当前位置:文档之家› 妙用“柯西中值定理”秒杀高考导数压轴题(强烈推荐,公式编辑器完美编辑)

妙用“柯西中值定理”秒杀高考导数压轴题(强烈推荐,公式编辑器完美编辑)

妙用“柯西中值定理”秒杀高考导数压轴题(强烈推荐,公式编辑器完美编辑)
妙用“柯西中值定理”秒杀高考导数压轴题(强烈推荐,公式编辑器完美编辑)

妙用“柯西中值定理”秒杀高考导数压轴题

柯西中值定理:若函数()(),f x g x 满足如下条件:

(i )()(),f x g x 在闭区间[,]a b 上连续;

(ii )()f x 在开区间(,)a b 内可导;

(iii )在(),a b 内的每一点处()0g x '≠

则在(),a b 内至少存在一点ξ,使得

()()()()()()

f f b f a

g g b g a ξξ'-='-.

1、 (2012年天津高考理科数学压轴题)

已知函数()()ln f x x x a =-+的最小值为0,其中0a >

(Ⅰ)求a 的值

(Ⅱ)若对()0,x ?∈+∞,都有()2f x kx <成立,求实数k 的最小值; (Ⅲ)证明:

()12ln 21221n

k n k =-+<-∑(n N *∈).

2、(2013广西理科数学压轴题)

已知函数()()()1ln 11x x f x x x

λ+=+-+ (Ⅰ)当0x ≥时,()0,f x ≤求λ的最小值(Ⅱ)设1111,23n a n =+

+++ 证明:21ln 24n n a a n -+>

3、(2015年山东高考数学理科第21题)

设函数2

()ln(1)()f x x a x x =++-,其中a R ∈.

(Ⅰ)讨论函数()f x 极值点的个数,并说明理由;(Ⅱ)若0,()0x f x ?>≥成立,求a 的取值范围.

4、(2017年德阳市二诊数学压轴题)

已知函数()ln x a f x x x

-=-在1x =处取得极值. (Ⅰ)求证:()0f x ≥. (Ⅱ)若[)1,x ?∈+∞,不等式()()21f x m x ≤-恒成立,求实数m 的取值范围.

5、已知函数()()21x f x x e ax =-+. (Ⅰ)当1

2a =-时,求函数()f x 的极值;

(Ⅱ)若当

0x ≥时,()0f x ≥恒成立,求实数a 的取值范围.

6、(2015届重庆市巴蜀中学高三12月月考数学压轴题)

已知函数()21f x x ax =++,()x

g x e =(其中e 是自然对数的底数). (Ⅰ)若1a =-,求函数()()y f x g x = 在[]1,2-上的最大值;

(Ⅱ)若1a =-,关于x 的方程()()f x k g x = 有且仅有一个根,求实数k 的取值范围; (Ⅲ)若对任意的1x 、2x []0,2∈,12x x ≠,不等式()()()()1212f x f x g x g x -<-恒成立,求实数a 的取值范围.

7、(2017年江苏省南通市二模理科数学)

已知函数()1x

f x e =,()ln

g x x =,其中e 为自然对数的底数. (Ⅰ)求函数()()y f x g x =在1x =处的切线方程;

(Ⅱ)若存在1x ,2x ()12x x ≠,使得()()()()1221g x g x f x f x λ-=-????成立,其中λ为常数,求证:e λ>. (Ⅲ)若对任意的(]0,1x ∈,不等式()()()1f x g x a x ≤-恒成立,求实数a 的取值范围.

最新微分中值定理与导数的应用

微分中值定理与导数 的应用

第三章微分中值定理与导数的应用 本章内容是上一章的延续,主要是利用导数与微分这一方法来分析和研究函数的性质及其图形和各种形态,这一切的理论基础即为在微分学中占有重要地位的几个微分中值定理。在分析、论证过程中,中值定理有着广泛的应用。 一、教学目标与基本要求 (一)知识 1.记住罗尔定理、拉格朗日中值定理、柯西中值定理的条件和结论; 2.记住泰勒公式及其拉格朗日余项的表达式; 3.记住e x,sin(x),cos(x),ln(1+x),1/1+x的N阶麦克劳林公式; 4.知道极限的末定式及其常见的几种类型的求法; 5.知道函数的极值点、驻点的定义以及它们之间的关系; 6.知道曲线的凹凸性与拐点的定义; 7.知道弧微分的定义与弧微分公式; 8.知道光滑曲线、曲率和曲率半径的定义; 9.知道求方程的近似解的基本方法。 (二)领会 1.领会罗尔定理、拉格朗日中值定理、柯西中值定理,领会罗尔定理、拉格朗日中值定理的几何意义; 2.领会罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理之间的联系; 3.领会洛必达法则; 4.领会函数的单调性与一阶导数之间的联系; 5.领会函数的极值与一、二阶导数之间的联系; 6.领会函数的极值和最值的定义以及它们之间的区别和联系; 7.领会曲线的凹凸性与二阶导数之间的联系。 (三)运用 1.会用中值定理证明等式和不等式; 2.会用洛必达法则求末定式的极限; 3.会求一些函数的泰勒公式和利用泰勒公式求函数的极限及一些函数的近似值; 4.会用导数求函数的单调区间和极值; 5.会用函数的单调性证明不等式; 6.会用导数判断函数图形的凹凸性和拐点; 7.会求曲线的水平渐近线和铅直渐近线,会描绘函数的图形; 8.会求一些最值应用问题; 9.会求曲率和曲率半径; 10.会用二分法和切线法求一些方程实根的近似值。 (四)分析综合 1.综合运用中值定理、介值定理和函数的单调性等证明方程实根的存在性和惟一性;

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

中值定理与导数的应用

第三章 中值定理与导数的应用 §3. 1 中值定理 一、罗尔定理 费马引理 设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)), 那么f '(x 0)=0. 罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点 )(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即0)('=ξf . 例:设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)1(=f ,证明:在(0,1)内存在ξ,使得ξ ξξ) ()(f f - ='. 【分析】本题的难点是构造辅助函数,可如下分析: ()0)(0)()(0)()() ()(=' →='+→='+→- ='x xf x f x x f f f f f ξξξξ ξξ 【证明】令)()(x xf x G =,则)(x G 在[0,1]上连续,在(0,1)上可导,且 0)1(1G (1 )0,0)(0)0(====f f G ,)()()(x f x x f x G '+=' 由罗尔中值定理知,存在)1,0(∈ξ,使得)()()(ξξξξf f G '+='.即ξ ξξ) ()(f f - =' 例:设函数f (x ), g (x )在[a , b ]上连续,在(a , b )内具有二阶导数且存在相等的最大值,f (a )=g (a ), f (b )=g (b ), 证明:存在(,)a b ξ∈,使得()().f g ξξ''''= 【分析】需要证明的结论与导数有关,自然联想到用微分中值定理,事实上,若令 ()()()F x f x g x =-,则问题转化为证明()0F ξ''=, 只需对()F x '用罗尔定理,关键是

中值定理的应用方法与技巧

中值定理的应用方法与技巧 中值定理包括微分中值定理和积分中值定理两部分。微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。积分中值定理有积分第一中值定理和积分第二中值定理。积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f b a -=?ξ。积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得??=b a b a dx x g f dx x g x f )()()()(ξ。 一、 微分中值定理的应用方法与技巧 三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。 例一.设)(x ?在[0,1]上连续可导,且1)1(,0)0(==??。证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+') ()(η?ξ?成立。 证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ?==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(??ξ?。 任意给定正整数b ,再令)()(,)(21x x g bx x g ?==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=') 0()1(0)(??η?。 两式相加得:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得 b a b a +='+') ()(η?ξ? 成立。 证法2:任意给定正整数b a ,,令)()(,)(21x x f ax x f ?==,则在[0,1]上对

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

总结拉格朗日中值定理的应用

总结拉格朗日中值定 理的应用

总结拉格朗日中值定理的应用 以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,尤其是拉格朗日中值定理。他建立了函数值与导数值之间的定量联系,因而可用中值定理通过导数研究函数的性态。中值定理的主要作用在于理论分析和证明,例如为利用导数判断函数单调性、取极值、凹凸性、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,我们需要对其能够熟练的应用,这对高等数学的学习有着极大的意义! 拉格朗日中值定理的应用主要有以下几个方面:利用拉格朗日中值定理证明(不)等式、利用拉格朗日中值定理求极限、研究函数在区间上的性质、估值问题、证明级数收敛。首先我想介绍几种关于如何构造辅助函数的方法。 凑导数法。:这种方法主要是把要证明的结论变形为罗尔定理的结论形式, 凑出适当的函数做为辅助函数,即将要证的结论中的换成X,变形后观察法凑成F’(X),由此求出辅助函数F(x).如例1. 常数值法:在构造函数时;若表达式关于端点处的函数值具有对称性,通 常用常数k值法来求构造辅助函数,这种方法一般选取所证等式中含的部分

作为k,即使常数部分分离出来并令其为k,恒等变形使等式一端为a与f(a)构成的代数式,另一端为b与.f(b)构成的代数式,将所证式中的端点值(a或b)改为变量x移项即为辅助函数f(x),再用中值定理或待定系数法等方法确定k,一般来说,当问题涉及高阶导数时,往往考虑多次运用中值定理,更多时要考虑用泰勒公式.如例3. 倒推法::这种方法证明方法是欲证的结论出发,借助于逻辑关系导出已知的条件和结论.如例4。

第三章 微分中值定理与导数应用教案教学设计

第三章 微分中值定理与导数应用 第一节 微分中值定理 教学目的:理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒 中值定理。 教学重点:罗尔定理、拉格朗日中值定理。 教学难点:罗尔定理、拉格朗日中值定理的应用。 教学内容: 一、罗尔定理 1. 罗尔定理 几何意义:对于在],[b a 上每一点都有不垂直于x 轴的切线,且两端点的连线与x 轴平行的不间断的曲线 )(x f 来说,至少存在一点C ,使得其切线平行于x 轴。 从图中可以看出:符合条件的点出现在最大值和最小值点,由此得到启发证明罗尔定理。为应用方便,先介绍费马(Fermat )引理 费马引理 设函数 )(x f 在点0x 的某邻域)(0x U 内有定义, 并且在0x 处可导, 如果对任 意)(0x U x ∈, 有)()(0x f x f ≤ (或)()(0x f x f ≥), 那么0)(0'=x f . 证明:不妨设)(0x U x ∈时,)()(0x f x f ≤(若)()(0x f x f ≥,可以类似地证明). 于是对于)(00x U x x ∈?+,有)()(00x f x x f ≤?+, 从而当0>?x 时, 0 ) ()(00≤?-?+x x f x x f ; 而当0

根据函数 )(x f 在0x 处可导及极限的保号性的得 ==+)()(0'0'x f x f 0)()(lim 000≤?-?++ →?x x f x x f x ==-)()(0'0'x f x f 0)()(lim 000≥?-?+- →?x x f x x f x 所以0)(0'=x f , 证毕. 定义 导数等于零的点称为函数的驻点(或稳定点,临界点). 罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点)(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即 0)('=ξf . 证明:由于)(x f 在],[b a 上连续,因此必有最大值M 和最小值m ,于是有两种可能的情形: (1)m M =,此时)(x f 在],[b a 上必然取相同的数值M ,即.)(M x f = 由此得.0)(='x f 因此,任取),(b a ∈ξ,有.0)(='ξf (2)m M >,由于)()(b f a f =,所以M 和m 至少与一个不等于)(x f 在区间],[b a 端点处 的函数值.不妨设)(a f M ≠(若)(a f m ≠,可类似证明),则必定在),(b a 有一点ξ使M f =)(ξ. 因此任取],[b a x ∈有)()(ξf x f ≤, 从而由费马引理有0)(='ξf . 证毕 例1 验证罗尔定理对32)(2--=x x x f 在区间]3,1[-上的正确性 解 显然 32)(2--=x x x f )1)(3(+-=x x 在]3,1[-上连续,在)3,1(-上可导,且 0)3()1(==-f f , 又)1(2)(-='x x f , 取))3,1(1(,1-∈=ξ,有0)(='ξf . 说明:1 若罗尔定理的三个条件中有一个不满足, 其结论可能不成立; 2 使得定理成立的ξ可能多于一个,也可能只有一个. 例如 ]2,2[,-∈=x x y 在]2,2[-上除)0(f '不存在外,满足罗尔定理的一切条件, 但在区间]2,2[-内找不到一点能使0)(='x f . 例如 ?? ?=∈-=0 ,0]1,0(,1x x x y 除了0=x 点不连续外,在]1,0[上满足罗尔定理的一切条

柯西中值定理

§2 柯西中值定理和不等式极限 一柯西中值定理 定理(6.5) 设、满足 (i) 在区间上连续, (ii) 在内可导 (iii) 不同时为零; (iv) 则至少存在一点使得 柯西中值定理的几何意义 曲线由参数方程 给出,除端点外处处有不垂直于轴的切线, 则上存在一点 P处的切线平行于割线.。 注意曲线 AB在点处的切线的斜率为

, 而弦的斜率为 . 受此启发,可以得出柯西中值定理的证明如下: 由于, 类似于拉格朗日中值定理的证明,作一辅助函数 容易验证满足罗尔定理的条件且 根据罗尔定理,至少有一点使得,即

由此得 注2:在柯西中值定理中,取,则公式(3)可写成 这正是拉格朗日中值公式,而在拉格朗日中值定理中令,则 . 这恰恰是罗尔定理. 注3:设在区间I上连续,则在区间I上为常数,. 三、利用拉格朗日中值定理研究函数的某些特性 1、利用其几何意义 要点:由拉格朗日中值定理知:满足定理条件的曲线上任意两点的弦,必与两点间某点的切线平行。 可以用这种几何解释进行思考解题: 例1:设在(a ,b)可导,且在 [a,b] 上严格递增,若,则对一切 有。 证明:记A(),,对任意的x,记C(),作弦线AB,BC,应用拉格 朗日中值定理,使得分别等于AC,BC弦的斜率,但因严格递增,所以

<,从而 < 注意到,移项即得<, 2、利用其有限增量公式 要点:借助于不同的辅助函数,可由有限增量公式 进行思考解题: 例2:设上连续,在(a,b)内有二阶导数,试证存在使得 证:上式左端 作辅助函数 则上式 =, =

,其中 3、作为函数的变形 要点:若在[a,b]上连续,(a,b)内可微,则在[a,b]上 (介于与 之间) 此可视为函数的一种变形,它给出了函数与导数的一种关系,我们可以用它来研究函数的性质。 例3 设在上可导,,并设有实数A>0,使得 ≤在上 成立,试证 证明:在[0,]上连续,故存在] 使得 ==M 于是 M=≤A≤≤ 。 故 M=0,在[0,] 上恒为0。用数学归纳法,可证在一切[]( i=1,2,…)上恒有 =0, 所以=0, 。

中值定理与导数的应用(包括题)

第三章 中值定理与导数的应用 一、 基本内容 (一) 中值定理 1.罗尔定理 如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)()(b f a f =,那么在),(b a 内存在一点ξ,使得0)(='ξf . For personal use only in study and research; not for commercial use 2.拉格朗日中值定理 如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,那么在),(b a 内至少有一点ξ,使得 a b a f b f f --= ') ()()(ξ 其微分形式为 x f x f x x f ??'=-?+)()()(ξ 这里10,<

(2)在点a 的某去心邻域内,)(x f '及)(x g '都存在且0)(≠'x g ; (3)) () (l i m x g x f a x ''→存在(或为无穷大),那么 ) () (lim )()(lim x g x f x g x f a x a x ''=→→ 2.法则2 如果函数)(x f 及)(x g 满足条件: (1)0)(lim =∞ →x f x , 0)(lim =∞ →x g x ; (2)当N x >时,)(x f '及)(x g '都存在且0)(≠'x g ; (3) ) () (lim x g x f x ''∞ →存在(或为无穷大); 那么 ) ()(lim )()(lim x g x f x g x f x x ''=∞→∞ → 以上两个法则是针对00型未定式. 对∞ ∞ 型未定式,也有相应的两个法则. 对∞?0、∞-∞、00、∞1、0∞型未定式,可以通过变形将其转化成00或∞ ∞ 型来求. (三) 泰勒公式 1.带拉格朗日余项的泰勒公式 设函数)(x f y =在0x 的某邻域),(0δx U 内有1+n 阶导数,那么在此邻域内有 +-''+ -'+=200000)(2) ())(()()(x x x f x x x f x f x f ! )()(!) (00)(x R x x n x f n n n +-+ 10)1()()! 1() ()(++-+=n n n x x n f x R ξ 其中ξ在0x 和x 之间,)(x R n 是拉格朗日余项. (四) 函数的单调性 函数单调性的判别法 设函数)(x f y =在],[b a 上连续,在),(b a 内可导. (1)如果在),(b a 内0)(>'x f ,那么函数)(x f y =在],[b a 上单调增加;

微分中值定理与导数应用

第三单元微分中值定理与导数应用 一、填空题 1、 lim xln x x 0 。 2、 函数f x 2x cos x 在区间 单调增 3 、 函数f x 4 8x 3 3x 4的极大值是 。 4 、 曲线y x 4 6x 2 3x 在区间 是凸的。 5 、 函数f x cosx 在x 0处的2m 1阶泰勒多项式是 6 、 曲线y xe 3x 的拐点坐标是 。 7、若fx 在含X 。的a,b (其中a b )内恒有二阶负的导数,且 则f X 。是f x 在a,b 上的最大值。 & y X 3 2x 1 在 内有 个零点。 1 1 9、 lim cot x( ) 。 sin x x 1 i 10、 lim (~2 ------------ ) __________ 。 x 0 x xta n x 11、 曲线y e"的上凸区间是 _____________ 。 12、 函数y e x x 1的单调增区间是 _______________ 。 二、单项选择 1、 函数f(x)有连续二阶导数且f(0) 0, f (0) 1,f (0) 2,则lim x 0 () (A) 不存在;(E) 0 ; (C) -1 ; (D) -2 2、 设 f(x) (x 1)(2x 1),x (,),则在(丄,1)内曲线 f(x)( f(x) x 2 x

2 (A)单调增凹的;(E)单调减凹的; (A)不可导; (B)可导,且f'(0) 0 ;

(C)单调增凸的; (D)单调减凸的 3、f(x)在(a,b)内连续,X 。 (a,b), f (X 。) f (x °) 0,则 f (x)在 x x 。处 ( ) (A)取得极大值; (E)取得极小值; (C) 一定有拐点(x o ,f(x 。)); (D)可能取得极值,也可能有 拐点。 4、设f(x)在a,b 上连续,在(a,b)内可导,则I:在(a,b)内f (x) 0与 在(a,b)上f (x) f (a)之间关系是( ) (A)无实根; (B)有唯一实根; (C) 有两个实根; (D)有三个 实根。 7、已知f(x)在x 0的某个邻域内连续,且f(0) 0 , lim f(x) 2 , x 01 cosx 则在点x 0处f(x)( ) (A) I 是H 的充分但非必要条件 分条件; (C) I 是H 的充分必要条件; 也不是必要条件。 5、 设f(x)、g(x)在a,b 连续可导, 则当a x b 时,则有( (A) f(x)g(x) f(a)g(a); (C)他他; g(x) g(a) 6、 方程x 3 3x 1 0在区间(, (B) I 是H 的必要但非充 (D) I 不是H 的充分条件, f (x)g(x) 0,且 f (x)g(x) f(x)g (x), ) (B) f(x)g(x) f (b)g(b); (D)喪起。 f(x) f(a) )内( )

第四章----中值定理与导数的应用--习题及答案(1)

第四章 中值定理与导数的应用 一、填空 1、若()x x x f -=3在[0,3]上满足罗尔定理的ξ值为 。 2、若2 1 cos 1sin lim 20=-→kx x x ,则k = 。 3、=a ,=b 时,点(1,3)为2 3bx ax y +=的拐点。 4、3+=x e x 在),(+∞-∞内的实根的个数为 。 5、函数)1ln(2 x x y +-=的单调递增区间 ,在[-1,1]中最大值为 ,最小值为 。 6、函数23 )5()(-=x x x f 的驻点为 ,其极大值为 ,极小值为 。 7、若5)(cos sin lim 0=--→b x a e x x x ,则=a ,=b 。 8、x x x y )1 1(-+=的水平渐近线为 。 二、选择 1、设R x x x x f ∈+-='),12)(1()(,则在)4 1 ,21(- 内)(x f 是( ) A 、单调增加,图形上凹 B 、单调减少,图形上凹 C 、单调增加,图形下凹 D 、单调减少,图形下凹 2、设函数)(x f 在[0,1]上可导,0)(>'x f 并且0)1(,0)0(>

柯西中值定理的证明及应用

柯西中值定理的证明及应用 马玉莲 (西北师范大学数学与信息科学学院,甘肃,兰州,730070) 摘要:本文多角度介绍了柯西中值定理的证明方法和应用, 其中证明方法有: 构造辅助函数利用罗尔定理证明,利用反函数及拉格朗日中值定理证明, 利用闭区间套定理证明, 利用达布定理证明, 利用坐标变换证明. 其应用方面有:求极限、证明不等式、证明等式、证明单调性、证明函数有界、证明一致连续性、研究定点问题、作为函数与导数的关系、推导中值公式. 关键词:柯西中值定理; 证明; 应用

1.引言 微分中值定理是微分学中的重要定理,它包括罗尔定理、拉格朗日定理、柯西中值定理,而柯西中值定理较前两者更具有一般性、代表性,其叙述如下: 柯西中值定理:设函数f(x),g(x)满足 (1) 在[,]a b 上都连续; (2) 在(,)a b 内都可导; (3) '()f x 和'()g x 不同时为零; (4) ()()g a g b ≠, 则存在(,)a b ξ∈,使得 ()()() ()()() f f b f a g g b g a ξξ''-=- . (1) 本文从不同思路出发,展现了该定理的多种证明方法及若干应用,以便其更好的被认识、运用. 2.柯西中值定理的证明 2.1构造辅助函数利用罗尔定理证明柯西中值定理 罗尔定理 设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 上可导,且 ()()f a f b =则至少存在一点,(,)a b ξ∈ , 使得 因为()0g ξ'≠(若()g ξ'为0则()f ξ'同时为0, 不符条件)故可将(2)式改写为(1)式. 便得所证.

微分中值定理与导数的应用练习题

题型 1.利用极限、函数、导数、积分综合性的使用微分中值定理写出证明题 2.根据极限,利用洛比达法则,进行计算 3.根据函数,计算导数,求函数的单调性以及极值、最值 4.根据函数,进行二阶求导,求函数的凹凸区间以及拐点 5.根据函数,利用极限的性质,求渐近线的方程 内容 一.中值定理 1.罗尔定理 2.拉格朗日中值定理 二.洛比达法则 一些类型(00、∞ ∞、∞?0、∞-∞、0 ∞、0 0、∞ 1等) 三.函数的单调性与极值 1.单调性 2.极值 四.函数的凹凸性与拐点 1.凹凸性 2.拐点 五.函数的渐近线

水平渐近线、垂直渐近线 典型例题 题型I 方程根的证明 题型II 不等式(或等式)的证明 题型III 利用导数确定函数的单调区间与极值 题型IV 求函数的凹凸区间及拐点 自测题三 一.填空题 二.选择题 三.解答题 4月13日微分中值定理与导数应用练习题 基础题: 一.填空题 1.函数12 -=x y 在[]1,1-上满足罗尔定理条件的=ξ 。 3.1)(2 -+=x x x f 在区间[]1,1-上满足拉格朗日中值定理的中值ξ= 。 4.函数()1ln +=x y 在区间[]1,0上满足拉格朗日中值定理的=ξ 。 5.函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 . 6.设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于区间 中. 7. =→ x x x 3cos 5cos lim 2 π35- 8.=++∞→x x x arctan ) 1 1ln(lim

第三章中值定理与导数的应用答案

(A) 一选择 1—5 BCBDB 二计算与证明 1 .若 x 0,证明 e x 1 x 。 证明:令 F x =e x _1_x ,则 F x =e x -1 当x 0时,F'x ?0,从而Fx 在0单增 因为F0=0,故Fx ?0,即 e x 1 x 2 2 .设 x 0,证明 x - x In 1 x :: x 。 2 证明: -In 1 X ,贝u f x =1 —X-丄二二 2 因x ? 0,贝U f x ::: 0,从而f x 在0, ?::单减。 2 x 故 f x :: f 0 =0,即卩 x In 1 x 2 20:令 g x ;=ln 1 x -x ,则 g x 1 ——1 1 + x 当x 0时,g x ::: 0,从而g x 在0「::单减 故 g x : g 0 = 0,即 In 1 x < x 2 由 1°、20 知,x —亠:::l n 1 ? x :: x 2 (B ) 一选择 1— 4 CBDD 习题3.1 1°:令 f x R x -

计算与证明 arcta n arcta n — n n +1 1 1 解:令F x "「如x ,则Fx 在GJ 上连续,在占*可导,故 1 1 arctan arcta n — ,使 f n LJ v f 1 1 当n 时,贝厂> 0 1 故原式二 lim f = lim 2 = 1 2.设f x 在0,1 1上可导,且0 ::: f x ::: 1,对于任何x ?0,1 ,都有f x - 1, 试证:在0,1内,有且仅有一个数X ,使f x = x 。 证:令Fx 二fx-x ,因为Fx 在0,1上连续,且F0二f0 0, F 1二f 1 -1 :::0,则由零点存在定理在 0,1内至少存在一点 x ,使 F x 二 f x = 0,即 f x 二 x 。 下证唯一性。设在0,1内存在两个点X 1与X 2,且X 1 ::: X 2,使f X 1 = x 1, f X 2 1=X 2,在〔X 1,X 2 1上运用拉格朗日中值定理,则有 :5 1X1, X 2 ,使 得 f = f X 2 - f X 1 二 X 2 -X 1 二 1 x 2 _捲 x 2 _捲 这与题设f X =1矛盾,故只有一个X 使f X 二X 。 3 .设fx 在1,2 1上具有二阶导数f x ,且f2二f1=0,如果 F x -1 f x ,证明至少存在一点 1,2,使F 」=0。 求lim n _L :i 由拉格朗日定理知,存在一点

柯西中值定理在中学中的应用和扩展

中值定理在中学数学教学的应用 摘要:通过对柯西中值定理进行讨论,明确了中学教学引入柯西中值定理的意义。分别讨论了柯西中值定理在中学教学中关于函数单调性、不等式和等式证明方面的应用。提出柯西中值定理在不等式和等式证明方面相较于纯粹的求导的方法具有快捷、计算简单的优势。最后,对中值定理在中学教学的扩展进行了讨论。 关键词:柯西中值定理;中学教学 前言随着当今社会科学技术的不断发展,定量思维正逐渐影响着公众的生活。随之而来的是对各个学科教学发展的要求。将微积分这一思想引入中学的教学是提高中学教学水平的一种体现。相较于基础教学,微积分具有鲜明的几何意义,目前在中学数学、物理等学科的教学中已经由辅助角色抬升到处理解决问题的有效工具。但是,由于引入了新的概念,在具体应用,尤其是教学的方式方法上与以往的教学差别很大,给教学工作带来了一定的困难。柯西中值定理作为微分中值定理中重要的一个定理,在中学微积分的教学中占有重要比例。但是,目前对柯西中值定理在中学教学的讨论和分析较少。因此,有必要对可惜中值定理在中学教学中的应用和扩展进行讨论。 一柯西中值定理 柯西中值定理与罗尔定理、拉格朗日中值定理并称为微分方程三个基本定理。柯西中值定理的具体表述概念为:假设两个函数分别为f(x)和g(x)。这两个函数f(x)和g(x)分别满足三个条件:第一个是条件是f(x)和g(x)在闭区间[a,b]上函数是连续的,第二个条件是是f(x)和g(x)在开区间(a,b)内函数是可导的,第三个条件是当x∈开区间(a,b)时,不等于0。当三个条件同时满足时,在开区间(a,b)中至少存在一点ξ∈开区间(a,b),能够使得(ξ)/(ξ)=(f(a)-f(b))/g(a)-g(b))。具体证明为如果假设g(a)与g(b)相等。根据罗尔定理,在开区间(a,b)上,存在一点x,使得等于0。而这与之前假设的第三个条件矛盾。因此, g(a)与g(b)不相等。然后假设存在一函数h(x),且h(x)=f(x)-(f(b)-f(a))/(g(b)-g(a))。根据h(x)得出该函数在闭区间[a,b]上是连续的,在开区间(a,b)上是可导的且h(a)=h(b)=(f(a)g(b)-f(b)g(a))/(g(b)-g(a))。则根据罗尔定理推出,在开区间(a,b)上,存在一点ξ,使得(ξ,也就是ξ=(f(b)-f(a))/(g(b)-g(a))·ξ。由以上证明过程可以看出,柯西中值定理就是一个函数相较于另一个函数的变化的问题。倘若g(x)设定为g(x)=x,即一个函数相较于x坐标轴的相较变化的问题,柯西中值定理就是拉格朗日中值定理的形式。由此分析拉格朗日中值定理是柯西中值定理的特定表达形式,而柯西中值定理则是x坐标轴参数化了的拉格朗日中值定理。从几何角度分析,其意义为以参数方程为表达形式的曲线中,存在一个点,使得在这个点上的曲线的切线与曲线两个端点所在的弦。 二中学教学引入柯西中值定理的意义 恩格斯曾经将微积分学的创立称为“人类精神层面的最高胜利”。将包括柯西中值定理在内的微分中值定理的内容引入到中学数学,不仅为学生在学习和计算上提供了一个有力的工具、扩展了学生学习的领域,还发散了学生思考、考虑问题的方式,有助于学生有效的解决与函数相关的大量问题。而且,将包括柯西中值定理在内的微分中值定理的内容引入到中学数学,

微分中值定理与导数的应用习题

第四章微分中值定理与导数得应用习题 §4、1 微分中值定理 1. 填空题 (1)函数在上使拉格朗日中值定理结论成立得ξ就是. (2)设,则有3个实根,分别位于区间中. 2.选择题 (1)罗尔定理中得三个条件:在上连续,在内可导,且,就是在内至少存在一点,使成立得(B ). A.必要条件 B.充分条件 C. 充要条件D.既非充分也非必要条件 (2)下列函数在上满足罗尔定理条件得就是( C ). A、B、C、D、 (3)若在内可导,且就是内任意两点,则至少存在一点,使下式成立(B). A. B. 在之间 C. D. 3.证明恒等式:. 证明: 令,则,所以为一常数. 设,又因为, 故. 4.若函数在内具有二阶导数,且,其中,证明:在内至少有一点,使得. 证明:由于在上连续,在可导,且,根据罗尔定理知,存在, 使. 同理存在,使. 又在上 符合罗尔定理得条件,故有,使得. 5. 证明方程有且仅有一个实根. 证明:设, 则,根据零点存在定理至少存在一个,使得.另一方面,假设有,且,使,根据罗尔定理,存在使,即,这与矛盾.故方程只有一个实根. 6. 设函数得导函数在上连续,且,其中就是介于之间得一个实数. 证明: 存在,使成立、 证明: 由于在内可导,从而在闭区间内连续,在开区间内可导.又因为,根据零点存在定理,必存在点,使得. 同理,存在点,使得.因此在上满足罗尔定理得条件,故存在,使成立. 7、设函数在上连续,在内可导、试证:至少存在一点, 使 证明:只需令,利用柯西中值定理即可证明、 8.证明下列不等式 (1)当时,. 证明:设,函数在区间上满足拉格朗日中值定理得条件,且, 故, 即 () 因此, 当时,. (2)当时,. 证明:设,则函数在区间上满足拉格朗日中值定理得条件,有 因为,所以,又因为,所以,从而 . §4、2 洛毕达法则 1. 填空题 (1) (2)0 (3)= (4)1 2.选择题

第四章.中值定理与导数的应用

第四章.中值定理与导数的应用 要求掌握的内容: 1、理解罗尔定理和拉格朗日中值定理 2、会用洛必达法则求函数极限 3、掌握函数单调性的判别方法 4、了解函数极值的概念,掌握函数极值、最值的求法及应用 5、会用导数判断函数图形的凹凸性,会求函数的拐点和渐近线。 6、会描绘简单函数的图形 一、罗尔定理 如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;其中a不等于b;在区间端点处的函数值相等,即f(a)=f(b),那么在区间(a,b)内至少存在一点ξ(a<ξ

《高等数学.同济五版》讲稿WORD版-第03章-中值定理与导数的应用

第三章 中值定理与导数的应用 教学目的: 1、 理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。 2、 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数 最大值和最小值的求法及其简单应用。 3、 会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐 近线,会描绘函数的图形。 4、 掌握用洛必达法则求未定式极限的方法。 5、 知道曲率和曲率半径的概念,会计算曲率和曲率半径。 6、 知道方程近似解的二分法及切线性。 教学重点: 1、罗尔定理、拉格朗日中值定理; 2、函数的极值 ,判断函数的单调性和求函数极值的方法; 3、函数图形的凹凸性; 4、洛必达法则。 教学难点: 1、罗尔定理、拉格朗日中值定理的应用; 2、极值的判断方法; 3、图形的凹凸性及函数的图形描绘; 4、洛必达法则的灵活运用。 §3. 1 中值定理 一、罗尔定理 费马引理 设函数f (x )在点x0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x0) (或f (x )≥f (x0)), 那么f '(x 0)=0. 罗尔定理 如果函数y=f (x )在闭区间[a , b ]上连续, 在开区间(a , b)内可导, 且有f(a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0. 简要证明: (1)如果f (x )是常函数, 则f '(x)≡0, 定理的结论显然成立. (2)如果f (x )不是常函数, 则f (x )在(a, b)内至少有一个最大值点或最小值点, 不妨设有一最大值点ξ∈(a, b ). 于是 0) ()(lim )()(≥--='='- →- ξξξξξx f x f f f x , 0) ()(lim )()(≤--='='+ →+ ξ ξξξξx f x f f f x ,

微分中值定理与导数的应用.doc

第四章 微分中值定理与导数的应用 第一节 中值定理(2课时) 要求:理解罗尔中值定理与拉格朗日中值定理。了解柯西中值定理。 重点:理解中值定理及简单的应用。 难点:中值定理证明的应用。 一、罗尔(Rolle)定理 罗尔定理 如果函数)(x f 满足条件 (1)在闭区间],[b a 上连续; (2)在开区间),(b a 内可导; (3))()(b f a f =. 则在开区间),(b a 内至少有一点)(b a <<ξξ,使得函数)(x f 在该点的导数等 于零,即0)(='ξf . 几何解释 设曲线AB 的方程为))((b x a x f y ≤≤=,罗尔定理的条件的几何表示, AB 是一条连续的曲线弧,除端点外处处具有不垂直于x 轴的切线,且两个 端点的纵坐标相等,结论是曲线弧AB 上至少有一点C ,使该点处曲线的切线是水平的.从图中看到,在曲线的最高点或最低点处,切线是水平的,这就启发了我们证明这个定理的思路,ξ应在函数取最值点处找. 例1.验证罗尔定理对函数34)(2+-=x x x f 在]3,1[上的正确性. 证明 因为函数)3)(1(34)(2--=+-=x x x x x f 在闭区间]3,1[上连续,可导.

)2 (2 4 2 ) (- = - = 'x x x f 且0 )3( )1(= =f f 函数) (x f在区间]3,1[上满足罗尔定理条件,所以在区间)3,1(内存在ξ使得 )2 (2 ) (= - = 'ξ ξ f, 于是)3,1( 2∈ = ξ. 故确实在区间)3,1(内至少存在一点2 = ξ使得0 )2(= 'f,结论成立. 二、拉格朗日中值定理(微分中值定理) 几何分析 拉格朗日中值定理设函数) (x f满足条件 (1)在闭区间] , [b a上连续; (2)在开区间) , (b a内可导. 则在区间) , (b a内至少存在一点) (b a< <ξ ξ,使得等式 ) )( ( ) ( ) (a b f a f b f- ' = -ξ成立. 推论1如果函数) (x f在区间I上的导数恒为零,那么函数) (x f在区间I上是一个常数(它的逆命题也成立). 例2.试证 2 cot arctan π = +x arc x) (+∞ < < -∞x. 证明构造函数x arc x x f cot arctan ) (+ =, 因为函数) (x f在) , (+∞ -∞上可导,且 1 1 1 1 ) ( 2 2 = + - + = ' x x x f

相关主题
文本预览
相关文档 最新文档