当前位置:文档之家› 偏微分方程组求解自由曲面光学器件_余弦负二次_

偏微分方程组求解自由曲面光学器件_余弦负二次_

偏微分方程组求解自由曲面光学器件_余弦负二次_
偏微分方程组求解自由曲面光学器件_余弦负二次_

偏微分方程的历史与应用

偏微分方程的历史及应用 数学与信息科学学院 09级数学与应用数学专业 学号 09051140129 姓名项猛猛 摘要 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。本文旨在介绍偏微分方程的起源和历史,以及偏微分方程在人口调查、传染病动力学等实际问题中的应用。了解偏微分方程曲折的发展史并了解其广阔的应用前景,从而激励读者更深入的学习和研究偏微分方程。 关键字偏微分方程偏微分方程历史偏微分方程应用 引言 偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁.本文阐述了偏微分方程的发展历史及在实际生活中的应用,为以后更深入的研究及更广的应用提供了例证。 正文 一、偏微分方程的起源及历史 微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶偏微分方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。 和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。 对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。 J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace)(1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。 十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822

Matlab PDE工具箱有限元法求解偏微分方程

在科学技术各领域中,有很多问题都可以归结为偏微分方程问题。在物理专业得力学、热学、电学、光学、近代物理课程中都可遇见偏微分方程。 偏微分方程,再加上边界条件、初始条件构成得数学模型,只有在很特殊情况下才可求得解析解。随着计算机技术得发展,采用数值计算方法,可以得到其数值解。 偏微分方程基本形式 而以上得偏微分方程都能利用PDE工具箱求解。 PDE工具箱 PDE工具箱得使用步骤体现了有限元法求解问题得基本思路,包括如下基本步骤: 1) 建立几何模型 2)定义边界条件 3) 定义PDE类型与PDE系数 4)三角形网格划分 5) 有限元求解 6)解得图形表达 以上步骤充分体现在PDE工具箱得菜单栏与工具栏顺序上,如下

具体实现如下。 打开工具箱 输入pdetool可以打开偏微分方程求解工具箱,如下 首先需要选择应用模式,工具箱根据实际问题得不同提供了很多应用模式,用户可以基于适当得模式进行建模与分析。 在Options菜单得Application菜单项下可以做选择,如下

或者直接在工具栏上选择,如下 列表框中各应用模式得意义为: ①Generic Scalar:一般标量模式(为默认选项)。 ② GenericSystem:一般系统模式. ③ Structural Mech、,Plane Stress:结构力学平面应力。 ④ Structural Mech、,Plane Strain:结构力学平面应变。 ⑤Electrostatics:静电学。 ⑥ Magnetostatics:电磁学。

⑦Ac Power Electromagnetics:交流电电磁学。 ⑧ConductiveMedia DC:直流导电介质。 ⑨ Heat Tranfer:热传导。 ⑩ Diffusion:扩散。 可以根据自己得具体问题做相应得选择,这里要求解偏微分方程,故使用默认值。此外,对于其她具体得工程应用模式,此工具箱已经发展到了solMultiphysics软件,它提供了更强大得建模、求解功能。 另外,可以在菜单Options下做一些全局得设置,如下 l Grid:显示网格 l Grid Spacing…:控制网格得显示位置 l Snap:建模时捕捉网格节点,建模时可以打开 l Axes Limits…:设置坐标系范围 l Axes Equal:同Matlab得命令axes equal命令 建立几何模型 使用菜单Draw得命令或使用工具箱命令可以实现简单几何模型得建立,如下 各项代表得意义分别为 l绘制矩形或方形; l 绘制同心矩形或方形;

Maab求解微分方程组及偏微分方程组

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t L 上的解,则令tspan 012[,,,]f t t t t =L (要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

偏微分方程的应用

偏微分方程在生物学上的应用 刘富冲pb06007143 1偏微分方程的发展 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,物理学中的许多基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 2偏微分方程的应用 在科技和经济发展中,很多重要的实际课题都需要求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出比较准确的预计。 随着电子计算机的出现及计算技术的发展,电子计算机成为解决这些实际课题的重要工具。但是有效地利用电子计算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。 对相应的偏微分方程模型进行定性的研究。 根据所进行的定性研究,寻求或选择有效的求解方法。 编制高效率的程序或建立相应的应用软件,利用电子计算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了重大的贡献。 下面主要讲一下大家比较熟悉的人口问题及传染病动力学问题,详细阐述偏微分方程在解决实际问题中的应用。

(完整word版)光学自由曲面制造的基础研究

项目名称:光学自由曲面制造的基础研究首席科学家:房丰洲天津大学 起止年限:2011.1至2015.8 依托部门:教育部天津市科委

二、预期目标 (1)总体目标 针对国家发展的重大需求对光学自由曲面制造技术的要求,深入研究并解决光学自由曲面制造中的重大关键基础科学问题,揭示自由曲面成型过程中纳观尺度材料迁移新理论,掌握和研究光学自由曲面高效、纳米级精度加工工艺技术及装备的共性基础问题,发展具有自主知识产权、具有国际先进水平的高精度、可控面形的光学自由曲面加工技术,培育我国光学自由曲面加工领域在国际上具有重要影响的学术带头人和创新团队,推动我国制造技术基础理论研究,确立在光学自由曲面制造领域国际竞争中的优势地位,增强光学自由曲面核心关键器件自主创新能力,并将光学自由曲面制造理论向更多领域纵深发展,推动我国科技进步。 (2)五年预期目标 在理论研究方面: 解决光学自由曲面制造中的关键科学问题,为实现高精度、高效率和高可靠性的光学自由曲面制造技术与装备提供理论基础,跻身于国际制造科学研究领域的前沿。 ?揭示光学自由曲面加工装备多体多态动力学行为与精度稳定性的映射规律、时变工况激励下控制系统与机械结构耦合动态特征对加工精度的 扰动规律,建立几何/物理/材料关联约束条件下光学自由曲面的空间机 构构型创新设计与优化理论; ?揭示光学自由曲面非均匀变流向纳观材料迁移规律,建立曲面成形过程中跨尺度材料特性演变、表层及近表层材料结构变化等基础理论; ?揭示光学自由曲面物理再构过程中加工工具在力、热和化学等多场耦合环境下与加工材料之间相互作用和微观力学行为,建立加工工具的失效 形式及其加工性能的演变理论; ?揭示多物理场辅助下纳米切削行为、离子注入表面改性后的硬脆材料切削规律,建立工具磨损抑制及材料学分析测试理论。 在技术应用方面:

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

Matlab偏微分方程工具箱应用简介

Matlab偏微分方程工具箱应用简介 1.概述 本文只给出该工具箱的函数列表,读者应先具备偏微分方程的基本知识,然后根据本文列出的函数查阅Matlab的帮助,便可掌握该工具箱的使用。 2.偏微分方程算法函数列表 adaptmesh 生成自适应网络及偏微分方程的解 assemb 生成边界质量和刚度矩阵 assema 生成积分区域上质量和刚度矩阵 assempde 组成偏微分方程的刚度矩阵及右边 hyperbolic 求解双曲线型偏微分方程 parabolic 求解抛物线型偏微分方程 pdeeig 求解特征型偏微分方程 pdenonlin 求解非线性型微分方程 poisolv 利用矩阵格式快速求解泊松方程 3.图形界面函数 pdecirc 画圆 pdeellip 画椭圆 pdemdlcv 转化为版本1.0式的*.m文件 pdepoly 画多边形 pderect 画矩形 pdetool 偏微分方程工具箱的图形用户界面 4.几何处理函数 csgchk 检查几何矩阵的有效性 csgdel 删除接近边界的小区 decsg 将固定的几何区域分解为最小区域 initmesh 产生最初的三角形网络 jigglemesh 微调区域内的三角形网络 poimesh 在矩形区域上产生规则的网络 refinemesh 细化三角形网络 wbound 写一个边界描述文件 wgeom 写一个几何描述文件 pdecont 画轮廓图 pdemesh 画偏微分方程的三角形网络 pdeplot 画偏微分方程的三角形网络 pdesurf 画表面图命令 5.通用函数 pdetriq 三角形单元的品性度量 poiasma 边界点对快速求解泊松方程的“贡献”矩阵 poicalc 规范化的矩阵格式的点索引 poiindex 规范化的矩阵格式的点索引 sptarn 求解一般的稀疏矩阵的特征值问题

微分方程几种求解方法

第五章 控制系统仿真 §5.2 微分方程求解方法 以一个自由振动系统实例为例进行讨论。 如下图1所示弹簧-阻尼系统,参数如下: M=5 kg, b=1 N.s/m, k=2 N/m, F=1N F 图1 弹簧-阻尼系统 假设初始条件为:00=t 时,将m 拉向右方,忽略小车的摩擦阻力,m x 0)0(= s m x /0)0(=? 求系统的响应。 )用常微分方程的数值求解函数求解包括ode45、 ode23、ode113、ode15s 、ode23s 等。 wffc1.m myfun1.m 一、常微分方程的数值求解函数ode45求解 解:系统方程为 F kx x b x m =++??? 这是一个单变量二阶常微分方程。

将上式写成一个一阶方程组的形式,这是函数ode45调用规定的格式。 令: x x =)1( (位移) )1()2(? ?==x x x (速度) 上式可表示成: ??????--=??????=??? ???????)1(*4.0)2(*2.02.0)2()2()2()1(x x x x x x x && 下面就可以进行程序的编制。 %写出函数文件myfun1.m function xdot=myfun1(t,x) xdot=[x(2);0.2-0.2*x(2)-0.4*x(1)]; % 主程序wffc1.m t=[0 30]; x0=[0;0]; [tt,yy]=ode45(@myfun1,t,x0); plot(tt,yy(:,1),':b',tt,yy(:,2),'-r') hold on plot(tt,0.2-0.2*yy(:,2)-0.4*yy(:,1),'-k') legend('位移','速度',’加速度’)

双曲型偏微分方程的求解及其应用[文献综述]

毕业论文文献综述 信息与计算科学 双曲型偏微分方程的求解及其应用 一、前言部分 在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。 应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程[1]。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。 其中,可以变的标准型有:椭圆型、双曲型、抛物型。而基本方程可以归结为四大类:波动、热传导、传输[2]。 随着电子计算机的出现和发展, 偏微分方程的数值解得到了前所未有的发展和应用.在科学的计算机化进程中,科学与工程计算作为工具性、方法性、边缘交叉性的新学科开始了自己的新发展.由于科学基本规律大多是通过偏微分方程来描述的,因此科学与工程计算的主要任务就是求解形形色色的偏微分方程,特别是一些大规模、非线性、几何非规则性的方程. 双曲型和抛物型方程描述了物质扩散和波动等不定常物理过程,这两类偏微分方程的定解问题在力学、热传导理论、燃烧理论、化学、空气动力学、电磁学和经济数学等方面都有

自由曲面光学镜片的设计

自由曲面光学镜面的设计 摘要 光学自由曲面具有非对称面形、灵活的空间布局、丰富的设计自由度等特性。自由曲面是应用最广泛的曲面形状之一,如能改善人类视觉质量的渐进多焦点眼用镜片,就是自由曲面技术在眼用光学镜片中的成功应用。本文通过设计渐进多焦点眼用镜片,并以之为例研究自由曲面光学镜片的性质及特点。 渐进镜片(英文progressive addition lenses 简称PAL)是针对老视症状的一种有效的解决手段,与各类传统老视镜片相比较具有许多优点,本文对这种镜片的设计和评价进行研究。 首先,介绍渐变镜片的渐变结构特征和矫正原理,比较分析软设计和硬设计之间的区别。 其次,介绍渐进多焦点眼用镜片的基本结构。应用基于狄利克雷原则的软设计方法,阐述渐进多焦点眼用镜片子午线设计的基本原理,构建子午线多项式,给出子午线设计需满足的条件。在子午线设计的基础上,设计渐进多焦点眼用镜片等屈光度轮廓线,在此基础上设计镜片矢高,确定镜片面形。 然后,根据曲面的微分几何理论,给出渐变镜片的性能评价方法,即计算镜片的球面度及柱面度。 关键词渐进镜片;老视;软设计;子午线

Design of free-form surface optical lenses Abstract Free-form lens has asymmetric surface shape, flexible space layout, extensive design freedom and other characteristics. Free surface is one of the curved shapes which are most widely applied. For instance, the progressive addition lenses(PAL) which can improve the quality of human vision are a successful example that the free-form technology is applied to optical lenses. In this paper, the design of the progressive addition lenses is introduced, and the nature and characteristics of the optical lenses will be researched through it. The progressive addition lenses is a new kind of effective solution to presbyopia, it has many advantages over other lenses dealing with presbyopia. Investigation of its design and evaluation method is shown in this paper. Various kinds of presbyopia lens is reviewed and compared. The basic feature and principle of the PAL are introduced and the difference between the characteristics of hard design and soft design is described as well. The structure of progressive addition lenses is introduced, and the soft method based on Dirichlet principle is given in detail. The principle of designing meridional power laws for progressive addition lenses is expounded based on polynomial, and the criterion of designing meridional power laws is given out. On the basis of designing meridional power laws, the vector height and the isopower contours are designed in order to determine the surfaces of progressive addition lenses. According to the differential ge ometry theory of curving surfaces, PAL’s performances are evaluated, and the mean surface power and the constant surface astigmatism are calculated. Keywords progressive addition lenses, presbyopia, soft design,meridian line

偏微分方程求解方法及其比较

偏微分方程求解方法及其比较 发表时间:2008-12-11T09:32:01.530Z 来源:《科海故事博览科教创新》2008年第10期供稿作者:曹海洋吕淑娟王淑芬 [导读] 近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 摘要:近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 关键词:谱方法;偏微分;收敛;逼近; 1偏微分方程及其谱方法的介绍 偏微分方程主要借助于未知函数及其导数来刻画客观世界的物理量的一般变化规律。理论上,对偏微分方程解法的研究已经有很长的历史了。最初的研究工作主要集中在物理,力学,几何学等方面的具体问题,其经典代表是波动方程,热传导方程和位势方程(调和方程)。通过对这些问题的研究,形成了至今仍然使用的有效方法,例如,分离变量法,fourier变换法等。早期的偏微分方程研究主要集中在理论上,而在实际操作中其研究方法和研究结果都难以得到广泛的应用。求解的主要方法为:有限差分法,有限元法,谱方法。 谱方法起源于Ritz-Galerkin方法,它是以正交多项式(三角多项式,切比雪夫多项式,勒让得多项式等)作为基函数的Galerkin方法、Tau 方法或配置法,它们分别称为谱方法、Tau方法或拟谱方法(配点法),通称为谱方法。谱方法是以正交函数或固有函数为近似函数的计算方法。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。而这些方法的基础就是建立空间基函数。 下面介绍几种正交多项式各种节点的取值方法及权重。 1) Chebyshev-Gauss: 2) Chebyshev-Gauss-Radau: x0 =1, 3) Chebyshev-Gauss-Lobatto: x0 =1, xN =1, 4)Legendre-Gauss: xj 是的零点且 5) Legendre-Gauss-Radau: xj 是的N+1个零点且 6) Legendre-Gauss-Lobatto: x0=-1,xN=1其它N-1个点是的零点且 下面介绍谱方法中最重要的Jacobi正交多项式其迭代公式为: 其中: Jacobi正交多项式满足正交性: 而Chebyshev多项式是令时Jacobi多项式的特殊形式,另外Legendre多项式是令时Jacobi多项式的特殊形式。 2 几种典型的谱方法 谱方法是以正交函数或固有函数为近似函数的计算方法。谱近似可以分为函数近似和方程近似两种近似方式。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。从方程近似角度看,谱方法可分为在物理空间离散求解的Collocation法、在谱空间进行离散求解的Galerkin法,以及先在物理空间离散求积,再变换到谱空间求解的Pseudo-spectral法。Collocation法适用于非线性问题.Galerkin法适用于线性问题,而Pseudo-spectral法适用于展开方程时的非线性项的处理。谱方法的特点是对光滑函数指数性逼近的谱精度;以较少的网格点得到较高的精度;无相位误差;适合多尺度的波动性问题;计算精度高于其他方法。快速傅立叶变化的提出大大促进了谱方法的发展,迄今已有各种的谱方法计算格式被提出.并被应用于天文学、电磁学、地理学等各种问题的计算。 下面介绍一下应用于各个区域的几种谱方法: 1)以Fourier谱方法为例介绍谱方法解方程的主要过程 以一阶波动方程为例: 其中u(x,t)为方程的解,L是包含u和u关于空间变量的导数的算子,除了方程以有初始条件和适当的边界条件。 故可设其中为试探空间的基函数,ak(t)为展开系数,对于傅立叶谱方法中的共轭有: 其中从而利用其正交性和周期性可以减少工作量,另外再结合边界条件就可以求出来。 2) Galerkin方法是谱方法中十分经典的解偏微分方程的方法,但还有其局限性,而利用Hermite谱方法中依赖时间的权函数对经典的Galerkin方法进行拓展后的新的方法能适用范围扩大了很多。它能很好的应用在微分方程最优控制问题有限元方法的分析中,并且如果能够灵活运用利用Chebyshev方法、Galerkin方法和配置方法,则会形成更强的计算方法。如将Tau方法的思想成功地应用于奇数阶微分方程Petrov-Galerkin谱方法。 3)在无界区域上谱方法和拟谱方法发展了以Hermite函数和Laguerre函数为基函数的正交逼近和插值理论,在这些结果的基础上发展了全空间和半空间上数理方程的谱方法和拟谱方法,从而形成一种新的能更好解决误解区域问题的方法,此种方法被很好的应用于统计物理、量子力学和流体力学中。 4) 我们利用非一致带权Sobolev空间中的Jacobi多项式正交逼近和Jacobi-Gauss型插值理论,提出以Jacobi多项式为基函数的Jacobi谱方法和拟谱方法用来解决一些奇异问题和计算某些特定的无界区域问题。 5)有限谱方法是基于有限点、有限项的局域谱方法。这种方法要求近似函数应具有等同隔网格和非周期性的性质。有限谱方法分为基于非

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

经济数学 偏微分方程在金融中的运用

偏微分方程概述 如果一个微分方程中出现多元函数的偏导数,或是说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数, 则这类方程称为偏微分方程,该类方程反映有关的未知变量关于时 间的导数和关于空间变量的导数之间制约关系的等式.偏微分方程这 门学科开创于 1946 年,19 世纪随着数学物理问题研究的繁荣,偏 微分方程得到了迅速发展,以物理、力学等各门科学中的实际问题为背景的偏微分方程已经成为应用数学的一个核心内容很多重要的物理、力学等学科的基本方程本身就是偏微分方程,而其他很多学科领域中在建立数学模型时都可以用偏微分方程来描述,或者用偏微分方法来研究.在科技和经济发展中,很多重要的实际课题都需要 求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方 面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出 比较准确的预计。随着电子计算机的出现及计算技术的发展,电子 计算机成为解决这些实际课题的重要工具。但是有效地利用电子计 算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。对相应的偏微分方程 模型进行定性的研究。根据所进行的定性研究,寻求或选择有效的 求解方法。编制高效率的程序或建立相应的应用软件,利用电子计 算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用 的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得 结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解 决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动 力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了 重大的贡献。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

《偏微分方程概述及运用matlab求解偏微分方程常见问题》要点

北京航空航天大学 偏微分方程概述及运用matlab求解微分方 程求解常见问题 姓名徐敏 学号57000211 班级380911班 2011年6月

偏微分方程概述及运用matlab求解偏微分 方程常见问题 徐敏 摘要偏微分方程简介,matlab偏微分方程工具箱应用简介,用这个工具箱解方程的过程是:确定待解的偏微分方程;确定边界条件;确定方程所在域的几何形状;划分有限元;解方程 关键词MATLAB 偏微分方程程序 如果一个微分方程中出现的未知函数只含有一个自变量,这个方程叫做常微分方程,也简称微分方程:如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 一,偏微分方程概述 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物

理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 在我国,偏微分方程的研究起步较晚。但解放后,在党和国家的大力号召和积极支持下,我国偏微分方程的研究工作发展比较迅速,涌现出一批在这一领域中做出杰出工作的数学家,如谷超豪院士、李大潜院士等,并在一些研究方向上达到了国际先进水平。但总体来说,偏微分方程的研究队伍的组织和水平、研究工作的广度和深度与世界先进水平相比还有很大的差距。因此,我们必须继续努力,大力加强应用偏微分方程的研究,逐步缩小与世界先进水平的差距 二,偏微分方程的内容

求解偏微分方程三种数值方法

数值模拟偏微分方程的三种方法介绍 (有限差分方法、有限元方法、有限体积方法) I.三者简介 有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛使用。该方法包括区域剖分和差商代替导数两个步骤。首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替进行离散,从而建立以网格节点上的值为未知量的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且十分成熟的数值方法。 差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。从差分的空间离散形式来考虑,有中心格式和迎风格式。对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。差分方法主要适用于结构网格,网格的大小一般根据问题模型和Courant 稳定条件来决定。 有限元方法(Finite Element Methods)的基础是虚位移原理和分片多项式插值。该方法的构造过程包括以下三个步骤。首先,利用虚位移原理得到偏微分方程的弱形式,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等),在每个单元上选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。 有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。有限元方法最早应用于结构力学,随着计算机的发展已经渗透到计算物理、流体力学与电磁学等各个数值模拟领域。

相关主题
相关文档 最新文档