的锻件加工方法称为锻造。常用的锻造方法为自由锻、模锻及胎模锻。 自由锻 利用冲击力或静压力使经过加热的金属在锻压设备的上、下砧间向四周自由流动产生塑性变形,获得所需锻件的加工方法称为自由锻。自由锻分为手工锻造和机器锻造两种。手工锻造只能生产小型锻件,机器锻造是自由锻 锻造特点 自由锻造所用工具和设备简单,通用性好,成本低。同铸造毛坯相比,自由锻消除了缩孔、缩松、气孔等缺陷,使毛坯具有更高的力学性能。锻件形状简单,操作灵活。 锻件和铸件相比锻件的优点 金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶

产品常见缺陷及原因

一、产品常见缺陷及原因 1、铁水常见质量缺陷 成分不合格,主要是S出格。 标准要求,炼钢生铁S≤0.070%,Si≤1.25%,;铸造生铁S≤0.050% ,Si>1.25%。 炼钢生铁牌号:L04、L08、L10。 铸造生铁牌号:Z14、Z18、Z22、Z26、Z30、Z34。 S出格的主要原因:入炉原料及熔剂质量波动造成炉渣碱度低;炉缸物理热不足;炉渣MgO、Al2O3含量高,炉渣流动性差;炉况不顺,座料、塌料多。 2、连铸坯常见质量缺陷 表面缺陷:纵裂纹、横裂纹、角部裂纹、夹杂、重接、飜皮、结疤、凹坑、划痕、压痕、气孔、凸块、缩孔。 内部缺陷:中间裂纹、三角区裂纹、中心疏松、中心偏析、内部夹杂、皮下气泡 形状缺陷:鼓肚、对角线长度差(脱方)、切斜、不平度(板坯)、镰刀弯(板坯)、弯曲、边长超差、长度超差

2、中板、连轧钢带常见缺陷

3、棒材、高线、中型材常见缺陷

二、质量事故分类及管理 1、炼钢一整炉废品:小转炉按出钢量42吨、大转炉按出钢量120吨计算;若出钢钢包(大包)为准时,当废品重量大于或等于出钢量的75%时为一整炉。 2、炼铁一整炉废品:小于或等于400m3高炉每次出铁量大于或等于30吨为一整炉,大于400m3高炉每次出铁量大于或等于50吨为一整炉。 3、《冶金工业部钢铁产品质量事故管理制度》规定:钢铁产品质量事故分为三级,其中一级质量事故为重大质量事故。结合本公司生产实际,我公司质量事故级别分类按附录《质量事故分类表》进行。

4、质量事故发生后,责任单位对事故分析要做到“三不放过”,即不查明事故原因不放过,不分清责任不放过,不订出纠正和预防措施不放过。 5、发生一、二级质量事故,质量部开具《不合格报告》,责任单位填写纠正措施,质量部对纠正措施进行跟踪验证。发生三级质量事故,责任单位在《柳钢质量事故报告单》上填写纠正措施自行跟踪验证。

锻件缺陷分析报告

锻造对金属组织、性能的影响与锻件缺陷 锻件的缺陷包括表面缺陷和部缺陷。有的锻件缺陷会影响后续工序的加工质量,有的则严重影响锻件的性能,降低所制成品件的使用寿命,甚至危及安全。因此,为提高锻件质量,避免锻件缺陷的产生,应采取相应的工艺对策,同时还应加强生产全过程的质量控制。 概要介绍三方面的问题:锻造对金属组织、性能的影响与锻件缺陷;锻件质量检验的容和方法;锻件质量分析的一般过程。 (一)锻造对金属组织和性能的影响 锻造生产中,除了必须保证锻件所要求的形状和尺寸外,还必须满足零件在使用过程中所提出的性能要求,其中主要包括:强度指针、塑性指针、冲击韧度、疲劳强度、断裂韧度和抗应力腐蚀性能等,对高温工作的零件,还有高温瞬时拉伸性能、持久性能、抗蠕变性能和热疲劳性能等。 锻造用的原材料是铸锭、轧材、挤材和锻坯。而轧材、挤材和锻坯分别是铸锭经轧制、挤压及锻造加工后形成的半成品。锻造生产中,采用合理的工艺和工艺参数,可以通过下列几方面来改善原材料的组织和性能: 1)打碎柱状晶,改善宏观偏析,把铸态组织变为锻态组织,并在合适的温度和应力条件下,焊合部孔隙,提高材料的致密度; 2)铸锭经过锻造形成纤维组织,进一步通过轧制、挤压、模锻,使锻件得到合理的纤维方向分布; 3)控制晶粒的大小和均匀度; 4)改善第二相(例如:莱氏体钢中的合金碳化物)的分布; 5)使组织得到形变强化或形变——相变强化等。 由于上述组织的改善,使锻件的塑性、冲击韧度、疲劳强度及持久性能等也随之得到了提高,然后通过零件的最后热处理就能得到零件所要求的硬度、强度和塑性等良好的综合性能。 但是,如果原材料的质量不良或所采用的锻造工艺不合理,则可能产生锻件缺陷,包括表面缺陷、部缺陷或性能不合格等。 (二)原材料对锻件质量的影响 原材料的良好质量是保证锻件质量的先决条件,如原材料存在缺陷,将影响锻件的成形过程及锻件的最终质量。 如原材料的化学元素超出规定的围或杂质元素含量过高,对锻件的成形和质量都会带来较大的影响,例如:S、B、Cu、Sn等元素易形成低熔点相,使锻件易出现热脆。为了获得本质细晶粒钢,钢中残余铝含量需控制在一定围,例如Al酸0.02%~0.04%(质量分数)。含量过少,起不到控制晶粒长大的作用,常易使锻件的本质晶粒度不合格;含铝量过多,压力加工时在形成纤维组织的条件下易形成木纹状断口、撕痕状断口等。又如,在1Cr18Ni9Ti奥氏体不锈钢中,Ti、Si、Al、Mo的含量越多,则铁素体相越多,锻造时愈易形成带状裂纹,并使零件带有磁性。 如原材料存在缩管残余、皮下起泡、严重碳化物偏析、粗大的非金属夹杂物(夹渣)等缺陷,锻造时易使锻件产生裂纹。原材料的树枝状晶、严重疏松、非金属夹杂物、白点、氧化膜、偏析带及异金属混人等缺陷,易引起锻件性能下降。 原材料的表面裂纹、折叠、结疤、粗晶环等易造成锻件的表面裂纹。 (三)锻造工艺过程对锻件质量的影响 锻造工艺过程一般由以下工序组成,即下料、加热、成形、锻后冷却、酸洗及锻后热处理。锻造过程中如果工艺不当将可能产生一系列的锻件缺陷。 加热工艺包括装炉温度、加热温度、加热速度、保温时间、炉气成分等。如果加热不当,例如加热温度过高和加热时间过长,将会引起脱碳、过热、过烧等缺陷。 对于断面尺寸大及导热性差、塑性低的坯料,若加热速度太快,保温时间太短,往往使温度分布不均匀,引起热应力,并使坯料发生开裂。 锻造成形工艺包括变形方式、变形程度、变形温度、变形速度、应力状态、工模具的情兄和润滑条件等,如果成形工艺不当,将可能引起粗大晶粒、晶粒不均、各种裂纹、折叠。寒流、涡流、铸态组织残留等。 锻后冷却过程中,如果工艺不当可能引起冷却裂纹、白点、网状碳化物等。 (四)锻件组织对最终热处理后的组织和性能的影响

注塑件常见品质问题及原因分析、解决方法

注塑件常见品质问题及原因分析、解决方法 一、注塑件常见品质问题 塑胶件成型后,与预定的质量标准(检验标准)有一定的差异,而不能满足下工序要求,这就是塑胶件缺陷,即常说的品质问题,要研究这些缺陷产生原因,并将其降至最低程度,总体来说,这些缺陷不外乎是由如下几方面造成:模具、原材料、工艺参数、设备、环境、人员。现将缺陷问题总结如下: 1、色差:注塑件颜色与该单标准色样用肉眼观看有差异,判为色差,在标准的光源下(D65)。 2、填充不足(缺胶):注塑件不饱满,出现气泡、空隙、缩孔等,与标准样板不符称为缺胶。 3、翘曲变形:塑胶件形状在塑件脱模后或稍后一段时间内产生旋转和扭曲现象,如有直边朝里,或朝外变曲或平坦部分有起伏,如产品脚不平等与原模具设计有差异称为变形,有局部和整体变形之分。 4、熔接痕(纹):在塑胶件表面的线状痕迹,由塑胶在模具内汇合在一起所形成,而熔体在其交汇处未完全熔合在一起,彼此不能熔为一体即产生熔接纹,多表现为一直线,由深向浅发展,此现象对外观和力学性能有一定影响。 5、波纹:注塑件表面有螺旋状或云雾状的波形凹凸不平的表征现象,或透明产品的里面有波状纹,称为波纹。 6、溢边(飞边、披锋):在注塑件四周沿分型线的地方或模具密封面出现薄薄的(飞边)胶料,称为溢边。 7、银丝纹:注塑件表面的很长的、针状银白色如霜一般的细纹,开口方向沿着料流方向,在塑件未完全充满的地方,流体前端较粗糙,称为银丝纹(银纹)。

8、色泽不均(混色):注塑件表面的色泽不是均一的,有深浅和不同色相,称为混色。 9、光泽不良(暗色):注塑件表面为灰暗无光或光泽不均匀称为暗色或光泽不良。 10、脱模不良(脱模变形):与翘曲变形相似,注塑件成型后不能顺利的从模具中脱出,有变形、拉裂、拉伤等、称为脱模不良。 11、裂纹及破裂:塑胶件表面出现空隙的裂纹和由此形成的破损现象。 12、糊斑(烧焦):在塑件的表面或内部出现许多暗黑色的条纹或黑点,称为糊斑或烧焦。 13、尺寸不符:注塑件在成型过程中,不能保持原来预定的尺寸精度称为尺寸不符。 14、气泡及暗泡:注塑件内部有孔隙,气泡是制品成型后内部形成体积较小或成串孔隙的缺陷,暗泡是塑胶内部产生的真空孔洞。 15、表面混蚀:注塑件表面呈现无光、泛白、浊雾状外观称为混蚀。 16、凹陷:注塑件表面不平整、光滑、向内产生浅坑或陷窝。 17、冷料(冷胶):注塑件表面由冷胶形成的色泽、性能与本体均不同的塑料。 18、顶白/顶高:注塑件表面有明显发白或高出原平面。 19、白点:注塑件内有白色的粒点,粒点又叫“鱼眼”,多反映在透明制品上。 20、强度不够(脆裂):注塑件的强度比预期强度低,使塑胶件不能承受预定的负裁 二、常见品质(缺陷)问题产生原因 1、色差: ①原材料方面因素:包括色粉更换、塑胶材料牌号更改,定型剂更换。

软件缺陷描述

软件缺陷描述 认识软件缺陷,首先要了解软件缺陷的概念,其次是了解软件缺陷的详细特征,最后就是它的属性了,再高一个层次就是学习利用管理软件缺陷的工具了。 1、首先介绍软件缺陷的概念 软件缺陷是指系统或系统部件中那些导致系统或部件不能实现其功能的缺陷。 2、软件缺陷的详细特征 a、单一准确 b、可以再现(要求软件缺陷具有精确的步骤) c、完整统一 d、短小简练 e、特定条件 f、补充完整 g、不做评价 3、软件缺陷的属性 软件缺陷的属性包括缺陷标识、缺陷类型、缺陷严重程度、缺陷产生可能性、缺陷优先级、缺陷状态、缺陷起源、缺陷来源、缺陷原因。 下面详细介绍一下以上这些属性: a、缺陷标识:是标记某个缺陷的唯一标识,可以用数字序号表示; b、缺陷类型:功能、用户界面、文档、软件包、性能、系统\模块接口 功能:影响了各种系统功能、逻辑的缺陷; 用户界面:影响了用户界面、人机交互特性,包括屏幕格式、用户输入灵活性、结果输入格式等方面的缺陷; 文档:影响发布和维护,包括注释、用户手册、设计文档; 软件包:由于软件配置库、变更管理或版本控制引起的错误; 性能:不满足系统可测量的属性值,如执行时间、事务处理速率等; 系统\模块接口:与其他组件、模块或设备驱动程序、调用参数、控制块或参数列表等不匹配、冲突。 c、缺陷严重程度:致命(Fatal)、严重(Ceritical)、一般(Major)、较小(Minor) 致命:系统任何一个主要功能完全丧失,用户数据受到破坏,系统崩溃、悬挂、死机或者危机人身安全; 严重:系统的主要功能部分丧失,数据不能保存,系统的次要功能完全丧失,系统所提供的功能或服务受到明显的影响; 一般:系统的次要功能没有完全实现,但不影响用户的正常使用。例如:提示信息不太准确或用户界面差、操作时间长等一些问题; 较小:使操作者不方便或遇到麻烦,但它不影响功能过的操作和执行,如个别不影响产品理解的错别字、文字排列不整齐等一些小问题 d、缺陷产生可能性:总是、通常、有时、很少 总是:总是产生这个软件缺陷,其产生的频率是100%; 通常:按照测试用例,通常情况下会产生这个软件缺陷,其产生的频率大概是80%—90%; 有时:按照测试用例,有时候产生这个软件缺陷,其产生的频率大概是30%—50%;

产品质量问题的原因分析--5WHY分析法

产品质量问题的原因分析--5WHY分析法 在出现质量问题的时候,强调去问多几个为什么,以找到问题的根本原因,更深层次原因。这无疑比简单地寻求表面的解要好得多。但是针对工程师所写的问题分析与改进报告,你曾有没有这样的疑惑:不知道5why到底要问到什么时候,是不是一定要问5个?问4个行不行?问6个、问10个行不行?每个why是不是都应该找出几个原因呢?5个why是串联的关系还是层层递进的?还是可以呈树形关系呢? 针对产品质量问题的原因分析,我们提出了四个层面的原因分析理论。用来明确原因分析应该要覆盖哪些方面,应该要深入到什么深度。 这四个层面分别是: 1 . 产品层面 2 . 过程层面 3 . 控制方法层面

4 . 管理层面 怎么理解这四个层面呢?《什么是质量?》一文中给出质量实现过程的用户期望,里面四步翻译转换的模型在这里就可以帮助到我们了。 1 . 产品层面原因分析 客户的期望,是由产品功能来满足的。面向产品最终用户的功能,是由产品下级系统的功能、子系统的功能来满足的。层层向下,作为最底层的功能组件的功能,是由各个零部件的产品特性(例如长度、距离、位置、硬度、粗糙度、圆度、材料疲劳强度、电阻、电压、焊接强度,等等)具体的产品特性来实现的。 如果产品功能要求是函数Y,保证功能的相关产品特性就是自变量X。可以有函数关系式y=f(x1,x2,x3,x4...)。大写的X、Y代表多个变量组成的向量,或者变量组。小写的x,y代表具体的单个变量。从产品的功能障碍出发,即y不符合要求。找到是哪个相关产品特性x所带来的影响,这个层面的原因分析,就叫做质量问题的产品层面原因分析。

软件缺陷描述规范

软件缺陷描述规范 一、缺陷基本定义 软件缺陷(Software Defect): 软件缺陷是对软件产品预期属性的偏离现象。它包括检测缺陷和残留缺陷。 缺陷的优先性,分为5级,参考下面的方法确定: 1)最高优先级(Blocker),例如,软件的主要功能错误或者造成软件崩溃,数据丢失的缺陷,或用户重点关注的问题,缺陷导致系统几乎不能使用或者测试不能继续,需立即修复。 2)较高优先级(Critical),例如,影响软件功能和性能的一般缺陷, 严重影响测试,需要优先考虑; 3)一般优先级(Major),例如,本地化软件的某些字符没有翻译或者翻译不准确的缺陷,需要正常排队等待修复; 4)低优先级(Minor),例如,对软件的质量影响非常轻微或出现几率很低的缺陷,可以在开发人员有时间的时候再被纠正; 5)最低优先级(Trival),例如,属于优化,可以不做修改的问题或暂时无法修复但影响不大的问题。

缺陷描述 软件缺陷的描述是软件缺陷报告的基础部分,也是测试人员就一个软件问题与开发工程师交流的最好机会。一个好的描述,需要使用简单的、准确的、专业的语言来抓住缺陷的本质。否则,它就会使信息含糊不清,可能会误导开发人员,因此,正确评估缺陷的严重程度和优先级,是项目组全体人员交流的基础。 缺陷描述的原则: 有效的缺陷描述有以下几个原则: 可以重现:在缺陷的详细描述中提供精确的操作步骤,可以让发人员容易看 懂; 定位准确:缺陷描述准确,不会引起误解和歧义; 描述清晰:对操作步骤的描述清晰,易于理解,应用客观的书面语,避免使 用口语; 完整统一:提供完整、前后统一的软件缺陷的步骤和信息,按照一致的格式 书写全部缺陷报告,有关缺陷的格式参见“缺陷的格式”; 短小简练:通过使用关键词,可以使问题摘要的描述短小简练,又能准确解 释产生缺陷的现象。如“在新建任务窗口中,选择直接下达,负责人收不到 即时消息”中“新建任务窗口”、“直接下达”、“即时消息”等是关键词; 特定条件:许多软件功能在通常情况下没有问题,而是在某种特定条件下会 存在缺陷,所以软件缺陷描述不要忽视这些看似细节的但又必要的特定条件 (如特定的操作系统、浏览器或某种设置等),能够提供帮助开发人员找到原 因的线索。如“网站在和的兼容问题”; 不做评价:在软件缺陷描述不要带有个人观点,对开发软件进行评价。软件 缺陷报告是针对产品、针对问题本身,将事实或现象客观地描述出来就可以, 不需要任何评价或议论。

产品出现的质量问题和解决方法

产品出现的质量问题和解决方法:一、折痕 原因:1、缝合时钢带没有对齐 解决方法:严格遵守缝合作业规程,钢带要对中放齐。当出现操作失误时应及时通知班长、操作长,注意各纠偏辊及时调整,防止钢板跑偏造成折痕。 2、换规格时纠偏辊调整不合理造成的折痕 解决办法:当换规格时,一号台操作长要提前通知班长和机修人员,做好调整准备。在探测开关安装架上进行标注,画出刻度,根据钢板的宽度合理的规范的调整,在遇到特殊情况时除外。 3、纠偏机失灵造成的折痕(纠偏机未启动或报警) 解决办法:各个工序上的工作人员要时刻观察钢带的运行情况,发现异常情况及时汇报并做出相应的处理,电气机修人员要不间断的来回巡视,保证设备的正常运转。 4、张力设置不当造成的折痕 解决方法:上卷之前要确认钢带的规格,设定相应的张力。可参考张力设定表。 5、生产线辊子安装不正确或发生位移造成钢带跑偏,产生折痕

解决方法:机修人员要时刻观察生产线各设备的运转情况,各操作台操作员要对工作区域内的设备进行巡视,发现问题及时汇报处理。挤干辊、钝化辊更换后要进行调整,并有专人负责,观察运行情况必须保证满足生产的要求。 6、四号台在收卷时操作不当,钢带没有放到合适位置造成折痕解决方法:在收卷时操作人员要配合得当,合理分工,按照规定完成工作。需要加纸筒或铁筒的要对其进行检测,是否符合上机标准,不符合标准的退给保管部要求退货,当不得不用时则要在内圈加塞钢片或其他辅助材料,满足生产要求。 7、原材料问题:本身有折痕、有松边严重的、板型不好的等一些原因造成折痕 解决方法:本身有折痕的看是在什么位置,带头带尾的在一号台剪掉,在中间部分的要通知各个台的操作员,在四号台可以分卷的要分卷(达到客户重量的最低要求)。 松边、板型不好的要及时通知班长、各台操作长,时刻观察钢带的运行情况,尽量避免因此造成跑偏,致使钢带产生折痕(特别注意初涂炉、精涂炉水冷的位置) 以上都是尽量避免产生折痕,当已经出现折痕,首先看卷取机上钢卷重量是否达到最低重量,达到要求则在折痕处剪下。如果折痕不

软件测试之缺陷分析

有完全实现但不影响使用。如提示信息不太准确,或用户界面差,操作时间长,模块功能部分失效等,打印内容、格式错误,删除操作未给出提示,数据库表中有过多的空字段等 D类—较小错误的软件缺陷(Minor),使操作者不方便或遇到麻烦,但它不影响功能过的操作和执行,如错别字、界面不规范(字体大小不统一,文字排列不整齐,可输入区域和只读区域没有明显的区分标志),辅助说明描述不清楚 E类- 建议问题的软件缺陷(Enhancemental):由问题提出人对测试对象的改进意见或测试人员提出的建议、质疑。 常用的软件缺陷的优先级表示方法可分为:立即解决P1、高优先级P2、正常排队P3、低优先级P4。立即解决是指缺陷导致系统几乎不能使用或者测试不能继续,需立即修复;高优先级是指缺陷严重影响测试,需要优先考虑;正常排队是指缺陷需要正常排队等待修复;而低优先级是指缺陷可以在开发人员有时间的时候再被纠正。 正确评估和区分软件缺陷的严重性和优先级,是测试人员和开发人员以及全体项目组人员的一件大事。这既是确保测试顺利进行的要求,也是保证软件质量的重要环节,应该要引起足够的重视。这里介绍三种常用的技术工具供大家参考。 (1)20/80原则 管理学大师彼得杜拉克说过:做事情必须分清轻重缓急。最糟糕的是什么事都做,这必将一事无成。而意大利经济学家柏拉图则更明确提出:重要的少数与琐碎的多数或称20/80的定律。就是80%的有效工作往往是在20%的时间内完成的,而20%的工作是在80%的时间内完成的。因此,为了提高测试质量,必须清晰的认识到哪些软件缺陷是最重要的,哪些软件缺陷是最关键的。不要拣了芝麻,却丢了西瓜。所以,只有抓住了重要的关键缺陷,测试效果才能产生最大的效益,这也是第一个原则---分清轻重缓急,把测试活动用在最有生产力的事情上。 (2)ABC法则

自由锻件主要缺陷产生原因

自由锻件主要缺陷产生原因 一、横向裂纹: 1、表面横向裂纹 缺陷现象:锻造时坯料表面出现较浅(约10mm深)的横向裂纹或较深的横向裂纹。 产生原因:较浅裂纹是钢锭皮下气泡未焊合形成的,较深裂纹是由钢锭浇注受锭模内壁质量,钢水摆动和钢锭与锭模铸合等因素形成的。 2、内部横向裂纹 缺陷现象:在锻件内部产生横向裂纹。 产生原因:冷钢锭在低温区加热过快或中心引起较大拉力造成,高碳钢和高合金钢塑性较差,在锻造操作相对送进量过小造成的。 二、纵向裂纹 1、表面纵向裂纹 A缺陷现象:经常在第一次拔长或镦粗时出现。 产生原因:锭模内壁缺陷和新锭模未很好退火,操作不当,高温高速浇注,钢锭脱模冷却不当或脱模过早,倒棱时压下量过大,轧制钢锭时产生纵向划痕等。 B缺陷现象:在坯料近帽口中心出现。 产生原因:由于钢锭冷却时缩孔未集中于帽口部分,锻造帽口端切头量过少,使坯料近帽口端存在二次缩孔或残余缩孔,锻造时引起纵向裂纹。 2、内部纵向裂纹 A缺陷现象:坯料内部出现的纵向裂纹。 产生原因:这是利用拔长圆截面坯料,金属中心部分受拉力作用所致,或者因坯料未加热透彻,内部温度过低,拔长时内部沿纵向开裂等。

B缺陷现象:坯料内部出现的纵向十字裂纹,一般出现于高合金钢中。 产生原因:这是由于拔长时送进量过大或在同一部位反复多次锻造。 三、炸裂: 缺陷现象:一般在坯料锻造前加热时或锻件冷却热处理后,在表面或内部炸开而形成的裂纹。 产生原因:因为坯料具有较高的残余应力,在未予清除的情况下,错误的采用快速加热或不适当的冷却引起裂纹。 四、自行开裂 缺陷现象:常常在锻件锻造后、热处理后或锻制拔长后发生。 产生原因:坯料在锻造过程中已经形成微小裂纹,冷却或热处理中使之加剧或由于锻件内部有较大残余应力所致。 五、龟裂 缺陷现象:锻件在锻造时表面出现的龟甲状或裂纹,钢料表面较浅的龟裂应清除后再锻造。 产生原因:由于钢中Cu、Sn、As、S的含量较多,或者在加热炉中铜料渗入,熔化的铜渗入钢料晶界,造成钢料热脆或者由于坯料开始锻温度过高,开始锻造时锤击过重等原因造成。 六、过烧 缺陷现象:在加热时氧化物渗入钢料晶界面,使Fe、C、S发生氧化,形成易熔晶体氧化物,锻造时一锤击钢料便碎裂的现象,过烧钢料的断裂面晶粒粗大,并失去金属的光泽。 产生原因:加热时温度过高,加热时间过长,在该条件下,易于使晶界氧化和熔融。

软件缺陷分类标准

审核/日期批准/日期

文档修改记录(Revision Chart) [This chart contains a h istory of this document’s revisions. The entries below are provided solely for purposes of illustration. Entries should be deleted until the revision they refer to has actually been created. The document itself should be stored in revision control, and a brief description of each version should be entered in the revision control system. That brief description can be repeated in this section. Revisions do not need to be described elsewhere in the document except inasmuch as they explain the development plan itself.]

目录 1引言 (1) 1.1 编写目的 (1) 1.2 定义与缩写 (1) 1.3 参考资料 (1) 2软件缺陷分类标准 (1) 2.1 缺陷属性 (1) 2.2 缺陷类型 (1) 2.3 缺陷严重程度 (3) 2.4 缺陷优先级 (4) 2.5 缺陷状态 (4) 2.6 缺陷来源 (4)

注塑产品缺陷汇总及解决方法

注塑产品缺陷汇总及解决方法 一、溢料飞边 故障分析及排除方法 (1)合模力不足。当注射压力大于合模力使模具分型面密合不良时容易产生溢料飞边。对此,应检查增压是否增压过量,同时应检查塑件投影面积与成型压力的乘积是否超出了设备的合模力。成型压力为模具内的平均压力,常规情况下以40mpa计算。生产箱形塑件时,聚乙烯,聚丙烯,聚苯乙烯,及ABS的成型压力值约为30mpa;生产形状较深的塑件时,成型压力值约为36mpa;在生产体积小于10cm3的小型塑件时,成型压力值约为60mpa。如果计算结果为合模力小于塑件投影面积与成型压力的乘积,则表明合模力不足或注塑定位压力太高。应降低注射压力或减小注料口截面积,也可缩短保压及增压时间,减小注射行程,或考虑减少型腔数及改用合模吨位大的注塑机。 (2)料温太高。高温熔体的熔体粘度小,流动性能好,熔料能流入模具内很小的缝隙中产生溢料飞边。因此,出现溢料飞边后,应考虑适当降低料筒,喷嘴及模具温度,缩短注射周期。 对于聚酰胺等粘度较低的熔料,如果仅靠改变成型条件来解决溢料飞边缺陷是很困难的。应在适当降低料温的同时,尽量精密加工及修研模具,减小模具间隙。 (3)模具缺陷。模具缺陷是产生溢料飞边的主要原因,在出现较多的溢料飞边时必须认真检查模具,应重新验核分型面,使动模与定模对中,并检查分型面是否密着贴合,型腔及模芯部分的滑动件磨损间隙是否超差。分型面上有无粘附物或落入异物,模板间是否平行,有无弯曲变形,模板的开距有无按模具厚度调节到正确位置,导合销表面是否损伤,拉杆有无变形不均,排气槽孔是否太大太深。根据上述逐步检查的结果,对于产生的误差可采用机械加工的方法予以排除。 (4)工艺条件控制不当。如果注射速度太快,注射时间过长,注射压力在模腔中分布不均,充模速率不均衡,以及加料量过多,润滑剂使用过量都会导致溢料飞边,操作时应针对具体情况采取相应的措施。 值得重视的是,排除溢料飞边故障必须先从排除模具故障着手,如果因溢料飞边而改变成型条件或原料配方,往往对其他方面产生不良影响,容易引发其他成型故障。 二、熔接痕 故障分析及排除方法 (1)温太低。低温熔料的分流汇合性能较差,容易形成熔接痕。如果说塑件的内外表面在同一部位产生熔接细纹时,往往是由于料温太低引起的熔接不良。对此,可适当提高料筒及喷嘴温度或者延长注射周期,促使料温上升。同时,应节制模具内冷却水的通过量,适当提高模具温度。 一般情况下,塑件熔接痕处的强度较差,如果说对模具中产生熔接痕的相应部位进行局部加热,提高成型件熔接部位的局部温度,往往可以提高塑件熔接处的强度。 如果由于特殊需要,必须采用低温成型工艺时,可适当提高注射速度极增加注射压力,从而改善熔料的汇合性能。也可在原料配方中适当增用少量润滑剂,提高熔料的流动性能。 (2)模具缺陷。模具浇注系统的结构参数对流料的熔接状况有很大的影响,因为熔接不良主要产生于熔料的分流汇合。因此,应尽量采用分流少的浇口形式并合理选择浇口位置,尽量避免充模速率不一致及充模料流中断。在可能的条件下,应选用一点式浇口,因为这种浇口不产生多股料流,熔料不会从两个方向汇合,容易避免熔接痕。

软件测试缺陷(Bug)写作注意点

软件测试缺陷(Bug)写作注意点 提供准确、完整、简洁、一致的缺陷报告是体现软件测试的专业性、高质量的主要评价指标。遗憾的是,一些缺陷报告经常包含过少或过多信息,而且组织混乱,难以理解。由此导致缺陷被退回,从而延误及时修正,最坏的情况是由于没有清楚地说明缺陷的影响,开发人员忽略了这些缺陷,使这些缺陷随软件版本一起发布出去。 因此,软件测试工程师必须认识到书写软件缺陷报告是测试执行过程的一项重要任务,首先要理解缺陷报告读者的期望,遵照缺陷报告的写作准则,书写内容完备的软件缺陷报告。本文将阐述软件测试缺陷报告的读者,描述软件缺陷报告的主要组成部分和各部分的书写要求,指出某些常见错误和实用改进方法,最后总结了缺陷报告的写作要点。 1. 缺陷报告的读者对象 在书写软件缺陷报告之前,需要明白谁是缺陷报告的读者对象,知道读者最希望从缺陷报告中获得什么信息。通常,缺陷报告的直接读者是软件开发人员和质量管理人员,除此之外,来自市场和技术支持等部门的人也可能需要查看缺陷情况。每个阅读缺陷报告的人都需要理解缺陷针对的产品和使用的技术。另外,他们不是软件测试人员,可能对于具体软件测试的细节了解不多。 概括起来,缺陷报告的读者最希望获得的信息包括: ?易于搜索软件测试报告的缺陷; ?报告的软件缺陷进行了必要的隔离,报告的缺陷信息更具体、准确; ?软件开发人员希望获得缺陷的本质特征和复现步骤; ?市场和技术支持等部门希望获得缺陷类型分布以及对市场和用户的影响程度。 软件测试人员的任务之一就是需要针对读者的上述要求,书写良好的软件缺陷报告。 2. 缺陷报告的写作准则 书写清晰、完整的缺陷报告是对保证缺陷正确处理的最佳手段。它也减少了工程师以及其它质量保证人员的后续工作。 为了书写更优良的缺陷报告,需要遵守“5C”准则: ?Correct(准确):每个组成部分的描述准确,不会引起误解; ?Clear(清晰):每个组成部分的描述清晰,易于理解; ?Concise(简洁):只包含必不可少的信息,不包括任何多余的内容; ?Complete(完整):包含复现该缺陷的完整步骤和其他本质信息; ?Consistent(一致):按照一致的格式书写全部缺陷报告。 3. 缺陷报告的组织结构 尽管不同的软件测试项目对于缺陷报告的具体组成部分不尽相同,但是基本组织结构都是大同小异的。一个完整的软件缺陷报告通常由下列几部分组成: ?缺陷的标题; ?缺陷的基本信息;

锻件的常见缺陷及原因分析

锻件的常见缺陷及原因分析 (2007/07/05 10:58) 锻件的缺陷很多,产生的原因也多种多样,有锻造工艺不良造成的,有原材料的原因,有模具设计不合理所致等等。尤其是少无切削加工的精密锻件,更是难以做到完全控制。 1.大晶粒 大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。 2.晶粒不均匀 晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。耐热钢及高温合金对晶粒不均匀特别敏感。晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。 3.冷硬现象 变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。严重的冷硬现象可能引起锻裂。

4.裂纹 裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在镦粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。 5.龟裂 龟裂是在锻件表面呈现较浅的龟状裂纹。在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。③燃料含硫量过高,有硫渗人钢料表面。 6.飞边裂纹 飞边裂纹是模锻及切边时在分模面处产生的裂纹。飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。 7.分模面裂纹 分模面裂纹是指沿锻件分模面产生的裂纹。原材料非金属夹杂多,模锻时向分模面流动与集中或缩管残余在模锻时挤人飞边后常形成分模面裂纹。 8.折叠 折叠是金属变形过程中已氧化过的表层金属汇合到一起而形成的。它可以是由两股(或多股)金属对流汇合而形成;也可以是由一股金属的急速大量流动将邻近部分的表层金属带着流动,两者汇合而形成的;也可以是由于变形金属发生弯曲、回流而形成;还可以是部分金属局部变形,被压人另一部分金属内而形成。折叠与原材料和坯料的形状、模具的设计、成形工序的安排、润滑情况及锻造的实际操作等有关。折叠不仅减少了零件的承载面积,而且工作时由于此处的应力集中往往成为疲劳源。 9.穿流 穿流是流线分布不当的一种形式。在穿流区,原先成一定角度分布的流线汇合在一起形成穿流,并可能使穿流区内、外的晶粒大小相差较为悬殊。穿流产生的原因与折叠相似,是由两股金属或一股金属带着另一股金属汇流而形成

无心磨床产品常见缺陷及解决办法

无心磨床产品常见缺陷及解决办法大全 无心磨床,是不需要采用工件的轴心而施行磨削的一类磨床。是由磨削砂轮,调整轮和工件支架三个机构构成。无心磨床常见磨削缺陷及消除方法整理如下: 一、零件不圆 发生原因: (1)导轮没有修圆; (2)磨削次数少或上道工序椭圆度过大; (3)砂轮磨钝; (4)磨量过大或走刀量过大。 消除方法: (1)重修导轮,待导轮修圆中止(一般修到无断续声中止); (2)恰当增加磨削次数; (3)重修砂轮; (4)减少磨量和重刀速度。 二、零件有棱边形(多边形) 发生原因: (1)零件中心高不够; (2)零件轴向推力过大,使零件紧压挡销而不能均匀的旋转; (3)砂轮不平衡; (4)零件中心过高。 消除方法: (1)精确前进零件中心度; (2)减少磨床导轮倾角到0.5°或0.25°。假设挡不能够解决时,便要查看支点的平衡度; (3)平衡砂轮; (4)恰当降低零件中心高度。 三、零件表面的振动痕迹(即零件表面出现鱼斑斓及直线白色线条) 发生原因: (1)砂轮不平衡面致使的机床振动; (2)零件中心前进使零件跳动; (3)砂轮磨钝或砂轮表面修的太光; (4)导轮旋转速度太快。 消除方法: (1)细心平衡砂轮; (2)恰当降低零件中心; (3)砂轮或恰当增加砂轮修整速度; (4)恰当降低导速。 四、零件有锥度

发生原因: (1)由于前导板此导轮母线低的过多或前导板向导轮方向倾斜面致使零件前部小; (2)由于后导板表面与导轮母线低或后导板向导轮方面倾斜而致使零件后部小; (3)由于下列原因而致使零件前部或后部发生锥度①砂轮由修整不正确,本身便有锥度;②砂轮与导轮表面已磨损。 消除方法: (1)恰当的移进前导板及调整前导板与导轮母线平行; (2)调整后导板的导向表面与导轮母线平行,并且在一条线上; (3)①根据零件锥度的方向,调整砂轮修改中的角度砂轮;②砂轮与导轮。 五、零件中心大两头小 发生原因: (1)前后导板均匀向砂轮一边倾斜; (2)砂轮修整成腰鼓形。 消除方法: (1)调正前后导板; (2)修改砂轮,每次修改余量不要过大。 六、零件表面有环形螺纹线 发生原因: (1)前后导板凸出导轮表面,使零件在出口处或入口对被导轮边缘所刮; (2)支比太软,磨下的切削嵌在支比承面上构成凸出毛刺,在零件表面刻成螺纹线; (3)冷却液不清洁,里面有切屑或砂粒; (4)在出口处由于磨量较多,由砂轮边缘所刮磨成; (5)零件中心低于砂轮中心笔直压力较大,使砂粒与切屑贴在支毛上; (6)砂轮磨钝; (7)一次磨下的余量过多或砂轮修的太粗,在另件表面发生极细的螺纹线消除方法。 消除方法: (1)调整前后导板; (2)更换表面润滑而硬度较高的支毛; (3)更换冷却液; (4)将砂轮边打成圆角,最终使零件出口处的20mm支配不进行磨削; (5)恰当前进零件中心高度; (6)砂轮; (7)恰当减少磨量及减慢修改速度。 七、零件前部切去一小块 发生原因: (1)前导板突出于导轮的表面; (2)砂轮和导轮前端面不在一条直线上,并相差很大;

热轧产品缺陷图谱

目录 5.热轧板卷缺陷(M) (2) (M01) 结疤 (3) (M02) 气泡 (5) (M03) 表面夹杂 (7) (M04) 分层 (9) (M05) 中心线缺陷 (10) (M06) 压入氧化铁皮 (11) (M07) 辊印 (14) (M08) 轧烂 (16) (M09) 压痕(压印、压坑) (18) (M10) 塔形 (20) (M11) 松卷 (22) (M12) 扁卷 (23) (M13) 瓢曲 (24) (M14) 波浪(中浪、双边、单边浪) (26) (M15) 镰刀弯 (28) (M16) 横折 (29) (M17) 折迭 (30) (M18) 折边 (32) (M19) 边裂 (33) (M20) 划伤 (35) (M21) 刮伤 (36) (M22) 剪切断面不良 (38) (M23) 纵切交叉卷 (39) (M24) 油污 (41) (M25) 撞伤 (42) (M26) 厚度不合 (44) (M27) 宽度不合 (46) (M28) 长度不合 (47) (M29) 凸度不合 (48) (M30) 楔形 (50) (M31) 切斜 (51) (M32) 冲裂 (52)

5.热轧板卷缺陷(M) 本章节收录了大量的热轧板卷的缺陷照片,并对每种缺陷的特征、产生原因与危害、预防消除方法、检查方法、判定等作了简要描述。为我们在实际生产过程中,对于常见产品质量缺陷的判定、成因分析以及治理措施的制定提供一定的指导作用。

(M01) 结疤 图5-1-1 图5-1-2 a)缺陷特征 附着在钢带表面,形状不规则翘起的金属薄片称结疤。呈现叶状、羽状、条状、鱼鳞状、舌端状等。结疤分为两种,一种是与钢的本体相连结,并折合到板面上不易脱落;另一种是与钢的本体没有连结,但粘合到板面上,易于脱落,脱落后

各种缺陷分析与产生原因

锻造成形过程中的缺陷及其防止方法 一、钢锭的缺陷 钢锭有下列主要的缺陷: (1)缩孔和疏松 钢锭中缩孔和疏松是不可避免的缺陷,但它们出现的部位可以控制。钢锭中顶端的保温冒口,造成钢液缓慢冷却和最后凝固的条件,一方面使锭身可以得到冒口中钢液的补缩,另一方面使缩孔和疏松集中于此处,以便锻造时切除。 (2)偏析钢锭中各部分化学成分的不均匀性称为偏析。偏析分为枝晶偏析和区域偏析两种,前者可以通过锻造以及锻后热处理得到消除,后者只能通过锻造来减轻其影响,使杂质分散,使显微孔隙和疏松焊和。 (3)夹杂不溶于金属基体的非金属化合物称为夹杂。常见的夹杂如硫化物、氧化物、硅酸盐等。夹杂使钢锭锻造性能变化,例如当晶界处低熔点夹杂过多时,钢锭锻造时会因热脆而锻裂。夹杂无法消除,但可以通过适当的锻造工艺加以破碎,或使密集的夹杂分散,可以在一定程度上改善夹杂对锻件质量的影响。 (4)气体 钢液中溶解有大量气体,但在凝固过程中不可能完全析出,以不同形式残存在钢锭内部。例如氧与氮以氧化物、氮化物存在,成为钢锭中夹杂。氢是钢中危害最大的气体,它会引起“氢脆” ,使钢的塑性显著下降;或在大型锻件中造成“白点” ,使锻件报废。 (5)穿晶 当钢液浇注温度较高,钢锭冷却速度较大时,钢锭中柱状晶会得到充分的发展,在某些情况下甚至整个截面都形成柱状晶粒,这种组织称为穿晶。在柱状晶交界处(如方钢锭横截面对角线上),常聚集有易熔夹杂,形成“弱面” ,锻造时易于沿这些面破裂。在高合金钢锭中容易遇到这种缺陷。 (6)裂纹 由于浇注工艺或钢锭模具设计不当,钢锭表面会产生裂纹。锻造前应将裂纹消除,否则锻造时由于裂纹的发展导致锻件报废。 (7)溅疤 当钢锭用上注法浇注时,钢液冲击钢锭模底而飞溅到钢锭模壁上,这些附着的溅沫最后不能和钢锭凝固成一体,便成溅疤。溅疤锻造前必须铲除,否则会形成表面夹层。 二、轧制或锻制的钢材中的缺陷 轧制或锻制的钢材中往往存在如下缺陷: (1)裂纹和发裂 裂纹是由于钢锭缺陷未清除,经过轧制或锻造使之进一步发展造成的。由于轧制或锻造的工艺规范不当,在钢材内引起很大的内应力,也会造成裂纹。断面大、合金元素多的钢材容易产生裂纹。 发裂是深度为0.50~1.50mm 的发状裂纹,它是轧制或锻造时由于钢锭皮下气泡沿变形方向被拉长或夹杂物沿变形方向伸长而形成。发裂一般需经酸洗后才能发现。 (2)伤痕和折叠 伤痕是钢材表面上深约0.2~0.30mm 的擦伤、划伤细痕。折叠一般由于轧制或锻造工艺不当造成。 (3)非金属夹杂和疏松

相关主题
文本预览
相关文档 最新文档