当前位置:文档之家› Opencv图像处理函数及其应用

Opencv图像处理函数及其应用

Opencv图像处理函数及其应用
Opencv图像处理函数及其应用

搜索文档搜索论坛■

Open Source Computer Vision Library

论坛

商业

专题

讲座

例程

安装

常见问题

函数说明

Cv图像处理

Wikipedia,自由的百科全书

注意:本章描述图像处理和分析的一些函数。大多数函数都是针对两维象素数组的,这里,我们称这些数组为“图像”,但是它们不一定非得是IplImage 结构,也可以是CvMat或者CvMatND结构。

目录

1 梯度、边缘和角点

1.1 Sobel

1.2 Laplace

1.3 Canny

1.4 PreCornerDetect

1.5 CornerEigenValsAndVecs

1.6 CornerMinEigenVal

1.7 CornerHarris

1.8 FindCornerSubPix

1.9 GoodFeaturesToTrack

2 采样、插值和几何变换

2.1 InitLineIterator

2.2 SampleLine

2.3 GetRectSubPix

2.4 GetQuadrangleSubPix

2.5 Resize

2.6 WarpAffine

2.7 GetAffineTransform

2.8 2DRotationMatrix

2.9 WarpPerspective

2.10 WarpPerspectiveQMatrix

2.11 GetPerspectiveTransform

2.12 Remap

2.13 LogPolar

3 形态学操作

3.2 ReleaseStructuringElement

3.3 Erode

3.4 Dilate

3.5 MorphologyEx

4 滤波器与色彩空间变换

4.1 Smooth

4.2 Filter2D

4.3 CopyMakeBorder

4.4 Integral

4.5 CvtColor

4.6 Threshold

4.7 AdaptiveThreshold

5 金字塔及其应用

5.1 PyrDown

5.2 PyrUp

6 连接部件

6.1 CvConnectedComp

6.2 FloodFill

6.3 FindContours

6.4 StartFindContours

6.5 FindNextContour

6.6 SubstituteContour

6.7 EndFindContours

6.8 PyrSegmentation

6.9 PyrMeanShiftFiltering

6.10 Watershed

7 图像与轮廓矩

7.1 Moments

7.2 GetSpatialMoment

7.3 GetCentralMoment

7.4 GetNormalizedCentralMoment

7.5 GetHuMoments

8 特殊图像变换

8.1 HoughLines

8.2 HoughCircles

8.3 DistTransform

8.4 Inpaint

9 直方图

9.1 CvHistogram

9.2 CreateHist

9.3 SetHistBinRanges

9.4 ReleaseHist

9.5 ClearHist

9.6 MakeHistHeaderForArray

9.7 QueryHistValue_1D

9.8 GetHistValue_1D

9.9 GetMinMaxHistValue

9.10 NormalizeHist

9.11 ThreshHist

9.12 CompareHist

9.13 CopyHist

9.14 CalcHist

9.15 CalcBackProject

9.16 CalcBackProjectPatch

9.17 CalcProbDensity

9.18 EqualizeHist

10 匹配

10.1 MatchTemplate

10.3 CalcEMD2

梯度、边缘和角点

Sobel

使用扩展 Sobel 算子计算一阶、二阶、三阶或混合图像差分

void cvSobel( const CvArr* src, CvArr* dst, int xorder, int yorder, int aperture_size=3 );

src

输入图像.

dst

输出图像.

xorder

x 方向上的差分阶数

yorder

y 方向上的差分阶数

aperture_size

扩展 Sobel 核的大小,必须是 1, 3, 5 或 7。除了尺寸为 1,其它情况下, aperture_size

×aperture_size 可分离内核将用来计算差分。对 aperture_size=1的情况,使用 3x1 或 1x3 内核(不进行高斯平滑操作)。这里有一个特殊变量 CV_SCHARR (=-1),对应 3x3 Scharr 滤波器,可以给出比 3x3 Sobel 滤波更精确的结果。Scharr 滤波器系数是:

对 x-方向或矩阵转置后对 y-方向。

函数 cvSobel 通过对图像用相应的内核进行卷积操作来计算图像差分:

由于Sobel 算子结合了 Gaussian 平滑和微分,所以,其结果或多或少对噪声有一定的鲁棒性。通常情况,函数调用采用如下参数 (xorder=1, yorder=0, aperture_size=3) 或 (xorder=0, yorder=1,

aperture_size=3) 来计算一阶 x- 或 y- 方向的图像差分。第一种情况对应:

核。

第二种对应:

核的选则依赖于图像原点的定义 (origin 来自 IplImage 结构的定义)。由于该函数不进行图像尺度变换,所以和输入图像(数组)相比,输出图像(数组)的元素通常具有更大的绝对数值(译者注:即像素的位深)。为防止溢出,当输入图像是 8 位的,要求输出图像是 16 位的。当然可以用函数cvConvertScale 或 cvConvertScaleAbs 把运算结果(dst)转换为 8 位的。除了8-位图像,函数也接受32-位浮点数图像。所有输入和输出图像都必须是单通道的,并且具有相同的图像尺寸或者ROI尺寸。

Laplace

计算图像的 Laplacian 变换

void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 );

src

输入图像.

dst

输出图像.

aperture_size

核大小 (与 cvSobel 中定义一样).

函数 cvLaplace 计算输入图像的 Laplacian变换,方法是先用 sobel 算子计算二阶 x- 和 y- 差分,再求和:

对 aperture_size=1 则给出最快计算结果,相当于对图像采用如下内核做卷积:

类似于 cvSobel 函数,该函数也不作图像的尺度变换,所支持的输入、输出图像类型的组合和cvSobel 一致。

Canny

采用 Canny 算法做边缘检测

void cvCanny( const CvArr* image, CvArr* edges, double threshold1,

double threshold2, int aperture_size=3 );

image

单通道输入图像.

edges

单通道存储边缘的输出图像

threshold1

第二个阈值

aperture_size

Sobel 算子内核大小 (见 cvSobel).

函数 cvCanny 采用 CANNY 算法发现输入图像的边缘而且在输出图像中标识这些边缘。threshold1和threshold2 当中的小阈值用来控制边缘连接,大的阈值用来控制强边缘的初始分割。

注意事项:cvCanny只接受单通道图像作为输入。

外部链接:经典的canny自调整阈值算法的一个opencv的实现见在OpenCV中自适应确定canny算法的分割门限 (https://www.doczj.com/doc/e84779845.html,/u/30231/showart_233944.html)

PreCornerDetect

计算用于角点检测的特征图,

void cvPreCornerDetect( const CvArr* image, CvArr* corners, int aperture_size=3 );

image

输入图像.

corners

保存候选角点的特征图

aperture_size

Sobel 算子的核大小(见cvSobel).

函数 cvPreCornerDetect 计算函数其中表示一阶图像差

分,表示二阶图像差分。角点被认为是函数的局部最大值:

// 假设图像格式为浮点数

IplImage* corners = cvCloneImage(image);

IplImage* dilated_corners = cvCloneImage(image);

IplImage* corner_mask = cvCreateImage( cvGetSize(image), 8, 1 );

cvPreCornerDetect( image, corners, 3 );

cvDilate( corners, dilated_corners, 0, 1 );

cvSub( corners, dilated_corners, corners );

cvCmpS( corners, 0, corner_mask, CV_CMP_GE );

cvReleaseImage( &corners );

cvReleaseImage( &dilated_corners );

CornerEigenValsAndVecs

计算图像块的特征值和特征向量,用于角点检测

void cvCornerEigenValsAndVecs( const CvArr* image, CvArr* eigenvv,

int block_size, int aperture_size=3 );

image

输入图像.

eigenvv

保存结果的数组。必须比输入图像宽 6 倍。

block_size

邻域大小 (见讨论).

aperture_size

Sobel 算子的核尺寸(见 cvSobel).

对每个象素,函数 cvCornerEigenValsAndVecs 考虑 block_size × block_size 大小的邻域 S(p),然后在邻域上计算图像差分的相关矩阵:

然后它计算矩阵的特征值和特征向量,并且按如下方式(λ1, λ2, x1, y1, x2, y2)存储这些值到输出图像中,其中

λ1, λ2 - M 的特征值,没有排序

(x1, y1) - 特征向量,对λ1

(x2, y2) - 特征向量,对λ2

CornerMinEigenVal

计算梯度矩阵的最小特征值,用于角点检测

void cvCornerMinEigenVal( const CvArr* image, CvArr* eigenval, int block_size, int aperture_size=3 );

image

输入图像.

eigenval

保存最小特征值的图像. 与输入图像大小一致

block_size

邻域大小 (见讨论 cvCornerEigenValsAndVecs).

aperture_size

Sobel 算子的核尺寸(见 cvSobel). 当输入图像是浮点数格式时,该参数表示用来计算差分固定的浮点滤波器的个数.

函数 cvCornerMinEigenVal 与 cvCornerEigenValsAndVecs 类似,但是它仅仅计算和存储每个象素点差分相关矩阵的最小特征值,即前一个函数的 min(λ1, λ2)

CornerHarris

哈里斯(Harris)角点检测

void cvCornerHarris( const CvArr* image, CvArr* harris_responce, int block_size, int aperture_size=3,

image

输入图像。

harris_responce

存储哈里斯(Harris)检测responces的图像。与输入图像等大。

block_size

邻域大小(见关于cvCornerEigenValsAndVecs的讨论)。

aperture_size

扩展 Sobel 核的大小(见 cvSobel)。格式. 当输入图像是浮点数格式时,该参数表示用来计算差分固定的浮点滤波器的个数。

k

harris 检测器的自由参数。参见下面的公式。

函数 cvCornerHarris 对输入图像进行 Harris 边界检测。类似于 cvCornerMinEigenVal 和

cvCornerEigenValsAndVecs。对每个像素,在 block_size*block_size 大小的邻域上,计算其2*2梯度共变矩阵(或相关异变矩阵)M。然后,将

det(M) - k*trace(M)2 (这里2是平方)

保存到输出图像中。输入图像中的角点在输出图像中由局部最大值表示。

FindCornerSubPix

精确角点位置

void cvFindCornerSubPix( const CvArr* image, CvPoint2D32f* corners,

int count, CvSize win, CvSize zero_zone,

CvTermCriteria criteria );

image

输入图像.

corners

输入角点的初始坐标,也存储精确的输出坐标

count

角点数目

win

搜索窗口的一半尺寸。如果 win=(5,5) 那么使用 5*2+1 × 5*2+1 = 11 × 11 大小的搜索窗口

zero_zone

死区的一半尺寸,死区为不对搜索区的中央位置做求和运算的区域。它是用来避免自相关矩阵出现的某些可能的奇异性。当值为 (-1,-1) 表示没有死区。

criteria

求角点的迭代过程的终止条件。即角点位置的确定,要么迭代数大于某个设定值,或者是精确度达到某个设定值。 criteria 可以是最大迭代数目,或者是设定的精确度,也可以是它们的组合。

函数 cvFindCornerSubPix 通过迭代来发现具有子象素精度的角点位置,或如图所示的放射鞍点(radial saddle points)。

子象素级角点定位的实现是基于对向量正交性的观测而实现的,即从中央点q到其邻域点p 的向量和p 点处的图像梯度正交(服从图像和测量噪声)。考虑以下的表达式:

εi=DIpiT?(q-pi)

其中,DIpi表示在q的一个邻域点pi处的图像梯度,q的值通过最小化εi得到。通过将εi设为0,可以建立系统方程如下:

sumi(DIpi?DIpiT)?q - sumi(DIpi?DIpiT?pi) = 0

其中q的邻域(搜索窗)中的梯度被累加。调用第一个梯度参数G和第二个梯度参数b,得到:

q=G-1?b

该算法将搜索窗的中心设为新的中心q,然后迭代,直到找到低于某个阈值点的中心位置。GoodFeaturesToTrack

确定图像的强角点

void cvGoodFeaturesToTrack( const CvArr* image, CvArr* eig_image, CvArr* temp_image,

CvPoint2D32f* corners, int* corner_count,

double quality_level, double min_distance,

const CvArr* mask=NULL );

image

输入图像,8-位或浮点32-比特,单通道

eig_image

临时浮点32-位图像,尺寸与输入图像一致

temp_image

另外一个临时图像,格式与尺寸与 eig_image 一致

corners

输出参数,检测到的角点

corner_count

输出参数,检测到的角点数目

quality_level

最大最小特征值的乘法因子。定义可接受图像角点的最小质量因子。

min_distance

限制因子。得到的角点的最小距离。使用 Euclidian 距离

mask

ROI:感兴趣区域。函数在ROI中计算角点,如果 mask 为 NULL,则选择整个图像。必须为单通道的灰度图,大小与输入图像相同。mask对应的点不为0,表示计算该点。

函数 cvGoodFeaturesToTrack 在图像中寻找具有大特征值的角点。该函数,首先用cvCornerMinEigenVal 计算输入图像的每一个象素点的最小特征值,并将结果存储到变量 eig_image 中。然后进行非最大值抑制(仅保留3x3邻域中的局部最大值)。下一步将最小特征值小于

quality_level?max(eig_image(x,y)) 排除掉。最后,函数确保所有发现的角点之间具有足够的距离,(最强的角点第一个保留,然后检查新的角点与已有角点之间的距离大于 min_distance )。

采样、插值和几何变换

InitLineIterator

初始化线段迭代器

int cvInitLineIterator( const CvArr* image, CvPoint pt1, CvPoint pt2,

CvLineIterator* line_iterator, int connectivity=8 );

image

带采线段的输入图像.

pt1

线段起始点

pt2

线段结束点

line_iterator

指向线段迭代器状态结构的指针

connectivity

被扫描线段的连通数,4 或 8.

函数 cvInitLineIterator 初始化线段迭代器,并返回两点之间的象素点数目。两个点必须在图像内。当迭代器初始化后,连接两点的光栅线上所有点,都可以连续通过调用 CV_NEXT_LINE_POINT 来得到。线段上的点是使用 4-连通或8-连通利用 Bresenham 算法逐点计算的。

例子:使用线段迭代器计算彩色线上象素值的和

CvScalar sum_line_pixels( IplImage* image, CvPoint pt1, CvPoint pt2 )

{

CvLineIterator iterator;

int blue_sum = 0, green_sum = 0, red_sum = 0;

int count = cvInitLineIterator( image, pt1, pt2, &iterator, 8 );

for( int i = 0; i < count; i++ ){

blue_sum += iterator.ptr[0];

green_sum += iterator.ptr[1];

red_sum += iterator.ptr[2];

CV_NEXT_LINE_POINT(iterator);

/* print the pixel coordinates: demonstrates how to calculate the coordinates */

{

int offset, x, y;

/* assume that ROI is not set, otherwise need to take it into account. */

offset = iterator.ptr - (uchar*)(image->imageData);

y = offset/image->widthStep;

x = (offset - y*image->widthStep)/(3*sizeof(uchar) /* size of pixel */);

printf("(%d,%d)\n", x, y );

}

}

return cvScalar( blue_sum, green_sum, red_sum );

}

SampleLine

将图像上某一光栅线上的像素数据读入缓冲区

int cvSampleLine( const CvArr* image, CvPoint pt1, CvPoint pt2,

void* buffer, int connectivity=8 );

image

输入图像

pt1

光栅线段的起点

pt2

光栅线段的终点

buffer

存储线段点的缓存区,必须有足够大小来存储点 max( |pt2.x-pt1.x|+1, |pt2.y-pt1.y|+1 ) :8-连通情况下,或者 |pt2.x-pt1.x|+|pt2.y-pt1.y|+1 : 4-连通情况下.

connectivity

线段的连通方式, 4 or 8.

函数 cvSampleLine 实现了线段迭代器的一个特殊应用。它读取由 pt1 和 pt2 两点确定的线段上的所有图像点,包括终点,并存储到缓存中。

GetRectSubPix

从图像中提取象素矩形,使用子象素精度

void cvGetRectSubPix( const CvArr* src, CvArr* dst, CvPoint2D32f center );

src

输入图像.

提取的矩形.

center

提取的象素矩形的中心,浮点数坐标。中心必须位于图像内部.

函数 cvGetRectSubPix 从图像 src 中提取矩形:

dst(x, y) = src(x + center.x - (width(dst)-1)*0.5, y + center.y - (height(dst)-1)*0.5)

其中非整数象素点坐标采用双线性插值提取。对多通道图像,每个通道独立单独完成提取。尽管函数要求矩形的中心一定要在输入图像之中,但是有可能出现矩形的一部分超出图像边界的情况,这时,该函数复制边界的模识(hunnish:即用于矩形相交的图像边界线段的象素来代替矩形超越部分的象素)。

GetQuadrangleSubPix

提取象素四边形,使用子象素精度

void cvGetQuadrangleSubPix( const CvArr* src, CvArr* dst, const CvMat* map_matrix );

src

输入图像.

dst

提取的四边形.

map_matrix

3 × 2 变换矩阵 [A|b] (见讨论).

函数 cvGetQuadrangleSubPix 以子象素精度从图像 src 中提取四边形,使用子象素精度,并且将结果存储于 dst ,计算公式是:

dst(x + width(dst) / 2,y + height(dst) / 2) = src(A11x + A12y + b1,A21x + A22y + b2)

其中 A和 b 均来自映射矩阵(译者注:A, b为几何形变参数) ,映射矩阵为:

其中在非整数坐标的象素点值通过双线性变换得到。当函数需要图像边界外的像素点时,使用重复边界模式(replication border mode)恢复出所需的值。多通道图像的每一个通道都单独计算。

例子:使用 cvGetQuadrangleSubPix 进行图像旋转

#include "cv.h"

#include "highgui.h"

#include "math.h"

int main( int argc, char** argv )

{

IplImage* src;

/* the first command line parameter must be image file name */

if( argc==2 && (src = cvLoadImage(argv[1], -1))!=0)

{

IplImage* dst = cvCloneImage( src );

int delta = 1;

int angle = 0;

cvNamedWindow( "src", 1 );

cvShowImage( "src", src );

for(;;)

{

float m[6];

double factor = (cos(angle*CV_PI/180.) + 1.1)*3;

CvMat M = cvMat( 2, 3, CV_32F, m );

int w = src->width;

int h = src->height;

m[0] = (float)(factor*cos(-angle*2*CV_PI/180.));

m[1] = (float)(factor*sin(-angle*2*CV_PI/180.));

m[2] = w*0.5f;

m[3] = -m[1];

m[4] = m[0];

m[5] = h*0.5f;

cvGetQuadrangleSubPix( src, dst, &M, 1, cvScalarAll(0));

cvNamedWindow( "dst", 1 );

cvShowImage( "dst", dst );

if( cvWaitKey(5) == 27 )

break;

angle = (angle + delta) % 360;

}

}

return 0;

}

Resize

图像大小变换

void cvResize( const CvArr* src, CvArr* dst, int interpolation=CV_INTER_LINEAR );

src

输入图像.

dst

输出图像.

interpolation

插值方法:

CV_INTER_NN - 最近邻插值,

CV_INTER_LINEAR - 双线性插值 (缺省使用)

CV_INTER_AREA - 使用象素关系重采样。当图像缩小时候,该方法可以避免波纹出

现。当图像放大时,类似于 CV_INTER_NN 方法..

CV_INTER_CUBIC - 立方插值.

函数 cvResize 将图像 src 改变尺寸得到与 dst 同样大小。若设定 ROI,函数将按常规支持 ROI. WarpAffine

对图像做仿射变换

void cvWarpAffine( const CvArr* src, CvArr* dst, const CvMat* map_matrix,

int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS,

CvScalar fillval=cvScalarAll(0) );

src

输入图像.

dst

输出图像.

flags

插值方法和以下开关选项的组合:

CV_WARP_FILL_OUTLIERS - 填充所有输出图像的象素。如果部分象素落在输入图像的

边界外,那么它们的值设定为 fillval.

CV_WARP_INVERSE_MAP - 指定 map_matrix 是输出图像到输入图像的反变换,因此可

以直接用来做象素插值。否则, 函数从 map_matrix 得到反变换。

fillval

用来填充边界外面的值

函数 cvWarpAffine 利用下面指定的矩阵变换输入图像:

■ , 如果没有指定 CV_WARP_INVERSE_MAP ,

否则,

函数与 cvGetQuadrangleSubPix 类似,但是不完全相同。 cvWarpAffine 要求输入和输出图像具有同样的数据类型,有更大的资源开销(因此对小图像不太合适)而且输出图像的部分可以保留不变。而cvGetQuadrangleSubPix 可以精确地从8位图像中提取四边形到浮点数缓存区中,具有比较小的系统开销,而且总是全部改变输出图像的内容。

要变换稀疏矩阵,使用 cxcore 中的函数 cvTransform 。

GetAffineTransform

由三对点计算仿射变换

CvMat* cvGetAffineTransform( const CvPoint2D32f* src, const CvPoint2D32f* dst, CvMat* map_matrix );

src

输入图像的三角形顶点坐标。

dst

输出图像的相应的三角形顶点坐标。

map_matrix

指向2×3输出矩阵的指针。

函数cvGetAffineTransform计算满足以下关系的仿射变换矩阵:

这里,dst(i) = (x'i,y'i),src(i) = (x i,y i),i = 0..2.

2DRotationMatrix

计算二维旋转的仿射变换矩阵

CvMat* cv2DRotationMatrix( CvPoint2D32f center, double angle,

double scale, CvMat* map_matrix );

center

输入图像的旋转中心坐标

angle

旋转角度(度)。正值表示逆时针旋转(坐标原点假设在左上角).

各项同性的尺度因子

map_matrix

输出 2×3 矩阵的指针

函数 cv2DRotationMatrix 计算矩阵:

[ αβ | (1-α)*center.x - β*center.y ]

[ -βα | β*center.x + (1-α)*center.y ]

where α=scale*cos(angle), β=scale*sin(angle)

该变换并不改变原始旋转中心点的坐标,如果这不是操作目的,则可以通过调整平移量改变其坐标(译者注:通过简单的推导可知,仿射变换的实现是首先将旋转中心置为坐标原点,再进行旋转和尺度变换,最后重新将坐标原点设定为输入图像的左上角,这里的平移量是center.x, center.y). WarpPerspective

对图像进行透视变换

void cvWarpPerspective( const CvArr* src, CvArr* dst, const CvMat* map_matrix,

int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS,

CvScalar fillval=cvScalarAll(0) );

src

输入图像.

dst

输出图像.

map_matrix

3×3 变换矩阵

flags

插值方法和以下开关选项的组合:

CV_WARP_FILL_OUTLIERS - 填充所有缩小图像的象素。如果部分象素落在输入图像的■

边界外,那么它们的值设定为 fillval.

CV_WARP_INVERSE_MAP - 指定 matrix 是输出图像到输入图像的反变换,因此可以直

接用来做象素插值。否则, 函数从 map_matrix 得到反变换。

fillval

用来填充边界外面的值

函数 cvWarpPerspective 利用下面指定矩阵变换输入图像:

如果没有指定 CV_WARP_INVERSE_MAP ,

■ , ■

否则,

要变换稀疏矩阵,使用 cxcore 中的函数 cvTransform 。

WarpPerspectiveQMatrix

用4个对应点计算透视变换矩阵

CvMat* cvWarpPerspectiveQMatrix( const CvPoint2D32f* src,

const CvPoint2D32f* dst,

CvMat* map_matrix );

输入图像的四边形的4个点坐标

dst

输出图像的对应四边形的4个点坐标

map_matrix

输出的 3×3 矩阵

函数 cvWarpPerspectiveQMatrix 计算透视变换矩阵,使得:

(tix'i,tiy'i,ti)T=matrix?(xi,yi,1)T

其中 dst(i)=(x'i,y'i), src(i)=(xi,yi), i=0..3.

GetPerspectiveTransform

由四对点计算透射变换

CvMat* cvGetPerspectiveTransform( const CvPoint2D32f* src, const CvPoint2D32f* dst, CvMat* map_matrix );

#define cvWarpPerspectiveQMatrix cvGetPerspectiveTransform

src

输入图像的四边形顶点坐标。

dst

输出图像的相应的四边形顶点坐标。

map_matrix

指向3×3输出矩阵的指针。

函数cvGetPerspectiveTransform计算满足以下关系的透射变换矩阵:

这里,dst(i) = (x'i,y'i),src(i) = (x i,y i),i = 0..3.

Remap

对图像进行普通几何变换

void cvRemap( const CvArr* src, CvArr* dst,

const CvArr* mapx, const CvArr* mapy,

int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS,

CvScalar fillval=cvScalarAll(0) );

src

输入图像.

dst

输出图像.

mapx

x坐标的映射 (32fC1 image).

mapy

y坐标的映射 (32fC1 image).

flags

插值方法和以下开关选项的组合:

CV_WARP_FILL_OUTLIERS - 填充边界外的像素. 如果输出图像的部分象素落在变换后■

的边界外,那么它们的值设定为 fillval。

fillval

用来填充边界外面的值.

函数 cvRemap 利用下面指定的矩阵变换输入图像:

dst(x,y)<-src(mapx(x,y),mapy(x,y))

与其它几何变换类似,可以使用一些插值方法(由用户指定,译者注:同cvResize)来计算非整数坐标的像素值。

LogPolar

把图像映射到极指数空间

void cvLogPolar( const CvArr* src, CvArr* dst,

CvPoint2D32f center, double M,

int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS );

src

输入图像。

dst

输出图像。

center

变换的中心,输出图像在这里最精确。

M

幅度的尺度参数,见下面公式。

flags

插值方法和以下选择标志的结合

CV_WARP_FILL_OUTLIERS -填充输出图像所有像素,如果这些点有和外点对应的,则■

置零。

CV_WARP_INVERSE_MAP - 表示矩阵由输出图像到输入图像的逆变换,并且因此可以

直接用于像素插值。否则,函数从map_matrix中寻找逆变换。

fillval

用于填充外点的值。

函数cvLogPolar用以下变换变换输入图像:

正变换 (CV_WARP_INVERSE_MAP 未置位):

dst(phi,rho)<-src(x,y)

逆变换 (CV_WARP_INVERSE_MAP 置位):

dst(x,y)<-src(phi,rho),

这里,

rho=M+log(sqrt(x2+y2))

phi=atan(y/x)

此函数模仿人类视网膜中央凹视力,并且对于目标跟踪等可用于快速尺度和旋转变换不变模板匹配。Example. Log-polar transformation.

#include

#include

int main(int argc, char** argv)

{

IplImage* src;

if(argc == 2 && ((src=cvLoadImage(argv[1],1)) != 0 ))

{

IplImage* dst = cvCreateImage( cvSize(256,256), 8, 3 );

IplImage* src2 = cvCreateImage( cvGetSize(src), 8, 3 );

cvLogPolar( src, dst, cvPoint2D32f(src->width/2,src->height/2), 40, CV_INTER_LINEAR+CV_WARP_FI cvLogPolar( dst, src2, cvPoint2D32f(src->width/2,src->height/2), 40, CV_INTER_LINEAR+CV_WARP_F cvNamedWindow( "log-polar", 1 );

cvShowImage( "log-polar", dst );

cvNamedWindow( "inverse log-polar", 1 );

cvShowImage( "inverse log-polar", src2 );

cvWaitKey();

}

return 0;

}

And this is what the program displays when opencv/samples/c/fruits.jpg is passed to it

形态学操作

CreateStructuringElementEx

创建结构元素

IplConvKernel* cvCreateStructuringElementEx( int cols, int rows, int anchor_x, int anchor_y,

int shape, int* values=NULL );

cols

结构元素的列数目

rows

结构元素的行数目

anchor_x

锚点的相对水平偏移量

anchor_y

结构元素的形状,可以是下列值:

CV_SHAPE_RECT, 长方形元素;

CV_SHAPE_CROSS, 交错元素 a cross-shaped element;

CV_SHAPE_ELLIPSE, 椭圆元素;

CV_SHAPE_CUSTOM, 用户自定义元素。这种情况下参数 values 定义了 mask,即象素的

那个邻域必须考虑。

values

指向结构元素的指针,它是一个平面数组,表示对元素矩阵逐行扫描。(非零点表示该点属于结构元)。如果指针为空,则表示平面数组中的所有元素都是非零的,即结构元是一个长方形(该参数仅仅当shape参数是 CV_SHAPE_CUSTOM 时才予以考虑)。

函数 cv CreateStructuringElementEx 分配和填充结构 IplConvKernel, 它可作为形态操作中的结构元素。ReleaseStructuringElement

删除结构元素

void cvReleaseStructuringElement( IplConvKernel** element );

element

被删除的结构元素的指针

函数 cvReleaseStructuringElement 释放结构 IplConvKernel 。如果 *element 为 NULL, 则函数不作用。Erode

使用任意结构元素腐蚀图像

void cvErode( const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1 );

src

输入图像.

dst

输出图像.

element

用于腐蚀的结构元素。若为 NULL, 则使用 3×3 长方形的结构元素

iterations

腐蚀的次数

函数 cvErode 对输入图像使用指定的结构元素进行腐蚀,该结构元素决定每个具有最小值象素点的邻域形状:

dst=erode(src,element): dst(x,y)=min((x',y') in element))src(x+x',y+y')

函数可能是本地操作,不需另外开辟存储空间的意思。腐蚀可以重复进行 (iterations) 次. 对彩色图像,每个彩色通道单独处理。

Dilate

使用任意结构元素膨胀图像

src

输入图像.

dst

输出图像.

element

用于膨胀的结构元素。若为 NULL, 则使用 3×3 长方形的结构元素

iterations

膨胀的次数

函数 cvDilate 对输入图像使用指定的结构元进行膨胀,该结构决定每个具有最小值象素点的邻域形状:

dst=dilate(src,element): dst(x,y)=max((x',y') in element))src(x+x',y+y')

函数支持(in-place)模式。膨胀可以重复进行 (iterations) 次. 对彩色图像,每个彩色通道单独处理。MorphologyEx

高级形态学变换

void cvMorphologyEx( const CvArr* src, CvArr* dst, CvArr* temp,

IplConvKernel* element, int operation, int iterations=1 );

src

输入图像.

dst

输出图像.

temp

临时图像,某些情况下需要

element

结构元素

operation

形态操作的类型:

CV_MOP_OPEN - 开运算

CV_MOP_CLOSE - 闭运算

CV_MOP_GRADIENT - 形态梯度

CV_MOP_TOPHAT - "顶帽"

CV_MOP_BLACKHAT - "黑帽"

iterations

膨胀和腐蚀次数.

函数 cvMorphologyEx 在膨胀和腐蚀基本操作的基础上,完成一些高级的形态变换:

开运算

dst=open(src,element)=dilate(erode(src,element),element)

闭运算

dst=close(src,element)=erode(dilate(src,element),element)

形态梯度

dst=morph_grad(src,element)=dilate(src,element)-erode(src,element)

"顶帽"

dst=tophat(src,element)=src-open(src,element)

"黑帽"

dst=blackhat(src,element)=close(src,element)-src

滤波器与色彩空间变换

Smooth

各种方法的图像平滑

void cvSmooth( const CvArr* src, CvArr* dst,

int smoothtype=CV_GAUSSIAN,

int param1=3, int param2=0, double param3=0, double param4=0 );

src

输入图像.

dst

输出图像.

smoothtype

平滑方法:

CV_BLUR_NO_SCALE (简单不带尺度变换的模糊) - 对每个象素的 param1×param2 领域

求和。如果邻域大小是变化的,可以事先利用函数 cvIntegral 计算积分图像。

CV_BLUR (simple blur) - 对每个象素param1×param2邻域求和并做尺度变换 1/

(param1?param2).

CV_GAUSSIAN (gaussian blur) - 对图像进行核大小为 param1×param2 的高斯卷积■

CV_MEDIAN (median blur) - 对图像进行核大小为param1×param1 的中值滤波 (i.e. 邻域是

方的).

CV_BILATERAL (双向滤波) - 应用双向 3x3 滤波,彩色 sigma=param1,空间

sigma=param2. 关于双向滤波,可参考

https://www.doczj.com/doc/e84779845.html,/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html param1

平滑操作的第一个参数.

param2

平滑操作的第二个参数. 对于简单/非尺度变换的高斯模糊的情况,如果param2的值为零,则表示其被设定为param1。

param3

对应高斯参数的 Gaussian sigma (标准差). 如果为零,则标准差由下面的核尺寸计算:

sigma = (n/2 - 1)*0.3 + 0.8, 其中 n=param1 对应水平核,

n=param2 对应垂直核.

对小的卷积核 (3×3 to 7×7) 使用如上公式所示的标准 sigma 速度会快。如果 param3 不为零,而 param1 和 param2 为零,则核大小有 sigma 计算 (以保证足够精确的操作).

函数 cvSmooth 可使用上面任何一种方法平滑图像。每一种方法都有自己的特点以及局限。

没有缩放的图像平滑仅支持单通道图像,并且支持8位到16位的转换(与cvSobel和cvaplace相似)和32位浮点数到32位浮点数的变换格式。

简单模糊和高斯模糊支持 1- 或 3-通道, 8-比特和 32-比特浮点图像。这两种方法可以(in-place)方式处理图像。

中值和双向滤波工作于 1- 或 3-通道, 8-位图像,但是不能以 in-place 方式处理图像.

中值滤波

中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有

通过从图像中的某个采样窗口取出奇数个数据进行排序

1.

2.

用排序后的中值取代要处理的数据即可

中值滤波法对消除椒盐噪音非常有效,在光学测量条纹图象的相位分析处理方法中有特殊作用,但在条纹中心分析方法中作用不大。中值滤波在图像处理中,常用于用来保护边缘信息,是经典的平滑噪声的方法

中值滤波原理

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个拎域中各点值的中值代替,让周围的像素值接近的值,从而消除孤立的噪声点。方法是去某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l), (k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为2*2,3*3区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。

高斯滤波

高斯滤波实质上是一种信号的滤波器,其用途是信号的平滑处理,我们知道数字图像用于后期应用,其噪声是最大的问题,由于误差会累计传递等原因,很多图像处理教材会在很早的时候介绍Gauss滤波器,用于得到信噪比SNR较高的图像(反应真实信号)。于此相关的有Gauss-Lapplace变换,其实就是为了得到较好的图像边缘,先对图像做Gauss平滑滤波,剔除噪声,然后求二阶导矢,用二阶导的过零点确定边缘,在计算时也是频域乘积=>空域卷积。

滤波器就是建立的一个数学模型,通过这个模型来将图像数据进行能量转化,能量低的就排除掉,噪声就是属于低能量部分

其实编程运算的话就是一个模板运算,拿图像的八连通区域来说,中间点的像素值就等于八连通区的像素值的均值,这样达到平滑的效果

若使用理想滤波器,会在图像中产生振铃现象。采用高斯滤波器的话,系统函数是平滑的,避免了振铃现象。

Filter2D

对图像做卷积

void cvFilter2D( const CvArr* src, CvArr* dst,

const CvMat* kernel,

CvPoint anchor=cvPoint(-1,-1));

src

输入图像.

dst

输出图像.

kernel

卷积核, 单通道浮点矩阵. 如果想要应用不同的核于不同的通道,先用 cvSplit 函数分解图像到单个色彩通道上,然后单独处理。

anchor

核的锚点表示一个被滤波的点在核内的位置。锚点应该处于核内部。缺省值 (-1,-1) 表示锚点在核中心。

函数 cvFilter2D 对图像进行线性滤波,支持 In-place 操作。当核运算部分超出输入图像时,函数从最近邻的图像内部象素插值得到边界外面的象素值。

OpenCV主要函数介绍

4.1 OpenCV主要函数介绍 1) cvLoadImage 从文件中读取图像 IplImage* cvLoadImage(const char* filename,int flags=CV_LOAD_IMAGE_COLOR ); 函数cvLoadImage从指定文件读入图像,返回读入图像的指针。其中filename是要被读入的文件的文件名;flags指定读入图像的颜色和深度。 2)cvSaveImage 保存图像到文件 int cvSaveImage( const char* filename, const CvArr* image ); 函数cvSaveImage保存图像到指定文件。其中filename保存文件名。image 要保存的图像。图像格式的的选择依赖于filename的扩展名,只有8位单通道或者3通道(通道顺序为'BGR' )可以使用这个函数保存。 3)cvQueryFrame从摄像头或者文件中抓取并返回一帧 IplImage* cvQueryFrame( CvCapture* capture ); 函数cvQueryFrame从摄像头或者文件中抓取一帧,然后解压并返回这一帧。这个函数仅仅是函数cvGrabFrame和函数cvRetrieveFrame在一起调用的组合。返回的图像不可以被用户释放或者修改。其中capture视频获取结构。。 4)cvCaptureFromCAM 初始化摄像头 CvCapture* cvCaptureFromCAM( int index ); 函数cvCaptureFromCAM给从摄像头的视频流分配和初始化CvCapture结构。 其中index要使用的摄像头索引。如果只有一个摄像头或者用哪个摄像头也无所谓,那使用参数-1应该便可以。 5)cvHaarDetectObjects 用来检测图像中的人脸区域 CV API(CvSeq*) cvHaarDetectObjects( const CvArr* image, CvHaarClassifierCascade* cascade, CvMemStorage* storage, double scale_factor CV_DEFAULT(1.1), int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0))); 用于快速检测人脸区域,便于提取得到人脸数据。其中image 为被检图像,cascade为 haar分类器级联的内部标识形式,storage 为用来存储检测到的一

图像处理opencv代码

#include "stdafx.h" #include "mymfc.h" #include "mymfcDlg.h" #include "afxdialogex.h" #include #ifdef _DEBUG #define new DEBUG_NEW #endif // 用于应用程序“关于”菜单项的 CAboutDlg 对话框 class CAboutDlg : public CDialogEx { public: CAboutDlg(); // 对话框数据 enum { IDD = IDD_ABOUTBOX }; protected: virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 支持 // 实现 protected: DECLARE_MESSAGE_MAP() }; CAboutDlg::CAboutDlg() : CDialogEx(CAboutDlg::IDD) { } void CAboutDlg::DoDataExchange(CDataExchange* pDX) { CDialogEx::DoDataExchange(pDX); } BEGIN_MESSAGE_MAP(CAboutDlg, CDialogEx) END_MESSAGE_MAP() // CmymfcDlg 对话框

CmymfcDlg::CmymfcDlg(CWnd* pParent /*=NULL*/) : CDialogEx(CmymfcDlg::IDD, pParent) , TheImage(NULL) , rePath(_T("")) { m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); } void CmymfcDlg::DoDataExchange(CDataExchange* pDX) { CDialogEx::DoDataExchange(pDX); } BEGIN_MESSAGE_MAP(CmymfcDlg, CDialogEx) ON_WM_SYSCOMMAND() ON_WM_PAINT() ON_WM_QUERYDRAGICON() ON_BN_CLICKED(IDC_ReadImg, &CmymfcDlg::OnBnClickedReadimg) ON_BN_CLICKED(IDC_EdgeDetect, &CmymfcDlg::OnBnClickedEdgedetect) ON_BN_CLICKED(IDC_Refresh, &CmymfcDlg::OnBnClickedRefresh) ON_BN_CLICKED(IDC_GrayProcess, &CmymfcDlg::OnBnClickedGrayprocess) ON_BN_CLICKED(IDC_Sobel, &CmymfcDlg::OnBnClickedSobel) ON_BN_CLICKED(IDC_Laplace, &CmymfcDlg::OnBnClickedLaplace) ON_BN_CLICKED(IDC_FFT2, &CmymfcDlg::OnBnClickedFft2) ON_BN_CLICKED(IDC_CImage, &CmymfcDlg::OnBnClickedCimage) ON_BN_CLICKED(IDC_Mirror, &CmymfcDlg::OnBnClickedMirror) ON_BN_CLICKED(IDC_CColor, &CmymfcDlg::OnBnClickedCcolor) ON_BN_CLICKED(IDC_MedianBlur, &CmymfcDlg::OnBnClickedMedianblur) ON_BN_CLICKED(IDC_Gaussian, &CmymfcDlg::OnBnClickedGaussian) ON_BN_CLICKED(IDC_BothSide, &CmymfcDlg::OnBnClickedBothside) ON_BN_CLICKED(IDC_Equally, &CmymfcDlg::OnBnClickedEqually) ON_BN_CLICKED(IDC_Corrosion, &CmymfcDlg::OnBnClickedCorrosion) ON_BN_CLICKED(IDC_Dilate, &CmymfcDlg::OnBnClickedDilate) END_MESSAGE_MAP() // CmymfcDlg 消息处理程序 BOOL CmymfcDlg::OnInitDialog() { CDialogEx::OnInitDialog();

基于OpenCV识别库的面部图像识别系统的设计

基于OpenCV识别库的面部图像识别系统的设计 本系统采用J2EE技术并以OpenCV开源计算机视觉库技术为基础,实现一套具有身份验证功能的面部图像识别信息管理系统。系统使用MySQL数据库提供数据支撑,依托于J2EE的稳定性和Java平台的可移植性使得本系统可以在各个操作系统平台中运行,同时提供在互联网中使用面部识别技术的一套较为完备的解决方案。 标签:OpenCV;人脸识别;生物学特征 引言 随着信息技术的飞速发展以及互联网的深入普及,越来越多的行业和领域使用信息技术产品以提高工作效率和管理水平。但是由于人们隐私信息的保护意识薄弱,出现了许多信息安全的问题。在人们对于信息安全越来越重视的情况下,许多技术被应用到信息安全领域中来。较为先进的技术有虹膜识别技术、遗传基因识别技术以及指纹识别技术等。而论文采用的是当前热点的面部图像识别技术。 1 系统实现算法及功能分析 1.1 面部图像的生物学特征模型的建立 本系统是利用面部图形的生物学特征来识别不同的人。由于每个人的面部图像都有各自的特征但又具有一定的通性,需要应用生物学中相关知识加以解决。可以利用已有的生物学测量手段以及现有的算法构建人的面部图像生物学特征模型(简称:面部模型),并应用于系统中,面部模型的建立为面部图像识别的功能提供实现依据。 1.2 知识特征库及面部识别引擎的建立 在前述面部模型建立完成后,需要建立相应的知识库以及面部识别引擎方可进行身份的识别。可经过大量数据的采集和分析后建立知识库,并根据知识库的特点建立相应的识别引擎。此识别引擎对外开放,在本系统中提供其它外来程序的调用接口,其它系统能够通过本接口实现识别引擎的调用实现对于面部图形的识别,从而达到识别引擎的可复用性。在技术条件允许的情况下,提供知识库的智能训练以及半自动构建支持。 1.3 面部图像的采集与预处理 本系统中采用了预留API接口,利用USB图形捕获设备采集数据图像。经过USB设备的捕获,使用JMF(Java Media Framework)来处理已捕获的图像数据,对捕获的图像进行面部图行检测和实时定位跟踪。

opencv函数目录-Cv图像处理

目录 1 梯度、边缘和角点 1.1 Sobel 1.2 Laplace 1.3 Canny 1.4 PreCornerDetect 1.5 CornerEigenValsAndVecs 1.6 CornerMinEigenVal 1.7 CornerHarris 1.8 FindCornerSubPix 1.9 GoodFeaturesToTrack 2 采样、插值和几何变换 2.1 InitLineIterator 2.2 SampleLine 2.3 GetRectSubPix 2.4 GetQuadrangleSubPix 2.5 Resize 2.6 WarpAffine 2.7 GetAffineTransform 2.8 2DRotationMatrix 2.9 WarpPerspective 2.10 WarpPerspectiveQMatrix 2.11 GetPerspectiveTransform 2.12 Remap 2.13 LogPolar 3 形态学操作 3.1 CreateStructuringElementEx 3.2 ReleaseStructuringElement 3.3 Erode 3.4 Dilate 3.5 MorphologyEx 4 滤波器与色彩空间变换 4.1 Smooth 4.2 Filter2D 4.3 CopyMakeBorder 4.4 Integral 4.5 CvtColor 4.6 Threshold 4.7 AdaptiveThreshold 5 金字塔及其应用 5.1 PyrDown 5.2 PyrUp 6 连接部件 6.1 CvConnectedComp

OPENCV库函数使用说明

OPENCV(Intel Open Source Computer Vision Library)是一种数字图像处理和计算机视觉的函数库,由Intel公司微处理器实验室(Intel’s Microprocessor Research Lab)的视觉交互组(The Visual Interactivity Group)开发。它可以在Windows系统、Linux系统、MacOSx系统等操作平台上使用,也可以和其他编程工具结合,以满足不同的使用要求。使用OPENCV使用C/C++编写,包含300多个图像处理函数,有以下几个对立的子库组成: 1.CXCORE:一些基本函数(各种数据类型的基本运算等) 2.CV:图像处理和计算机视觉算法(图像处理、结构分析、运动分析、物体跟 踪和模式识别等) 3.HIGHGUI:用户交互部分(图形界面,图像视频输入输出,系统调用函数) 4.CVAUX:一些实验性的函数(三维跟踪等) 在这些库函数的支持下,用户可以直接调用滤波函数,形态学处理,图像特征提取,轮廓提取算法和跟踪算法,也可以添加自己编写的子函数,不但能完成复杂的开发任务,还可以提高效率,达到事半功倍的效果。 OPENCV的重要特性: 1.拥有包括300多个C函数的跨平台的中、高层API。它不依赖于其他的外部库——尽管也可以使用某些外部库。 2.对非商业应用和商业应用都是免费(FREE)的。 3.为Integrated Performance Primitives(IPP)提供了透明的接口。这意味着如果有为特定处理器优化的IPP库,OPENCV将在运行时自动加载这些库。 在VC++环境中OPENCV的使用设置: Microsoft公司开发的Visual C++是一种具有高度综合性能的软件开发工具。用它开发出的程序具有运行速度快,可移植能力强等优点,在对数字图像处理进行处理时经常采用Visual C++进行编程,通过对VC进行配置,就可以在编程过程中直接使用OPENCV的函数编写代码,减少了工作量,提高了运行效率。 在OPENCV安装完成后,首先需要把它的路径加入到系统环境变量中,然后再VC菜单Tools→Options→Directories下设置Library files路径,再选择Source files,最后选择Include files,就可以加入路径,如错误!未找到引用源。所示。设置完成后,就可以新建或打开一个使用OPENCV的工程。 打开工程后,选择菜单Project→Settings,然后将Setting for选为All Configurations,再选择右边的link标签,在Object/library modules加上工程属性中使用的库,这样就可以顺利编程。

图像管理方案计划opencv代码

/. #include "stdafx.h" #include "mymfc.h" #include "mymfcDlg.h" #include "afxdialogex.h" #include #ifdef _DEBUG #define new DEBUG_NEW #endif // 用于应用程序“关于”菜单项的CAboutDlg 对话框 class CAboutDlg : public CDialogEx { public: CAboutDlg(); // 对话框数据 enum { IDD = IDD_ABOUTBOX }; protected: virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 支持 // 实现 protected: DECLARE_MESSAGE_MAP() }; CAboutDlg::CAboutDlg() : CDialogEx(CAboutDlg::IDD) { } void CAboutDlg::DoDataExchange(CDataExchange* pDX) { CDialogEx::DoDataExchange(pDX); } BEGIN_MESSAGE_MAP(CAboutDlg, CDialogEx) END_MESSAGE_MAP() // CmymfcDlg 对话框

CmymfcDlg::CmymfcDlg(CWnd* pParent /*=NULL*/) : CDialogEx(CmymfcDlg::IDD, pParent) , TheImage(NULL) , rePath(_T("")) { m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); } void CmymfcDlg::DoDataExchange(CDataExchange* pDX) { CDialogEx::DoDataExchange(pDX); } BEGIN_MESSAGE_MAP(CmymfcDlg, CDialogEx) ON_WM_SYSCOMMAND() ON_WM_PAINT() ON_WM_QUERYDRAGICON() ON_BN_CLICKED(IDC_ReadImg, &CmymfcDlg::OnBnClickedReadimg) ON_BN_CLICKED(IDC_EdgeDetect, &CmymfcDlg::OnBnClickedEdgedetect) ON_BN_CLICKED(IDC_Refresh, &CmymfcDlg::OnBnClickedRefresh) ON_BN_CLICKED(IDC_GrayProcess, &CmymfcDlg::OnBnClickedGrayprocess) ON_BN_CLICKED(IDC_Sobel, &CmymfcDlg::OnBnClickedSobel) ON_BN_CLICKED(IDC_Laplace, &CmymfcDlg::OnBnClickedLaplace) ON_BN_CLICKED(IDC_FFT2, &CmymfcDlg::OnBnClickedFft2) ON_BN_CLICKED(IDC_CImage, &CmymfcDlg::OnBnClickedCimage) ON_BN_CLICKED(IDC_Mirror, &CmymfcDlg::OnBnClickedMirror) ON_BN_CLICKED(IDC_CColor, &CmymfcDlg::OnBnClickedCcolor) ON_BN_CLICKED(IDC_MedianBlur, &CmymfcDlg::OnBnClickedMedianblur) ON_BN_CLICKED(IDC_Gaussian, &CmymfcDlg::OnBnClickedGaussian) ON_BN_CLICKED(IDC_BothSide, &CmymfcDlg::OnBnClickedBothside) ON_BN_CLICKED(IDC_Equally, &CmymfcDlg::OnBnClickedEqually) ON_BN_CLICKED(IDC_Corrosion, &CmymfcDlg::OnBnClickedCorrosion) ON_BN_CLICKED(IDC_Dilate, &CmymfcDlg::OnBnClickedDilate) END_MESSAGE_MAP() // CmymfcDlg 消息处理程序 BOOL CmymfcDlg::OnInitDialog() { CDialogEx::OnInitDialog();

基于OpenCv的图像识别

基于2DPCA的人脸识别算法研究 摘要 人脸识别技术是对图像和视频中的人脸进行检测和定位的一门模式识别技术,包含位置、大小、个数和形态等人脸图像的所有信息。由于近年来计算机技术的飞速发展,为人脸识别技术的广泛应用提供了可能,所以图像处理技术被广泛应用了各种领域。该技术具有广阔的前景,如今已有大量的研究人员专注于人脸识别技术的开发。本文的主要工作内容如下: 1)介绍了人脸识别技术的基础知识,包括该技术的应用、背景、研究方向以及 目前研究该技术的困难,并对人脸识别系统的运行过程以及运行平台作了简单的介绍。 2)预处理工作是在原始0RL人脸库上进行的。在图像的预处理阶段,经过了图 象的颜色处理,图像的几何归一化,图像的均衡化和图象的灰度归一化四个过程。所有人脸图像通过上述处理后,就可以在一定程度上减小光照、背景等一些外在因素的不利影响。 3)介绍了目前主流的一些人脸检测算法,本文采用并详细叙述了Adaboost人脸 检测算法。Adaboost算法首先需要创建人脸图像的训练样本,再通过对样本的训练,得到的级联分类器就可以对人脸进行检测。 4)本文介绍了基于PCA算法的人脸特征点提取,并在PCA算法的基础上应用了 改进型的2DPCA算法,对两者的性能进行了对比,得出后者的准确度和实时性均大于前者,最后将Adaboost人脸检测算法和2DPCA算法结合,不仅能大幅度降低识别时间,而且还相互补充,有效的提高了识别率。 关键词:人脸识别 2DPCA 特征提取人脸检测

2DPCA Face Recognition Algorithm Based on The Research Abstract:Face recognition is a technology to detect and locate human face in an image or video streams,Including location, size, shape, number and other information of human face in an image or video streams.Due to the rapid development of computer operation speed makes the image processing technology has been widely applied in many fields in recent years. This paper's work has the following several aspects: 1)Explained the background, research scope and method of face recognition,and introduced the theoretical method of face recognition field in general. 2)The pretreatments work is based on the original ORL face database. In the image preprocessing stage, there are the color of the image processing, image geometric normalization, image equalization and image gray scale normalization four parts. After united processing, the face image is standard, which can eliminate the adverse effects of some external factors. 3)All kinds of face detection algorithm is introduced, and detailed describing the Adaboost algorithm for face detection. Through the Adaboost algorithm to create a training sample,then Training the samples of face image,and obtaining the cascade classifier to detect human face. 4)This paper introduces the facial feature points extraction based on PCA ,and 2DPCA is used on the basis of the PCA as a improved algorithm.Performance is compared between the two, it is concluds that the real time and accuracy of the latter is greater than the former.Finally the Adaboost face detection algorithm and 2DPCA are combined, which not only can greatly reduce the recognition time, but also complement each other, effectively improve the recognition rate. Key words:Face recognition 2DPCA Feature extraction Face detection

基于opencv对图像的预处理

基于opencv 对图像的预处理 1.问题描述 本次设计是基于opencv 结合c++语言实现的对图像的预处理,opencv 是用于开发实时的图像处理、计算机视觉及模式识别程序;其中图像的预处理也就是利用opencv 对图像进行简单的编辑操作;例如对图像的对比度、亮度、饱和度进行调节,同时还可以对图像进行缩放和旋转,这些都是图像预处理简单的处理方法;首先通过opencv 加载一幅原型图像,显示出来;设置五个滑动控制按钮,当拖动按钮时,对比度、亮度、饱和度的大小也会随之改变,也可以通过同样的方式调节缩放的比例和旋转的角度,来控制图像,对图像进行处理,显示出符合调节要求的图像,进行对比观察他们的之间的变化。 2.模块划分 此次设计的模块分为五个模块,滑动控制模块、对比度和亮度调节模块、饱和度调节模块、缩放调节模块、旋转调节模块,他们之间的关系如下所示: 图一、各个模块关系图 调用 调用 调用 调用 滑动控制模块 对比度和亮度调节模块 饱和度调节模块 缩放调节模块 旋转调节模块

滑动控制模块处于主函数之中,是整个设计的核心部分,通过createTrackbar创建五个滑动控制按钮并且调用每个模块实现对图像相应的调节。 3.算法设计 (1)滑动控制: 滑动控制是整个设计的核心部分,通过创建滑动控制按钮调节大小来改变相应的数据,进行调用函数实现对图像的编辑,滑动控制是利用createTrackbar(),函数中包括了滑动控制的名称,滑动控制显示在什么窗口上,滑动变量的地址和它调节的最大围,以及每个控制按钮应该调用什么函数实现什么功能; (2)对比度和亮度的调节: 对比度和亮度的调节的原理是依照线性理论,它的公式如下所示:g(x)=a* f(x) +b,其中f(x)表示源图像的像素,g(x)表示输出图像的像素,参数a(需要满足a>0)被称为增益(gain),常常被用来控制图像的对比度,参数b通常被称为偏置(bias),常常被用来控制图像的亮度; (3)饱和度的调节: 饱和度调节利用cvCvtColor( src_image, dst_image, CV_BGR2HSV )将RGB 颜色空间转换为HSV颜色空间,其中“H=Hue”表示色调,“S=Saturation”表示饱和度,“V=Value ”表示纯度;所以饱和度的调节只需要调节S的大小,H 和V的值不需要做任何的改变; (4)旋转的调节: 旋转是以某参考点为圆心,将图像的个点(x,y)围绕圆心转动一个逆时针角度θ,变为新的坐标(x1,y1),x1=rcos(α+θ),y1=rsin(α+θ),其中r是图像的极径,α是图像与水平的坐标的角度的大小; (5)缩放的调节: 首先得到源图像的宽度x和高度y,变换后新的图像的宽度和高度分别为x1和y1,x1=x*f,y1=y*f,其中f是缩放因子; 4.函数功能描述 (1)主函数main()用来设置滑动控制按钮,当鼠标拖动按钮可以得到相应的数据大小,实现手动控制的功能,当鼠标拖动对比度和亮度调节是,主函数调用

OPENCV函数

Opencv函数 分配图像空间: IplImage*cvCreateImage(CvSize size,int depth,int channels); size:cvSize(width,height); depth:IPL_DEPTH_8U,IPL_DEPTH_8S,IPL_DEPTH_16U, IPL_DEPTH_16S,IPL_DEPTH_32S,IPL_DEPTH_32F, IPL_DEPTH_64F channels:1,2,3or4. 注意数据为交叉存取.彩色图像的数据编排为b0g0r0b1g1 r1... 举例: //分配一个单通道字节图像 IplImage*img1=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); //分配一个三通道浮点图像 IplImage*img2=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3); 释放图像空间: IplImage*img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); cvReleaseImage(&img); 复制图像: IplImage*img1=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); IplImage*img2; img2=cvCloneImage(img1); 设定/获取兴趣区域: void cvSetImageROI(IplImage*image,CvRect rect); void cvResetImageROI(IplImage*image); vRect cvGetImageROI(const IplImage*image); 大部分OpenCV函数都支持ROI. 设定/获取兴趣通道: void cvSetImageCOI(IplImage*image,int coi);//0=all int cvGetImageCOI(const IplImage*image); 大部分OpenCV函数暂不支持COI.

OpenCV最基础的图像处理的例子

?什么是OpenCV ?开源C/C++计算机视觉库. ?面向实时应用进行优化. ?跨操作系统/硬件/窗口管理器. ?通用图像/视频载入、存储和获取. ?由中、高层API构成. ?为Intel?公司的Integrated Performance Primitives (IPP) 提供了透明接口. ?特性: ?图像数据操作(分配,释放, 复制, 设定, 转换). ?图像与视频I/O (基于文件/摄像头输入, 图像/视频文件输出). ?矩阵与向量操作与线性代数计算(相乘, 求解, 特征值, 奇异值分解SVD). ?各种动态数据结构(列表, 队列, 集, 树, 图). ?基本图像处理(滤波, 边缘检测, 角点检测, 采样与插值, 色彩转换, 形态操作, 直方图, 图像金字塔). ?结构分析(连接成分, 轮廓处理, 距离转换, 模板匹配, Hough转换, 多边形近似, 线性拟合, 椭圆拟合, Delaunay三角化). ?摄像头标定 (寻找并跟踪标定模板, 标定, 基础矩阵估计, homography估计, 立体匹配). ?动作分析(光流, 动作分割, 跟踪). ?对象辨识 (特征方法, 隐马可夫链模型HMM). ?基本GUI(显示图像/视频, 键盘鼠标操作, 滚动条). ?图像标识 (直线, 圆锥, 多边形, 文本绘图) ?OpenCV 模块: ?cv - OpenCV 主要函数. ?cvaux - 辅助(实验性) OpenCV 函数. ?cxcore - 数据结构与线性代数算法. ?highgui - GUI函数. 资料链接 ?参考手册: ?/docs/index.htm ?网络资源: ?官方网页: https://www.doczj.com/doc/e84779845.html,/technology/computing/opencv/?软件下载: https://www.doczj.com/doc/e84779845.html,/projects/opencvlibrary/ ?书籍: ?Open Source Computer Vision Library by Gary R. Bradski, Vadim Pisarevsky, and Jean-Yves Bouguet, Springer, 1st ed. (June, 2006). ?视频处理例程(位于/samples/c/目录中): ?色彩跟踪: camshiftdemo ?点跟踪: lkdemo

OPenCV3.2中Mat对象常用函数属性总结

OPenCV3.2中Mat对象常用函数属性总结Mat对象是OpenCV2.0之后引进的图像数据结构,它能自动分配内存、不存在内存泄漏的问题,是面向对象的数据结构。分了两个部分,头部与数据部分。 在使用Mat对象时,有以下四个要点需要注意: 1、输出图像的内存是自动分配的 2、使用OpenCV的C++接口,不需要考虑内存分配问题 3、赋值操作和拷贝构造函数只会复制头部分 4、使用clone与copyTo两个函数实现数据完全复制 下面我们就具体介绍一下公共成员函数和公共属性。 公共成员函数: 1、cv::Mat::Mat ( int rows, int cols, int type ) 参数: rows2D数组中的行数 cols2D数组中的列数。 type数组类型。使用CV_8UC1,…,CV_64FC4创建1 - 4通道矩阵,或CV_8UC(n),…,CV_64FC(n)创建多通道(向上到CV_CN_MAX通道)矩阵。

2、cv::Mat::Mat ( Size size, int type ) 参数: size 2D数组大小:Size(cols, rows)。在Size()构造函数中,行数和列数以相反的顺序排列。 type 数组类型。使用CV_8UC1,…,CV_64FC4创建1 - 4通道矩阵,或CV_8UC(n),…,CV_64FC(n)创建多通道(向上到CV_CN_MAX通道)矩阵。 3、cv::Mat::Mat ( int rows, int cols, int type, const Scalar & s ) 参数: rows2D数组中的行数。 cols 2D数组中的列数。 type数组类型。使用CV_8UC1,…,CV_64FC4创建1 - 4通道矩阵,或CV_8UC(n),…,CV_64FC(n)创建多通道(向上到CV_CN_MAX通道)矩阵。s 初始化每个矩阵元素的可选值。在构建后将所有矩阵元素设置为特定值, 使用赋值运算符Mat::operator=(const Scalar& value) 。 4、cv::Mat::Mat ( Size size, int type,

opencv最基础的图像处理

openCV——几个实用函数 2010年12月20日星期一 09:18 1. cvSmooth:各种方法的图像平滑 void cvSmooth( const CvArr* src, CvArr* dst, int smoothtype=CV_GAUSSIAN, int param1=3, int param2=0, double param3=0 ); src 输入图像. dst 输出图像. smoothtype 平滑方法: . CV_BLUR_NO_SCALE (简单不带尺度变换的模糊) - 对每个象素的param1×param2 领域求和。如果邻域大小是变化的,可以事先利用函数cvIntegral 计算积分图像。 . CV_BLUR (simple blur) - 对每个象素param1×param2邻域求和并做尺度变换 1/(param1.param2). . CV_GAUSSIAN (gaussian blur) - 对图像进行核大小为 param1×param2 的高斯卷积 . CV_MEDIAN (median blur) - 对图像进行核大小为 param1×param1 的中值滤波 (i.e. 邻域是方的). . CV_BILATERAL (双向滤波) - 应用双向 3x3 滤波,彩色 sigma=param1,空间 sigma=param2. 平滑操作的第一个参数. param2 平滑操作的第二个参数. 对于简单/非尺度变换的高斯模糊的情况,如果 param2的值为零,则表示其被设定为param1。 param3

对应高斯参数的 Gaussian sigma (标准差). 如果为零,则标准差由下面的核尺寸计算: sigma = (n/2 - 1)*0.3 + 0.8, 其中 n=param1 对应水平核, n=param2 对应垂直核. 对小的卷积核 (3×3 to 7×7) 使用如上公式所示的标准 sigma 速度会快。如果 param3 不为零,而 param1 和 param2 为零,则核大小有sigma 计算 (以保证足够精确的操作). 函数 cvSmooth 可使用上面任何一种方法平滑图像。每一种方法都有自己的特点以及局限。 没有缩放的图像平滑仅支持单通道图像,并且支持8位到16位的转换(与cvSobel和cvaplace相似)和32位浮点数到32位浮点数的变换格式。 简单模糊和高斯模糊支持 1- 或 3-通道, 8-比特和 32-比特浮点图像。这两种方法可以(in-place)方式处理图像。 中值和双向滤波工作于 1- 或 3-通道, 8-位图像,但是不能以 in-place 方式处理图像. 2.IplImage结构 由于OpenCV主要针对的是计算机视觉方面的处理,因此在函数库中,最重要的结构体是IplImage结构。IplImage结构来源于Intel的另外一个函数库Intel Image Processing Library (IPL),该函数库主要是针对图像处理。IplImage结构具体定义如下: typedef struct _IplImage { int nSize; /* IplImage大小 */ int ID; /* 版本 (=0)*/

快速学习OPENCV常用函数

访问图像元素如下: 1、针对各种图像(包括4-通道)和矩阵的函数(cvGet2D,cvSet2D),但是它们都很慢. (img->origin=IPL_ORIGIN_TL)或者是左下角(img->origin=IPL_ORIGIN_BL) 假设有8-bit1-通道的图像I(IplImage*img): I(x,y)~((uchar*)(img->imageData+img->widthStep*y))[x] 假设有8-bit3-通道的图像I(IplImage*img): I(x,y)blue~((uchar*)(img->imageData+img->widthStep*y))[x*3] I(x,y)green~((uchar*)(img->imageData+img->widthStep*y))[x*3+1] I(x,y)red~((uchar*)(img->imageData+img->widthStep*y))[x*3+2] 如果增加点(100,100)的亮度30,那么可以: CvPoint pt={100,100}; ((uchar*)(img->imageData+img->widthStep*pt.y))[pt.x*3]+=30; ((uchar*)(img->imageData+img->widthStep*pt.y))[pt.x*3+1]+=30; ((uchar*)(img->imageData+img->widthStep*pt.y))[pt.x*3+2]+=30; CvPoint pt={100,100}; uchar*temp_ptr=&((uchar*)(img->imageData+ img->widthStep*pt.y))[x*3]; temp_ptr[0]+=30; temp_ptr[1]+=30; temp_ptr[2]+=30; 假设有32-bit浮点数,1-通道图像I(IplImage*img): I(x,y)~((float*)(img->imageData+img->widthStep*y))[x] 现在,通用方法:假设有N-通道,类型为T的图像: I(x,y)c~((T*)(img->imageData+img->widthStep*y))[x*N+c] 或者你可使用宏CV_IMAGE_ELEM(image_header,elemtype,y,x_Nc) I(x,y)c~CV_IMAGE_ELEM(img,T,y,x*N+c) 2、访问矩阵元素 设有32-bit浮点数的实数矩阵M(CvMat*mat): M(i,j)~((float*)(mat->data.ptr+mat->step*i))[j] 设有64-bit浮点数的复数矩阵M(CvMat*mat): Re M(i,j)~((double*)(mat->data.ptr+mat->step*i))[j*2] Im M(i,j)~((double*)(mat->data.ptr+mat->step*i))[j*2+1]

OpenCV图像处理篇之图像平滑

OpenCV图像处理篇之图像平滑 图像平滑算法 图像平滑与图像模糊是同一概念,主要用于图像的去噪。平滑要使用滤波器,为不改变图像的相位信息,一般使用线性滤波器,其统一形式如下: 其中h称为滤波器的核函数,说白了就是权值。不同的核函数代表不同的滤波器,有不同的用途。 在图像处理中,常见的滤波器包括: 1.归一化滤波器(Homogeneous blur) 也是均值滤波器,用输出像素点核窗口内的像素均值代替输出点像素值。 2.高斯滤波器(Guassian blur) 是实际中最常用的滤波器,高斯滤波是将输入数组的每一个像素点与高斯内核卷积将卷积和当作输出像素值。高斯核相当于对输出像素的邻域赋予不同的权值,输出像素点所在位置的权值最大(对应高斯函数的均值位置)。二维高斯函数为,

3.中值滤波器(median blur) 中值滤波将图像的每个像素用邻域(以当前像素为中心的正方形区域)像素的中值代替。对椒盐噪声最有效的滤波器,去除跳变点非常有效。 4.双边滤波器(Bilatrial blur) 为避免滤波器平滑图像,去噪的同时,使边缘也模糊,这种情况下使用双边滤波器。关于双边滤波器的解释参见 https://www.doczj.com/doc/e84779845.html,/rbf/CVonline/LOCAL_COPIES/MA NDUCHI1/Bilateral_Filtering.html 下面的程序将先给标准Lena图像添加椒盐噪声,分别使用4种不同的滤波器进行平滑操作,请注意观察不同滤波器对椒盐噪声的去噪效果! 程序分析及结果

上面程序的逻辑非常清晰: 1.读入灰度图,并添加椒盐噪声(6000个噪声点):

最新基于OpenCV与深度学习框架的物体图像识别

基于OpenCV与深度学习框架Caffe的物体图像识别 摘要:本文主要介绍深度神经网络中的卷积神经的相关理论与技术。研究采用OpenCV深度学习模块DNN与深度学习框架Caffe进行物体识别。采用OpenCV 中的DNN模块加载深度学习框架Caffe模型文件,对物体图像进行识别。实验结果表明,卷积神经网络在物体的识别方面具有较高的准确率。 一.概述 1.1 OpenCV简介 OpenCV于1999年由Intel建立,如今由Willow Garage提供支持。OpenCV 是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列C 函数和少量C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。其最新版本是3.2,于2016年12月23日发布。OpenCV致力于真实世界的实时应用,通过优化的C代码的编写对其执行速度带来了可观的提升,并且可以通过购买Intel的IPP高性能多媒体函数库(Integrated Performance Primitives)得到更快的处理速度。在其最新版3.2版本中,已经添加了深度神经网络模块,并支持深度学习框架Caffe模型(Caffe framework models)。 1.2 深度学习框架Caffe简介 Caffe(Convolutional Architecture for Fast Feature Embedding)是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,曾在Google 工作,现任Facebook研究科学家。Caffe是纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口;可以在CPU和GPU直接无缝切换。Caffe的优势

相关主题
文本预览
相关文档 最新文档