当前位置:文档之家› 有限元--命令流与部分基础知识

有限元--命令流与部分基础知识

有限元--命令流与部分基础知识
有限元--命令流与部分基础知识

一、命令流

举例:

有一长为100mm的矩形截面梁,截面为10X1mm,与一规格为20mmX7mmX10mm 的实体连接,约束实体的端面,在梁端施加大小为3N的y方向的压力,梁与实体都为一材料,弹性模量为30Gpa,泊松比为0.3。本例主要讲解梁与实体连接处如何利用耦合及约束方程进行处理。

命令流如下:

FINI

/CLE

/FILNAME,BEAM_AND_SOLID_ELEMENTS_CONNECTION !定义工作文件名

/TITLE,COUPLE_AND_CONSTRAINT_EQUATION!定义工作名

/PREP7 !进入前处理

ET,1,SOLID95!定义实体单元类型为SOLID95

ET,2,BEAM4!定义梁单元类型为BEAM4

MP,EX,1,3E4!定义材料的弹性模量

MP,PRXY,1,0.3!定义泊松比

R,1!定义实体单元实常数

R,2,10.0,10/12.0,1000/12.0,10.0,1.0!定义梁单元实常数

BLC4,,,20,7,10!创建矩形块为实体模型

WPOFFS,0,3.5!将工作平面向Y方向移动3.5

WPROTA,0,90!将工作平面绕X轴旋转90度

VSBW,ALL!将实体沿工作平面剖开

WPOFFS,0,5!将工作平面向Y方向移动5

WPROTA,0,90!将工作平面绕X轴旋转90度

VSBW,ALL!将实体沿工作平面剖开

WPCSYS,-1!将工作平面设为与总体笛卡儿坐标一致

K,100,20,3.5,5!创建关键点

K,101,120,3.5,5!创建关键点

L,100,101!连接关键点生成梁的线实体

LSEL,S,LOC,X,21,130!选择梁线

LATT,1,2,2!指定梁的单元属性

LESIZE,ALL,,,10!指定梁上的单元份数

LMESH,ALL!划分梁单元

VSEL,ALL!选择所有实体

VATT,1,1,1!设置实体的单元属性

ESIZE,1!指定实体单元尺寸

MSHAPE,0,2D!设置实体单元为2D

MSHKEY,1!设置为映射网格划分方法

VMESH,ALL!划分实体单元

ALLS!全选

FINI!退出前处理

!------------------------

/SOLU!进入求解器

ASEL,S,LOC,X,0!选择实体的端面

DA,ALL,ALL!约束实体端面

ALLS!全选

FK,101,FY,-3.0!在两端施加Y向压力

CP,1,UX,1,21!耦合节点1和节点21X方向自由度

CP,2,UY,1,21!耦合节点1和节点21Y方向自由度

CP,3,UZ,1,21!耦合节点1和节点21Z方向自由度

CE,1,0,626,UX,1,2328,UX,-1,1,ROTY,-ABS(NZ(626)-NZ(2328)) !设置约束方程

CE,2,0,67,UX,1,4283,UX,-1,1,ROTZ,-ABS(NY(67)-NY(4283))!设置约束方程

CE,3,0,67,UZ,1,4283,UZ,-1,1,ROTX,-ABS(NY(67)-NY(4283))!设置约束方程

ALLS!全选

SOLVE!保存

FINI!退出求解器

!------------------------

/POST1!进入通用后处理

PLNSOL, U,Y, 0,1.0!显示Y方向位移

PLNSOL, S,EQV, 0,1.0!显示等效应力

ETABLE,ZL1,SMISC,1!读取梁单元上I节点X方向的力

ETABLE,ZL2,SMISC,7!读取梁单元上J节点X方向的力

ETABLE,MZ1,SMISC,6!读取梁单元上I节点Z方向的力矩

ETABLE,MZ2,SMISC,12!读取梁单元上J节点Z方向的力矩

PLETAB,ZL1!显示梁单元X方向的力

PLETAB,MZ1!显示梁单元Z方向力矩

!**********************************************

二、基础知识

01. 定义材料特性,执行Main Menu 〉Preprocessor 〉Material Props 〉Material Models 命令,在打开的定义材料特性对话框中依次输入弹性模量、泊松比,单击OK 按钮。

02.简述动力学分析的主要内容:

ANSYS对动力分析主要从几个方面考虑:模态、瞬态动力、谐波响应、响应谱及随机振动。

(1)模态分析:用于抽取结构的自然频率和模态形状。分析的结果确定瞬态动力分析的模态数和积分时间步长,瞬态求解过程需要模态分析的结果。ANSYS程序还允许作预应力模态分析及在大变形分析后作模态分析。

(2)瞬态动力分析:分为全瞬态动力方法、凝聚法和模态叠加法三种方法。皆用于基于动力分析的通用运动方程。

(3)谐波响应分析:用于求解线性结构承受正弦变化载荷的响应。

(4)响应谱分析:用于求解冲击载荷条件下的结构响应,该分析类型使用模态分析的结果连同已知谱,计算每个固有频率点在结构中发生的真实位移和应力。

(5)随机振动分析:是一种谱分析,用于研究结构对随机激励的响应。

03.结构动力学算例、平面问题的有限元法的解题步骤与例题;

04.拓扑优化的基本原理

拓扑优化是结构优化的一种。拓扑优化的研究领域主要分为连续体拓扑优化和离散结构拓扑优化。不论哪个领域,都要依赖于有限元方法。连续体拓扑优化是把优化空间的材料离散成有限个单元(壳单元或者体单元),离散结构拓扑优化是在设计空间内建立一个由有限个梁单元组成的基结构,然后根据算法确定设计空间内单元的去留,保留下来的单元即构成最终的拓扑方案,从而实现拓扑优化。拓扑优化以材料分布为优化对象,通过拓扑优化,可以在均匀分布材料的设计空间中找到最佳的分布方案。

05.简述ANSYS热分析的主要内容:

(1)ANSYS的热分析

·在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中

ANSYS/FLOTRAN不含相变热分析。

·ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的

温度,并导出其它热物理参数。

·ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可

以分析相变、有内热源、接触热阻等问题。

(2)ANSYS热分析分类

·稳态传热:系统的温度场不随时间变化

·瞬态传热:系统的温度场随时间明显变化

(3)耦合分析

·热-结构耦合

·热-流体耦合

·热-电耦合

·热-磁耦合

·热-电-磁-结构耦合等

06.等参数单元的基本概念。

07.模态分析的基本概念。

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。

08. 轴类零件在生成有限元模型时,由于其结构的特殊性,要采用六面体单元相对难一些,

最简单的方法是采用四面体单元。

09. ANSYS的静力分析过程一般包括建立模型、施加载荷并求解和检查结果三个步骤。

10.在ANSYS优化程序中,用户只能设置一个目标函数,其值必须为正。

11.单元刚度矩阵为对称矩阵,由于单元可有任意的刚体位移,给定的节点力不能唯一的确定节点位移,可知单元刚度矩阵不可求逆,具有奇异性。

12.动力学方程、质量矩阵及阻尼矩阵。

13.平面问题的单元刚度矩阵、空间问题的刚度矩阵、矩阵单元的整体平衡方程。

14.变分原理、李兹法、弹性力学的基本方程、虚位移原理。

15.清华大学用ANSYS 建立了制动器摩擦耦合模型,研究得出摩擦耦合系数对制动尖叫趋势的影响以及抑制、消除尖叫的解决方法。

16.有限元法采用能量原理进行单元分析,因而必须事先给出(设定)位移函数。一般而论,位移函数选取会影响甚至严重影响计算结果的精度。

17.网格数量的多少将影响计算规模的大小。一般来讲, 网格数量增加, 计算精度会有所提高, 但同时计算规模也会增加。软件规定了模型的最大节点数目脚贻其计算模型。所以在确定网格数量时应权衡个因素综合考虑。

18. 计算机能力的提升使得有限元分析由单场分析到多场分析变成现实,未来的几年内,多物理场分析工具将会给学术界和工程界带来震惊。

19. ANSYS求解模块是程序用来完成对已经生成的有限元模型进行分析和求解。在此阶段,用户可以定义分析类型、分析选项、载荷数据和载荷步选项。

20. 定义材料特性,执行Main Menu 〉Preprocessor 〉Material Props 〉Material Models 命令,在打开的定义材料特性对话框中依次输入弹性模量、泊松比,单击

OK 按钮。

21.矩阵分析法适用于由连杆或梁等单元组成的杆件结构,是一种具有朴素的有限元思想的非连续介质的力学分析方法。

22. ANSYS界面与操作,无论版本怎样变化,仅作少量的改进,具有较强的继承性,形成了自己固有的风格。

23.动力学问题要考虑结构的质量和阻尼,质量矩阵有协调质量矩阵和集中质量矩阵两种,复杂的结构采用前者。

THANKS !!!

致力为企业和个人提供合同协议,策划案计划书,学习课件等等

打造全网一站式需求

欢迎您的下载,资料仅供参考

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

八天学会Ansys命令流

八天学会Ansys命令流 八天学会Ansys命令流

为方便大家的交流和学习,特推出"跟我学命令流"课程本课程分为三部分:前处理,加载求解,后处理 每部分的学习时间:10天,共计30天 每天学习大约10个命令 希望本课程对大家能有所帮助 第一天 目标:熟悉ANSYS基本关键字的含义 k --> Keypoints 关键点 l --> Lines 线 a --> Area 面 v --> Volumes 体 e --> Elements 单元 n --> Nodes 节点 cm --> component 组元 et --> element type 单元类型 mp --> material property 材料属性 r --> real constant 实常数 d --> DOF constraint 约束 f --> Force Load 集中力 sf --> Surface load on nodes 表面载荷

bf --> Body Force on Nodes 体载荷 ic --> Initial Conditions 初始条件 第二天 目标:了解命令流的整体结构,掌握每个模块的标识 !文件说明段 /BATCH /TITILE,test analysis !定义工作标题 /FILENAME,test !定义工作文件名 /PREP7 !进入前处理模块标识 !定义单元,材料属性,实常数段 ET,1,SHELL63 !指定单元类型 ET,2,SOLID45 !指定体单元 MP,EX,1,2E8 !指定弹性模量 MP,PRXY,1,0.3 !输入泊松比 MP,DENS,1,7.8E3 !输入材料密度 R,1,0.001 !指定壳单元实常数-厚度...... !建立模型 K,1,0,0,, !定义关键点 K,2,50,0,,

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

ANSYS命令流解释大全

A N S Y S命令流解释大 全 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

一、定义材料号及特性 mp,lab, mat, co, c1,…….c4 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) c 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料: 首先要定义EX和泊松比:MP,EX,MAT,…… MP,NUXY,MAT,…… 定义DP材料单元表(这里不考虑温度):TB,DP,MAT 进入单元表并编辑添加单元表:TBDATA,1,C TBDATA,2,ψ TBDATA,3,…… 如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:

MP,EX,1,1E8 MP,NUXY,1, TB,DP,1 TBDATA,1,27 TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg 三、单元生死载荷步 !第一个载荷步 TIME,... !设定时间值(静力分析选项) NLGEOM,ON !打开大位移效果 NROPT,FULL !设定牛顿-拉夫森选项 ESTIF,... !设定非缺省缩减因子(可选) ESEL,... !选择在本载荷步中将不激活的单元 EKILL,... !不激活选择的单元 ESEL,S,LIVE !选择所有活动单元 NSLE,S !选择所有活动结点 NSEL,INVE !选择所有非活动结点(不与活动单 元相连的结点) D,ALL,ALL,0 !约束所有不活动的结点自由度(可 选) NSEL,ALL !选择所有结点 ESEL,ALL !选择所有单元

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

有限元实例分析

作业一:有限元分析实例 实例:请对一个盘轴配合机构进行接触分析。轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图所示。盘和轴为一种材料,材料参数为:弹性模量Ex=2.5E5,泊松比NUXY=0.3,摩擦系数MU=0.25,试采用有限元计算方法分析轴和盘在过盈配合时的应力应变分布以及将轴从盘心拔出时轴和盘的接触情况。 问题分析说明 (1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。由于为过盈配合,属于大变形,故应考虑几何 非线性的影响。 (2)模型具有轴对称性,所以可以采取轴对称模型来进行分析,先建立二维模型计算,再转换为三维模型计算,这样可以节省计

算时间。分析过程由两个载荷步组成, 第一个载荷步为过盈分 析, 求解过盈安装时的情况。第二个载荷步为将轴从盘心拔出 时的接触分析, 分析在这个过程中盘心面和轴的外表面之间的 接触应力。它们都属于大变形问题, 属于非线性问题。在分析 时需要定义一些非线性选项来帮助问题的收敛。 (3)接触面之间有很大的相对滑动,所以模型要使用有限滑移。 模型建立的分析说明 (1)进定义单元类型此项实例分析的问题中涉及到大变形, 故选用So li d185 单元类型来建立本实例入部件模块,的模型。盘 轴接触问题属于面面接触, 目标面和接触面都是柔性的, 将使用接触单元T ARGET 170 和CO NTAT17 4来模拟接 触面。分别创建名为为part1、part2的部件。 (2)定义材料属性,在线性各向同性材料属性对话框中的EX (弹性模量) 文本框中输入 2 . 5E5,PRX Y (泊松比) 文本框中输入 0 . 3,并将定义的材料属性赋予给part1和part2。如下图所示。 (3)进入装配模块,创建两者间的装配关系。

电磁仿真算中的有限元法

1电磁仿真算法中的有限元法 1.1常规的电磁计算方法简介 从上世纪50年代以来,伴随着计算机技术的进步,电磁仿真算法也蓬勃发展起来,这其中主要包括:单矩法、矩量法和有限元法等属于频域技术的算法; 传输线矩阵法、时域积分方程法以及时域有限差分法等属于时域技术的算法。除了这些以外, 还有属于高频技术的集合衍射理论等。本文根据国内外计算电磁学的发展状况,对日常生活中比较常用的电磁计算方法做了介绍,并对有限元法做了重点说明。 ⑴矩量法 矩量法属于电磁场的数值计算方法中频域技术的一种, 它的基本原理是利用把待解的微积分方程转化成的算子方程, 然后将由一组线性组合表示的待求函数代入第一步中的算子方程, 然后将算子方程转化成矩阵方程, 最后再通过计算机进行大量的数值计算从而得到数值结果。该方法在求解非均勻和不规则形状对象时,面很广,但会生成病态矩阵,所以会在一定程度上受到限制。矩量法的特点就是适用于求解微积分方程, 并且求解方法统一简单。但缺点就是会占用大量计算机内存,影响计算速度。 (2)单矩法 单矩法是一种解析方法和数值方法相结合的混合数值算法法,该方法的关键在于,如何合理的选择一个球面最小的半径,使得能够将分析对象的结构全部包含在内,以便将内外场进行隔离。外边的散射场单独使用其他函数表示,而包围的内部区域使用有限元法亥姆赫兹(Helmholtz)方程。此方法对于计算复杂形体乃至复杂埋入体内的电磁散射是种极为有效的手段。 (3)时域有限差分法 时域有限差分法(FDTD)近几年来越来越受到各方的重视, 因为一方面它处理庞大的电磁福射系统方面和复杂结构的散射体时很突出,另外一方面则在于它不是传统的频域算法, 它是种时域算法, 直接依靠时间变量求解麦克斯韦方程组,可以在有限的时间和体积内对场进行数据抽样, 这样同时也能够保证介质边界

《有限元基础教程》_【MATLAB算例】3.3.7(2)__三梁平面框架结构的有限元分析(Beam2D2Node)

【MA TLAB 算例】3.3.7(2) 三梁平面框架结构的有限元分析 (Beam2D2Node) 如图3-19所示的框架结构,其顶端受均布力作用,结构中各个 截面的参数都为:113.010Pa E =?,746.510I m -=?,426.810A m -=?。试基 于MA TLAB 平台求解该结构的节点位移以及支反力。 图3-19 框架结构受一均布力作用 解答:对该问题进行有限元分析的过程如下。 (1) 结构的离散化与编号 将该结构离散为3个单元,节点位移及单元编号如图3-20所示, 有关节点和单元的信息见表3-5。 (a ) 节点位移及单元编号

(b)等效在节点上的外力 图3-20 单元划分、节点位移及节点上的外载 (2)各个单元的描述 首先在MA TLAB环境下,输入弹性模量E、横截面积A、惯性矩I和长度L,然后针对单元1,单元2和单元3,分别二次调用函数Beam2D2Node_ElementStiffness,就可以得到单元的刚度矩阵k1(6×6)和k2(6×6),且单元2和单元3的刚度矩阵相同。 >> E=3E11; >> I=6.5E-7; >> A=6.8E-4; >> L1=1.44; >> L2=0.96; >> k1=Beam2D2Node_Stiffness(E,I,A,L1); >> k2=Beam2D2Node_Stiffness(E,I,A,L2); (3)建立整体刚度方程 将单元2和单元3的刚度矩阵转换成整体坐标下的形式。由于该结构共有4个节点,则总共的自由度数为12,因此,结构总的刚度矩阵为KK(12×12),对KK清零,然后两次调用函数Beam2D2Node_Assemble进行刚度矩阵的组装。 >> T=[0,1,0,0,0,0;-1,0,0,0,0,0;0,0,1,0,0,0;0,0,0,0,1,0;0,0,0,-1,0,0;0,0,0,0,0,1] ; >> k3=T'*k2*T; >> KK=zeros(12,12); >> KK=Beam2D2Node_Assemble(KK,k1,1,2);

Ansys命令流大全(整理)

1、A,P1,P2,P3,P4,P5,P6,P7,P8,P9 此命令用已知的一组关键点点(P1~P9 )来定义面(Area), 最少使用三个点才能围成面,同时产生转围绕些面的线。 点要依次序输入,输入的顺序会决定面的法线方向。 如果超过四个点,则这些点必须在同一个平面上。Men uPaths:Ma inMenu >Preprocessor>Cre ate>Arbitrary>ThroughKPs 2、G ABBR,Abbr,String ――定义一个缩略语. Abbr:用来表示字符串"String "的缩略语,长度不超过8个字符. String :将由"Abbr "表示的字符串,长度不超过6 0个字符. 3、A BBRES,Lab,Fname,EGt —从一个编码 文件中读出缩略语. Lab :指定读操作的标题, NEW :用这些读出的缩略语重新取代当前的缩略语(默认) CHANGE :将读出的缩略语添加到当前缩略语阵列,并替代现存同名的缩略语. EGt:如果"Fname "是空的,则缺省的扩展命是"ABBR". 4、ABBSAV , Lab , Fname , EGt —将当前的 缩略语写入一个文本文件里 Lab :指定写操作的标题,若为ALL,表示将所有 的缩略语都写入文件(默认) 5、 add,ir,ia,ib,ic,name,--,--,facta,factb,f actc 将ia,ib,ic变量相加赋给ir变量 ir,ia,ib,ic :变量号 name:变量的名称 6、 Adele,na1,na2,ninc,kswp ! kswp=O 时只 删除掉面积本身,=1时低单元点一并删除。 7、 Adrag ,n 11, nl2, nl3, nl4, nl5, nl6, nlp1, nlp2, nlp3 ,n lp4, nlp5, nlp6 !面积的建立,沿某组线段路径,拉伸而成。 8、Afillt,na1,na2,rad !建立圆角面积,在两相 交平面间产生曲面,rad为半径。 9、GAFUN,Lab 在参数表达式中,为角度函数指定单位.

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

有限元例题

【1】图示弹性力学平面问题,采用三角形常应变元,网格划分及单元、节点编号如图1所示。试求: (1) 计算系统刚度矩阵的最大带宽; (2) 根据图中结构的边界约束状态,给出约束节点位移值。 【解】 (1) 相邻节点号的最大差为d = 4; 所以,半带宽为B = 2 ? (4 + 1) = 10。 (2) u1 = 0,v1 = 0,u4 = 0,v4 = 0。 【2】弹性力学平面问题4节点等参元,其单元自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素? 【解】平面问题4节点等参元,其单元自由度是4 ?2 = 8个;单元刚度矩阵是8 ? 8 阶的,单元刚度矩阵有64个元素。

【3】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素? 【解】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是2 ? 3 = 6个;单元刚度矩阵是6 ? 6阶的;单元刚度矩阵有36个元素。 【4】已知一等截面直杆中某一微段的起始点坐标为0.5m,终点坐标为0.6m,起始点的位移为0.2mm,终点的位移为0.3mm。假定直杆内的位移是线性分布的。求该微段等截面直杆的位移表达式f(x)。 【解】已知:x i = 0.5m, x j= 0.6m, u i = 0.2mm = 0.2?10-3m, u j= 0.3mm = 0.3?10-3m。 即

【5】已知4节点一维问题中单元①(1, 2)的应力矩阵为 结构总体位移列阵为 求单元①的应力(用矩阵计算)。 【解】由总体结构位移列阵知,单元①的位移列阵为 由{σ} = [C] {?}e可求得单元①的应力

ANSYS 命令流解释大全

一、定义材料号及特性 mp,lab, mat, co, c1,…….c4 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) c 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料: 首先要定义EX和泊松比:MP,EX,MAT,…… MP,NUXY,MAT,…… 定义DP材料单元表(这里不考虑温度):TB,DP,MAT 进入单元表并编辑添加单元表:TBDATA,1,C TBDATA,2,ψ TBDATA,3,……

如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下: MP,EX,1,1E8 MP,NUXY,1,0.3 TB,DP,1 TBDATA,1,27 TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg 三、单元生死载荷步 !第一个载荷步 TIME,... !设定时间值(静力分析选项) NLGEOM,ON !打开大位移效果 NROPT,FULL !设定牛顿-拉夫森选项 ESTIF,... !设定非缺省缩减因子(可选) ESEL,... !选择在本载荷步中将不激活的单元 EKILL,... !不激活选择的单元 ESEL,S,LIVE !选择所有活动单元 NSLE,S !选择所有活动结点 NSEL,INVE !选择所有非活动结点(不与活动单 元相连的结点) D,ALL,ALL,0 !约束所有不活动的结点自由度(可 选) NSEL,ALL !选择所有结点

有限元分析方法

百度文库- 让每个人平等地提升自我 第1章有限元分析方法及NX Nastran的由来 有限元分析方法介绍 计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。 有限单元法的形成 近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性: ?CAE仿真可有效缩短新产品的开发研究周期。 ?虚拟样机的引入减少了实物样机的试验次数。 ?大幅度地降低产品研发成本。 ?在精确的分析结果指导下制造出高质量的产品。 ?能够快速对设计变更作出反应。 ?能充分和CAD模型相结合并对不同类型的问题进行分析。 ?能够精确预测出产品的性能。 ?增加产品和工程的可靠性。 ?采用优化设计,降低材料的消耗或成本。 ?在产品制造或工程施工前预先发现潜在的问题。 ?模拟各种试验方案,减少试验时间和经费。 ?进行机械事故分析,查找事故原因。 当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国1

《有限元基础教程》_【ANSYS算例】4.7.1(3) 基于3节点三角形单元的矩形薄板分析(GUI)及命令流

【ANSYS 算例】4.7.1(3) 基于3节点三角形单元的矩形薄板分析 如图4-20所示为一矩形薄平板,在右端部受集中力100 000N F =作用,材料常数为:弹性模量7110Pa E =?、泊松比1/3μ=,板的厚度为0.1m t =,在ANSYS 平台上,按平面应力问题完成相应的力学分析。 (a) 问题描述 (a) 有限元分析模型 图4–20 右端部受集中力作用的平面问题(高深梁) 解答 在ANSYS 平台上,完成的分析如下。 1. 基于图形界面的交互式操作(step by step) (1) 进入ANSYS(设定工作目录和工作文件) 程序 → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): 2D3Node →Run → OK (2) 设置计算类型 ANSYS Main Menu : Preferences… → Structural → OK (3) 选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete… →Add… →Solid :Quad 4node 42 →OK (返回到Element Types 窗口) → Options… →K3: Plane Strs w/thk(带厚度的平面应力问题) →OK →Close (4) 定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic → Isotropic: EX:1.0e7 (弹性模量),PRXY: 0.33333333 (泊松比) → OK → 鼠标点击该窗口右上角的“ ”来关闭该窗口 (5) 定义实常数以确定平面问题的厚度 ANSYS Main Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1→ OK →Real Constant Set No: 1 (第1号实常数), THK: 0.1 (平面问题的厚度) →OK →Close (6) 生成单元模型 生成4个节点 ANSYS Main Menu: Preprocessor →Modeling → Create → Nodes → On Working Plane →输入节点1的x,y,z 坐标(2,1,0),回车→输入节点2的x,y,z 坐标(2,0,0),回车→输入节点3的x,y,z 坐标(0,1,0),回车→输入节点4的x,y,z 坐标(0,0,0),回车→OK 定义单元属性 ANSYS Main Menu: Preprocessor →Modeling → Create → Elements → Elem Attributes →Element type number:1 →Material number:1→Real constant set number:1 →OK 生成单元 ANSYS Main Menu: Preprocessor →Modeling → Create → Elements → User Numbered → Thru Nodes →Number to assign to element:1→Pick nodes:2,3,4→OK →Number to assign to element:2→Pick nodes:3,2,1→OK (7) 模型施加约束和外载 左边两个节点施加X,Y 方向的位移约束 ANSYS Main Menu: Solution → Define Loads → Apply →Structural → Displacement → On

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

ansys命令流操作大全

ansys——ANSYS命令流(Ⅰ) 1. A,P1,P2,…,P17,P18(以点定义面) 2. AADD,NA1,NA2,…NA8,NA9(面相加) 3. AATT,MAT,REAL,TYPE,ESYS,SECN(指定面的单元属性) 【注】ESYS为坐标系统号、SECN为截面类型号。 4. *ABBR,Abbr,String(定义一个缩略词) 5. ABBRES,Lab,Fname,Ext(从文件中读取缩略词) 6. ABBSAVE,Lab,Fname,Ext(将当前定义的缩略词写入文件) 7. ABS,IR,IA,--,--,Name,--,--,FACTA(取绝对值) 【注】************* 8. ACCAT,NA1,NA2(连接面) 9. ACEL,ACEX,ACEY,ACEZ(定义结构的线性加速度) 10. ACLEAR,NA1,NA2,NINC(清除面单元网格) 11. ADAMS,NMODES,KSTRESS,KSHELL 【注】************* 12. ADAPT, NSOLN, STARGT, TTARGT, FACMN, FACMX, KYKPS, KYMAC 【注】************* 13. ADD,IR, IA, IB, IC, Name, --,-- , FACTA, FACTB, FACTC(变量加运算) 14. ADELE,NA1,NA2,NINC,KSWP(删除面) 【注】KSWP =0删除面但保留面上关键点、1删除面及面上关键点。 15. ADRAG,NL1,NL2,…,NL6,NLP1,NLP2,…,NLP6(将既有线沿一定路径拖拉成面) 16. AESIZE,ANUM,SIZE(指定面上划分单元大小) 17. AFILLT,NA1,NA1,RAD(两面之间生成倒角面) 18. AFSURF,SAREA,TLINE(在既有面单元上生成重叠的表面单元) 19. *AFUN, Lab(指定参数表达式中角度单位) 20. AGEN, ITIME, NA1, NA2, NINC, DX, DY, DZ, KINC, NOELEM, IMOVE(复制面) 21. AGLUE,NA1,NA2,…,NA8,NA9(面间相互粘接) 22. AINA,NA1,NA2,…,NA8,NA9(被选面的交集) 23. AINP,NA1,NA2,…,NA8,NA9(面集两两相交) 24. AINV,NA,NV(面体相交) 25. AL,L1,L2,…,L9,L10(以线定义面) 26. ALIST,NA1,NA2,NINC,Lab(列表显示面的信息) 【注】Lab=HPT时,显示面上硬点信息,默认为空。 27. ALLSEL,LabT,Entity(选择所有实体) 【注】LabT=ALL(指定实体及其所有下层实体)、BELOW(指定实体及其下一层实体); Entity=ALL、VOLU、AREA、LINE、KP、ELEM、NODE。 28. AMESH,NA1,NA2,NINC(划分面生成面单元) AMESH,AREA,KP1,KP2,KP3,KP4(通过点划分面单元) 29. /AN3D,Kywrd,KEY(三维注释) 30. ANCNTR,NFRAM,DELAY,NCYCL(在POST1中生成结构变形梯度线的动画) 31. ANCUT,NFRAM,DELAY,NCYCL,QOFF,KTOP,TOPOFF,NODE1,NODE2,NODE3(在P OST1中生成等势切面云图动画)

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

相关主题
文本预览
相关文档 最新文档