当前位置:文档之家› 土坡稳定分析

土坡稳定分析

土坡稳定分析
土坡稳定分析

第6章 土坡稳定分析

内容提要:本章主要介绍土坡稳定分析常用的几种方法,包括土坡滑动失稳的机理,砂性土土坡及均质粘土土坡的整体稳定分析方法和土坡稳定分析的条分法,并给出了相应的算例。

学习目的:能根据给定的边坡高度、土的性质等设计出合理的边坡断面;能验算拟定的边坡是否安全、合理;能对自然边坡进行稳定性分析与安全评价。

第一节 概 述

土坡可分为天然土坡和人工土坡。天然土坡是指由地质作用形成的山坡和江河湖海的岸坡,人工土坡是指因人类平整场地、开挖基坑、开挖路堑或填筑路堤、土坝形成的边坡,其简单外形和各部名称如图。

图6-1 边坡各部分名称 一、土坡的滑动破坏形式

根据滑动的诱因,可分为推动式滑坡和牵引式滑坡,推动式滑坡是由于坡顶超载或地震等因素导致下滑力大于抗滑力而失稳,牵引式滑坡主要是由于坡脚受到切割导致抗滑力减小而破坏;

根据滑动面形状的不同,滑坡破坏通常有以下两种形式: ⑴滑动面为平面的滑坡,常发生在匀质的和成层的非均质的无粘性土构成的土坡中;

⑵滑动面为近似圆弧面的滑坡,常发生在粘性土坡中。 二、土坡滑动失稳的机理

土坡滑动失稳的原因一般有以下两类情况:

(l )外界力的作用破坏了土体内原来的应力平衡状态。如基坑的开挖,由于地基内自身重力发生变化,又如路堤的填筑、土坡顶面上作用外荷载、土体内水的渗流、地震力的作用等。 (2)土的抗剪强度由于受到外界各种因素的影响而降低,促使土坡失稳破坏。

滑坡的实质是土坡内滑动面上作用的滑动力超过了土的抗剪强度。 土坡的稳定程度通常用安全系数来衡量,它表示土坡在预计的最不利条件下具备的安全保障。土坡的安全系数为滑动面上的抗滑力矩r M 与滑动力矩M 之比值,即M M K r /= (或是抗滑力f T 与滑动力T 之比值.即T T K f /=);或为土体的抗剪强度f τ与土坡最危险滑动面上产生的剪应力τ的比值。即:ττ/f K =,也有用内聚力、内摩擦角、临界高度表示的。对于不同的情况,采用不同的表达方式。土坡稳定分析的可靠程度在很大程度上决定于计算中选用的土的物理力学性质指标(主要是土的抗剪强度指标c 、?及土的重度γ值),选用得当,才能获得符合实际的稳定分析。

本章主要介绍土坡稳定分析常用分析方法的基本原理。

第二节 砂性土土坡的稳定性分析

根据实际观测,由均质砂性土或成层的非均质的砂性土构成的土坡,破坏时的滑动面往往接近于一个平面,因此在分析砂性土的土坡稳定时,为计算简化,一般均假定滑动面是平面,如图6-2所示。

图6-2 砂土土坡稳定分析

已知土坡高为H ,坡角为β,土的重度为γ,土的抗剪强度?στtan =f 。若假定滑动面是通过坡脚A 的平面AC ,AC 的倾角为α,则可计算滑动土体ABC 沿AC 面上滑动的稳定安全系数K 值。

沿土坡长度方向截取单位长度土坡,作为平面应变问题分析。已知滑动土体ABC 的重力为:

ABC S W ??=γ

W 在滑动面AC 上的平均法向分力N 及由此产生的抗滑力f T 为:

αcos W N = ?α?tan cos tan W N T f ==

W 在滑动面AC 上产生的平均下滑力T 为:

αsin W T =

土坡的滑动稳定安全系数K 为:

α

?

α?αtan tan sin tan cos =

=

=

W W T T K f (6-1) 安全系数K 随倾角α的增大而减小,当βα=时滑动稳定安全系数最小,即土坡面上的一层土是最容易滑动的。砂性土土坡的滑动稳定安全系数可取为:

β

?

tan tan =

K (6-2)

当坡角β等于土的内摩擦角?时,即稳定安全系数1=K 时,土坡处于极限平衡状态。因此,砂性土土坡的极限坡角等于土的内摩擦角?,此坡角称为自然休止角。只要坡角?β<(1>K ),土坡就是稳定的。为了保证土坡具有足够的安全储备,工程中一般要求K ≥1.25~1.30。

砂性土土坡的稳定性与坡高无关,与坡体材料的重量无关,仅取决于β和?。

例6-1 一均质砂性土土坡,其饱和重度3

/3.19m kN =γ,内摩擦角?=35?,坡高m H 6=,试求当此土坡的稳定安全系数为1.25时其坡角为多少?

解 由β?tan tan =

K ,得 5602.025

.135tan tan tan =?

==K ?β 解得 ?=26.29β

课堂讨论:砂性土土坡的稳定性与哪些因素有庆

第三节 粘性土土坡的稳定性分析

粘性土坡发生滑坡时,其滑动面形状多为一曲面,在理论分析中,一般将此曲面简化为圆弧面,并按平面问题处理。圆弧滑动面的形式有以下三种:

⑴圆弧滑动面通过坡脚B 点(见图6-2(a)),称为坡脚圆; ⑵圆弧滑动面通过坡面上E 点(见图6-2(b)),称为坡面圆;

⑶圆弧滑动面发生在坡角以外的A 点(见图6-2(c)),且圆心位于坡面中点的垂直线上,称为中点圆。

(a )坡脚圆 (b )坡面圆

(c )中点圆

图6-3 粘土土坡的滑动面形式

土坡稳定分析时采用圆弧滑动面首先由彼德森(K.E.Petterson ,1916)提出,此后费伦纽斯(W.Fellernius,1927)和泰勒(D.W.Taylor,1948)做了研究和改进。他们提出的分析方法可以分为两类:

(1)土坡圆弧滑动按整体稳定分析法,主要适用于均质简单土坡。

(2)用条分法分析土坡稳定,对非均质土坡、土坡外形复杂及土坡部分在水下时均适用。

一、 均质简单粘性土坡的整体稳定分析

1.基本原理

对于均质简单土坡,其圆弧滑动体的稳定分析可采用整体稳定分析法进行。所谓简单土坡是指土坡顶面与底面水平,坡面BC 为一平面的土坡,如图所示。

图6-4 均质粘性土坡滑动面的形式

分析图所示均质简单土坡,若可能的圆弧滑动面为AD ,其圆心为O ,滑动圆弧半径为R 。滑动土体ABCD 的重力为W ,它是促使土坡滑动的滑动力。沿着滑动面AD 上分布的土的抗剪强度f τ将形成抗滑力f T 。将滑动力W 及抗滑力f T 分别对滑动面圆心O 取矩,得滑动力矩s M 及抗滑力矩r M 为:

W a M s =

R L R T M f f r

τ==

式中 W —滑动体ABCDA 的重力(kN );

a —W 对O 点的力臂(m);

f τ—土的抗剪强度,按库仑定律c f +=?στtan (kpa ); L

—滑动圆弧AD 的长度(m ); R —滑动圆弧面的半径(m )。

土坡滑动的稳定安全系数K 可以用抗滑力矩r M 与滑动力矩s M 的比值表示,即

W a

R

L M M K f s r

τ==

(6-3) 由于土的抗剪强度沿滑动面AD 上的分布是不均匀的,因此直接按公式(6-3)计算土坡的稳定安全系数有一定误差。

上述计算中,滑动面AD 是任意假定的,需要试算许多个可能的滑动面,找出最危险的滑动面即相应于最小稳定安全系数min K 的滑动面。min K 必须满足规定的数值。由此可以看出,土坡稳定分析的计算工作量是很大的。因此,费伦纽斯和泰勒对均质的简单土坡做了大量的近似分析计算工作,提出了确定最危险滑动面圆心的经验方法,以及计算土坡稳定安全系数的图表。

2.泰勒确定最危险滑动面圆心的分析方法

泰勒对均质简单土坡稳定问题作了进一步的研究,用图表的形式给出了确定均质简单土坡最危险滑动面圆心位置和稳定因数s N 的方法。泰勒认为圆弧滑动面的三种破坏形式是同土的内摩擦角?值、坡角β以及硬层埋藏深度等因系有关。泰勒经过大量计算分析后提出:

当?>3?时,滑动面为坡脚圆,其最危险滑动面圆心位置可根据?值及β角,从图6-6中曲线查得θ及α值作图求得。

当?=0?,且?>53β时,滑动面也是坡脚圆,其最危险滑动面圆心位置,同样可从图6-6中的曲线查得θ及α值作图求得。

当?=0?,且?<53β时,滑动面可能是中点圆,也有可能是坡脚圆或坡面圆,它取决于硬层的埋藏深度。当土体高度为H ,硬层的埋藏深度为d n H (如图6-6a 所示)。若滑动面为中点圆,则圆心位置在坡面中点M 的铅直线上,且与硬层相切,见图6—6b ,滑动面与土面的交点为A ,A 点距坡脚B 的距离为x n H ,x n 值可根据d n 及β值由图6—6b 查得。若硬层埋藏较浅,则滑动面可能是坡脚圆或坡面圆,其圆心位置需通过试算确定。

当?>3?或?=0?且?>53β时 当

?=0?且?<53β时

图6-6 按泰勒方法确定最危险滑动面圆心位置

二、 粘性土土坡稳定分析的条分法

由于整体分析法对于非均质的土坡或比较复杂的土坡(如土坡形状比较复杂、或土坡上有荷载作用、或土坡中有水渗流时等)均不适用,费伦纽斯

(W.Fellenius.1927) 提出了粘性土土坡稳定分析的条分法。由于此法最先在瑞典使用,又称为瑞典条分法。毕肖普(A.W.Bishop ,1955)对此法进行改进,提高了条分法的计算精度。

1.费伦纽斯条分法 (1)条分法的基本原理

如图6-8所示土坡,取单位长度土坡按平面问题计算。设可能的滑动面是一圆弧AD ,其圆心为O ,半径为R 。将滑动土体ABCDA 分成许多竖向土条,土条宽度一般可取b =0.1R 。

任一土条i 上的作用力包括: 土条的重力W i ,其大小、作用点位置及方向均已知。滑动面ef 上的法向反力N i 及切向反力 T i ,假定 N i ,T i 作用在滑动面ef 的中点,它们的大小均未知。土条两侧的法向力E i ,E i +1及竖向剪切力X i ,X i +1,其中E i 和X i 可由前一个土条的平衡条件求得,而E i +1和X i +1的大小未知,E i +1的作用点位置也未知。

由此看到,土条i 的作用力中有5个未知数,但只能建立3个平衡条件方程,故为非静定问题。为了求得N i ,T i 值,必须对土条两侧作用力的大小和位置作适当假定。费伦纽斯的条分法假设不考虑土条两侧的作用力,也即假设E i 和X i 的合力等于E i +1和X i +1的合力,

图6-8 土坡稳定分析的条分法

同时它们的作用线重合,因此土条两侧的作用力相互抵消。这时土条i仅有作用力W i,N i及T i,根据平衡条件可得:

i

i

i

W

cos

=

i

i

i

W

sin

=

滑动面ef上土的抗剪强度为:

)

tan

cos

(

1

)

tan

(

1

tan

i

i

i

i

i

i

i

i

i

i

i

i

i

i

fi

l c

W

l

l c

N

l

c+

=

+

=

+

=?

α

?

?

σ

τ

式中

i

α—土条i滑动面的法线(亦即半径)与竖直线的夹角,°;

l i—土条i滑动面ef的弧长,m;

i

i

c?—滑动面上土的粘聚力及内摩擦角,kPa, °。

土条i上的作用力对圆心 O 产生的滑动力矩

s

M及抗滑力矩

r

M分别为:

R

W

R

T

M

i

i

i

s

α

sin

=

=

R

l c

W

R

l

Mr

i

i

i

i

i

i

i f

)

tan

cos

(+

=

=?

α

τ

整个土坡相应于滑动面AD时的稳定安全系数为:

=

=

+

=

=

n

i

i

i

n

i

i

i

i

i

i

s

r

W

R

l c

W

R

M

M

K

1

1

sin

)

tan

cos

(

α

?

α

(6-5)对于均质土坡,?

?=

=

i

i

c

c,,则

=

=

+

=

=

n

i

i

i

n

i

i

i

s

r

W

L c

W

M

M

K

1

1

sin

cos

tan

α

α

?

(6-6)

(2)最危险滑动面圆心位置的确定

上述稳定安全系数K是对于某一个假定滑动面求得的,因此需要试算许多个可能的滑动面,相应于最小安全系数的滑动面即为最危险滑动面。也可以费伦纽斯或泰勒提出的确定最危险滑动面圆心位置的经验方法,但当坡形复杂时,一般还是采用电算搜索的方法确定。

2.毕肖普条分法

费伦纽斯的简单条分法假定不考虑土条间的作用力,一般说,这样得到的稳定安全系数是偏小的。在工程实践中,为了改进条分法的计算精度,许多人都认为应该考虑土条间的作用力,以求得比较合理的结果。目前已有许多解决问题的办法,其中以毕肖普提出的简化方法是比较合理适用的。

如图6-8所示,任一土条i 上的作用力有5个未知数,但只能建立3个平衡条件方程,是一个二次静不定问题,毕肖普在求解时补充了两个假设条件:①忽略土条间的竖向剪切力X i 和X i +1作用,②对滑动面上的切向力T i 的大小作了规定。

根据土条i 的竖向平衡条件可得:

0cos sin 1=--+-+i i i i i i i N T X X W αα

忽略土条间的竖向剪切力X i 和X i +1,即X i -X i +1=0,得

0cos sin =--i i i i i N T W αα

即 i i i i i T W N ααsin cos -= (6-7) 若土坡的稳定安全系数为K ,则土条i 上的抗剪强度fi τ也只发挥了一部分,毕肖普假设fi τ与滑动面上的切向力T i 平衡,即

)tan (1

i i i i i i f i l c N K

l T +=

=?τ (6-8) 将式(6-8)代入式(6-7)中,得

i

i i i i

i i i K

K l c W N ??ααsin tan 1

cos sin +-

=

(6-9) 土坡的安全系数K 为:

∑∑==+=

=n i i i n

i i i i i s

r W l c N M M K 1

1

sin )tan (α? (6-10)

将式(6-9)代入式(6-10)得:

∑∑==++=n

i i

i n

i i

i i i

i i i i W K l c W K 1

1

sin sin tan 1cos cos tan αα?αα? (6-11) 上式中令 i i i i K

m α?ααsin tan 1

cos +

= (6-12) 则式(6-11)可简化为: ∑∑==+=

n

i i i n

i i i i i i i

W l c W m K 1

1sin )cos tan (1

αα?α (6-13)

图6-10 i m α值曲线

式(6-13)就是毕肖普法计算土坡稳定安全系数的公式。由于式中i m α也包含K 值,因此须用迭代法求解,先假定一个K 值,按式(6-13)求得i m α值,再代入式(6-12)中求得K 值。若此值与假定值不符,则用此K 值重新计算i m α求得新的K 值,如此反复迭代,直至假定的K 值与求得的K 值相近为止。

将式(6-12)的i m α值制成曲线,按i α及

K

i

?tan 值直接查得i m α值,以方便计算。见图6-10。

最危险滑动面圆心位置的确定方法,仍可按前述经验方法确定。

例6-2 某土坡如图6-9所示,土坡高m H 8=,坡角?=50β,土的重度

3

/1.18m kN =γ,土的内摩擦角?=15?,粘聚力kP a c 2.17=。试用泰勒的经验方法确定最危险滑动面位置并用瑞典条分法验算土坡的稳定安全系数。 解(1)确定最危险滑动面位置

因?=15?>?3、?=50β,根据泰勒的经验方法知土坡的滑动面是坡脚圆,其最危险滑动面的位置,可从图6-7中的曲线得到?=?=3538θα、。

(2)按比例绘出土坡的剖面图。并按?=?=3538θα、作图求得圆心O 。 (3)将滑动土体BCDB 划分成竖直土条。滑动圆弧BD 的水平投影长度为

m ctg Hctg 24.10388=??=α,把滑动土体划分成8个土条,每条宽度1.28m ,从坡角B 开始编号。

(4)计算各土条滑动面中点与圆心的连线同竖直线的夹角i α值。

R

a i

i =

αsin 式中: i a —土条I 的滑动面中点与圆心的水平距离,可从图中量出;

R —圆弧滑动面的半径,可由下式求出:

m H BD R 33.1138sin 35sin 28sin sin 2sin 2=?

??===αθθ

求得的各土条的i α值列于下表中。

(5)从图中量取各土条的中心高度i h ,计算各土条的重力i i i h b W γ=及

、W i i αsin i i W αcos 值,将结果列于表6-2中。

(6)计算滑动面圆弧长度L 。

m R L 84.1333.11180

3521802=???=?=ππθ (7)计算土坡的稳定安全系数K 。

14.147

.31984

.132.179.46515tan sin cos tan 1

1=?+??=

+=

∑∑==n

i i i n i i i W L

c W K αα?

解 土坡的最危险滑动面的位置以及土条的划分情况均按例题6-2确定。 第一次试算假定稳定安全系数K =1.2,计算结果列于表6-3中。

表6-3 土坡稳定分析计算结果

163.147

.31957

.371sin )cos tan (1

1

1==

+=

∑∑==n

i i i n

i i i i i i i

W l c W m K αα?α 第二次试算假定稳定安全系数K =1.16,计算结果列于表6-3中,求得安全系数:

157.147

.31963

.369sin )cos tan (1

1

1==

+=

∑∑==n

i i i n

i i i i i i i

W l c W m K αα?α 计算结果与假定接近,故得土坡的稳定安全系数K =1.16。

本 章 小 结

本章重点掌握砂性土土坡的稳定分析、均质粘性土土坡整体稳定分析与工程实用分析方法——条分法;正确理解土坡失稳的机理和土坡稳定的影响因素。

1.滑坡是一种常见的工程现象和地质灾害现象,发生滑坡将会造成严重的工程事故,故应对土坡的稳定性进行验算,并做出正确的评价。滑坡的实质是土坡内滑动面上作用的滑动力超过了土的抗剪强度。土坡的稳定程度通常用安全系数来衡量,它表示土坡在预计的最不利条件下具备的安全保障。

2.砂性土土坡稳定分析,一般均假定滑动面是平面。砂性土土坡的滑动稳定安全系数可取为:

β

?

tan tan =

K 砂性土土坡的稳定性与坡高无关,与土坡的重量无关,仅取决于β和?。 3.对于均质粘性土土坡,其滑动面一般假定为圆弧面, 土坡滑动的稳定安全系数K 可以用抗滑力矩r M 与滑动力矩s M 的比值表示,即

W a

R

L M M K f s r

τ==

4.对于非均质的土坡或比较复杂的土坡(如土坡形状比较复杂、或土坡上

有荷载作用、或土坡中有水渗流时等),工程上一般用条分法。

(1)费伦纽斯条分法

将滑动土体分成许多竖向土条,假设不考虑土条两侧的作用力,根据静力平衡条件得到整个土坡相应于某一滑动面的稳定安全系数为:

∑∑==+=

=n

i i

i n

i i i i i i s

r W R l c W R M M K 1

1sin )

tan cos (α?α

(2)毕肖普条分法

费伦纽斯的简单条分法假定不考虑土条间的作用力,一般说,这样得到的稳定安全系数是偏小的。为了改进条分法的计算精度,毕肖普提出了比较合理适用的土坡稳定安全系数:

∑∑==+=

n

i i i n

i i i i i i i

W l c W m

K 1

1sin )cos tan (1

αα?α

其中 i i i i K

m α?ααsin tan 1

cos +

= 由于式中i m α也包含K 值,因此须用迭代法求解。 思考题

1.土坡失稳的主要原因有哪些?

2.砂性土土坡和粘性土土坡边坡破坏方式有何不同? 3.费伦纽斯条分法和毕肖普条分法分别做了哪些假定? 4.砂性土边坡其安全系数与坡高无关,而粘性土土坡安全系数与坡高有关,试分析其原因。

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

【精品】第9章边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价. 9。1边坡的变形与破坏类型 9。1.1概述

随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边

坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。

(完整版)土坡稳定性分析

第七章土坡稳定性分析 第一节概述 土坡就是由土体构成、具有倾斜坡面的土体,它 的简单外形如图7-1所示。一般而言,土坡有两种类 型。由自然地质作用所形成的土坡称为天然土坡,如 山坡、江河岸坡等;由人工开挖或回填而形成的土坡 称为人工土(边)坡,如基坑、土坝、路堤等的边坡。 土坡在各种内力和外力的共同作用下,有可能产生剪 图7-1 土坡各部位名称 切破坏和土体的移动。如果靠坡面处剪切破坏的面积 很大,则将产生一部分土体相对于另一部分土体滑动的现象,称为滑坡。土体的滑动一般系指土坡在一定范围内整体地沿某一滑动面向下和向外移动而丧失其稳定性。除设计或施工不当可能导致土坡的失稳外,外界的不利因素影响也触发和加剧了土坡的失稳,一般有以下几种原因: 1.土坡所受的作用力发生变化:例如,由于在土坡顶部堆放材料或建造建筑物而使坡顶受荷。或由于打桩振动,车辆行驶、爆破、地震等引起的振动而改变了土坡原来的平衡状态; 2.土体抗剪强度的降低:例如,土体中含水量或超静水压力的增加; 3.静水压力的作用:例如,雨水或地面水流入土坡中的竖向裂缝,对土坡产生侧向压力,从而促进土坡产生滑动。因此,粘性土坡发生裂缝常常是土坡稳定性的不利因素,也是滑坡的预兆之一。 在土木工程建筑中,如果土坡失去稳定造成塌方,不仅影响工程进度,有时还会危及人的生命安全,造成工程失事和巨大的经济损失。因此,土坡稳定问题在工程设计和施工中应引起足够的重视。 天然的斜坡、填筑的堤坝以及基坑放坡开挖等问题,都要演算斜坡的稳定性,亦既比较可能滑动面上的剪应力与抗剪强度。这种工作称为稳定性分析。土坡稳定性分析是土力学中重要的稳定分析问题。土坡失稳的类型比较复杂,大多是土体的塑性破坏。而土体塑性破坏的分析方法有极限平衡法、极限分析法和有限元法等。在边坡稳定性分析中,极限分析法和有限元法都还不够成熟。因此,目前工程实践中基本上都是采用极限平衡法。极限平衡方法分析的一般步骤是:假定斜坡破坏是沿着土体内某一确定的滑裂面滑动,根据滑裂土体的静力平衡条件和莫尔—库伦强度理论,可以计算出沿该滑裂面滑动的可能性,即土坡稳定安全系数的大小或破坏概率的高低,然后,再系统地选取许多个可能的滑动面,用同样的方法计算其稳定安全系数或破坏概率。稳定安全系数最低或者破坏概率最高的滑动面就是可能性最大的滑动面。 本章主要讨论极限平衡方法在斜坡稳定性分析中的应用,并简要介绍有限元法的概念。 182

土力学习题及答案第十章.

第10章土坡和地基的稳定性 1.简答题 1.土坡稳定有何实际意义?影响土坡稳定的因素有哪些? 2.何为无黏性土坡的自然休止角?无黏性土坡的稳定性与哪些因素有关? 3.简述毕肖普条分法确定安全系数的试算过程? 4.试比较土坡稳定分析瑞典条分法、规范圆弧条分法、毕肖普条分法及杨布条分法的异同? 5.分析土坡稳定性时应如何根据工程情况选取土体抗剪强度指标和稳定安全系数? 6.地基的稳定性包括哪些内容?地基的整体滑动有哪些情况?应如何考虑? 7.土坡稳定分析的条分法原理是什么?如何确定最危险的圆弧滑动面? 8.简述杨布(Janbu)条分法确定安全系数的步骤。 2.填空题 1.黏性土坡稳定安全系数的表达式为。 2.无黏性土坡在自然稳定状态下的极限坡角,称为。 3.瑞典条分法稳定安全系数是指 和之比。 4.黏性土坡的稳定性与土体的、、 、 和等5个参数有密切关系。 5.简化毕肖普公式只考虑了土条间的作用力而忽略了作用力。 3.选择题 1.无粘性土坡的稳定性,()。 A.与坡高无关,与坡脚无关 B.与坡高无关,与坡脚有关 C.与坡高有关,与坡脚有关 D.与坡高有关,与坡脚无关 2.无黏性土坡的稳定性()。 A.与密实度无关 B.与坡高无关 C.与土的内摩擦角无关 D.与坡角无关 3.某无黏性土坡坡角β=24°,内摩擦角φ=36°,则稳定安全系数为( ) A.K=1.46 B. K=1.50 C.K=1.63 D. K=1.70 4. 在地基稳定性分析中,如果采用分析法,这时土的抗剪强度指标应该采用下列哪 种方法测定?() A.三轴固结不排水试验 B.直剪试验慢剪 C.现场十字板试验 D.标准贯入试验 5. 瑞典条分法在分析时忽略了()。 A.土条间的作用力 B.土条间的法向作用力 C.土条间的切向作用力

土坡稳定分析的几个问题讨论

土坡稳定分析的几个问题讨论 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道。 土坡稳定分析是土木工程领域的热门研究课题之一,在岩土工程工程中占据相当重要的地位。土坡稳定性分析包括无粘性土坡的稳定分析、粘性土坡的稳定分析。目前,工程中常用的方法有圆弧法、瑞典条分法、毕肖甫法、普遍条分法。随着数值分析方法在工程领域应用的成熟,人们常用有限元法进行坡体稳定分析,另外,还有些学者尝试采用其他数学方法进行坡体稳定分析。 本文仅针对常用的分析方法中几个所要注意的问题,阐明浅显的看法。 1、无粘性土坡稳定分析 无粘性土坡的稳定分析,主要考虑两种情况下即全干或全淹没情况、有渗透情况下的稳定分析方法。这要求分析坡面有顺坡渗流作用下与全干或全淹没情况土坡稳定安全系数及系数之间相互的关系。 2、粘性土坡的稳定分析 粘性土坡的稳定分析,主要采用整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法。主要采用圆弧法进行土坡稳定分析及在几种特殊条件下土坡稳定分析。 以下仅对土坡稳定分析过程中需要比较和取值的问题做简单介绍: 1、关于挖方边坡和天然边坡 天然存在的土坡是在天然地层中形成的,与人工填筑土坡相比有独特之处。对均质挖方土坡和天然土坡稳定性分析,与人工填筑土坡相比,求得的安全系数比较符合实测结果,但对于超固结裂隙粘土,计算的安全系数虽远大于1,表面上看来已稳定,实际上都已破坏,这是由超固结粘土的特性决定的。随着剪切变形的增加,抗剪力增大到峰值强度,随后降至残余值,特别是粘聚力下降较大,甚至接近于零,这些特性对土坡稳定性有很大影响。 2、关于圆弧滑动法 在工程设计中常假定土坡滑动面为圆弧面,建立这一假定的稳定分析方法,称为圆弧滑动法。圆弧法的基本假设是均质粘性土坡滑动时,其滑动面常近似为圆弧形状,假定滑动面以上的土体为刚性体,即设计中不考虑滑动土体内部的相互作用力,假定土坡稳定属于平面应变问题。它是极限平衡法的一种常用分

土坡稳定性计算

土坡稳定性计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 基本参数: 放坡参数: 序号 放坡高度L(m) 放坡宽度W(m) 平台宽度B(m) 1 3.5 2.25 0.75 2 4 3 1.5 荷载参数: 土层参数:

1 填土 3.5 19.8 7.4 20.4 8 20 2 粘性土 3.5 20 16. 3 45.8 21 23 3 粘性土 3.6 20.3 17. 4 64.1 23 23 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.35的要求。 圆弧滑动法示意图 三、计算公式: K sj=∑{c i l i+[ΔG i b i+qb i]co sθi tanφi}/∑[ΔG i b i+qb i]sinθi 式子中: K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值;

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

潘正风《数字测图原理与方法》(第3版)章节题库(土坡和地基的稳定性)【圣才出品】

第十章土坡和地基的稳定性 一、名词解释 1.土坡 答:土坡是指具有倾斜坡面的土体。通常可分为天然土坡(由于地质作用自然形成的土坡,如山坡、江河岸坡等)和人工土坡(经人工挖、填的土工建筑物边坡,如基坑、渠道、土坝、路堤等)。当土坡的顶面和底面都是水平的,并延伸至无穷远,且由均质土组成时,则称为简单土坡。 2.滑坡 答:滑坡是指土坡上的部分岩体或土体在自然或人为因素的影响下沿某一明显界面发生剪切破坏向坡下运动的现象,又称边坡破坏。影响土坡滑动的因素复杂多变,但其根本原因在于土体内部某个滑动面上的剪应力达到了它的抗剪强度,使稳定平衡遭到破坏。 二、判断题 1.粘性土土坡稳定性分析的毕肖普法中,是假设土条两侧的作用力合力大小相等、方向相反、且其作用线重合。()[成都理工大学2011、2015年] 【答案】正确 【解析】毕肖普条分法的假设的基本条件是忽略条间切向力,土条两侧的作用力合力大小相等,方向相反,作用线重合。

2.渗流产生的渗透力可以改变滑动土体的有效应力()。[成都理工大学2010年] 【答案】正确 【解析】渗流产生的渗透力可以改变滑动土体的有效应力,当渗流向下进行时,要在原来应力基础上加上动水压力,当渗流向上进行时,要在原来应力基础上减去动水压力。 3.对于均质无黏性土坡,理论上土坡的稳定性与坡高无关。() 【答案】正确 【解析】对于均质无黏性土坡,理论上土坡的稳定性与坡高无关,只要坡角小于土的内摩擦角(β<φ),K>1,土体就是稳定的。当坡角与土的内摩擦角相等(β=φ)时,稳定安全系数K=1,此时抗滑力等于滑动力,土坡处于极限平衡状态,相应的坡角就等于无黏性土的内摩擦角。 4.粘性土土坡稳定分析的Bishop法,是假设土条两侧的作用力合力大小相等、方向相反,且其作用线重合()。 【答案】错误 【解析】毕肖普法假定各土条底部滑动面上的抗滑安全系数均相同,即等于整个滑动面的平均安全系数,取单位长度土坡按平面问题计算。作用在该土条上的力有:①土条自重 G i=γb i h i,其中b i、h i分别为该土条的宽度与平均高度; ②作用于土条底面的抗剪力T f i、有效法向反力N′i及孔隙水压力u i l i,其中u i、l i分别为该土条底面中点处孔隙水压力和滑弧长度; ③作用于该土条两侧的法向力E i和E i+1及切向力X i和X i+1,ΔX i=(X i+1-X i)。但是土

第七章 土坡稳定分析

第七章 土坡稳定分析 第一节 概述 土坡就是具有倾斜坡面的土体(图7-l )。由自然地质作用所形成的土坡称为天然土坡。由人工开挖或回填而形成的土坡则称为人工土坡。土体重量以及渗透力等在坡体内引起剪应力,如果剪应力大于土的抗剪强度,就要产生剪切破坏。如果靠坡面处剪切破坏的面积很大,则将产生一部分土体相对于另一部分土体滑动的现象,这一现象称为滑坡。 滑坡可分为半无限长滑坡和有限长滑坡。半无限长滑坡是指滑动坡面的长度比滑坡深度大很多,成大平板形状的滑动(图7-2a ),而有限长滑坡是指滑动面的长度与滑坡深度的尺度相当(图7-2b )。粗粒土中的滑坡,一般为深度较浅而形状接近于平面或者由两个以上平面组成的折线形滑动面。粘性土中的滑坡深入坡体内,均质粘性土坡滑动面的形状为对数螺线曲面,在计算中通常以圆弧面代替(图7-3)。 土石坝是常见的大型人工土坡,它是近代坝工建筑中广泛应用的一种坝型。目前土石坝的坝高已达到300m 以上。 高土石坝的土石方量巨大,因此选择安全可靠而又经济合理的断面就是一个十分重要的问题。一座高100m 的土坝(图7-6),如果上、下游坝坡能从1:2.5减小到1:2.0,每一延米断面可节省土方量5000m 3。一公里坝长就可节省土方500万rn 3,这是一个巨大的工程量。然而能否节省取决于边坡是否能保持稳定。因此,土坝边坡稳定分析是土石坝设计中的一项重要的内容。 在边坡稳定分析中,目前工程实践中基本上都是采用极限平衡法。极限平衡法的一般步骤是先假定破坏是沿土体内某一确定的滑动面滑动,根据滑裂土体的静力平衡条件和摩尔-库伦破坏准则计算沿该滑裂面滑动的可能性,即安全系数的大小,然后系统地选取多个可能的滑动面,用同样方法计算稳定安全系数或破坏概率。安全系数最低或破坏概率最高的滑动面就是可能性最大的滑动面。 第二节 无粘性土坡的稳定分析 一、均质干坡和水下坡 均质干坡和水下坡指由一种土组成、完全在水位以上或完全在水位以下,没有渗透水流作用的无粘性土坡。这两种情况只要坡面上的土颗粒在重力作用下能够保持稳定,整个土坡就处于稳定状态。 从砂堆坡面上取一小块土体来分析它的稳定条件图(7-7a )。设小土体的重量为W ,W 沿坡面的滑动力αsin W T =。垂直于坡面的正压力αcos W N =,正压力产生摩擦阻力,阻抗土体下滑,称抗滑力,其值为φαφtg W Ntg R ?==cos (库伦定理)。定义土体的稳定安全系数F s 为: 1)-(7 sin cos tga tg a W tg a W T R F s φφ=?===滑动力抗滑力 式中,φ—土的内摩擦角(0); α—土的坡度角(0) 式(7-1)与土坡的高度无关,因此安全系数F s 代表整个边坡的安全度。 当Fs=1时,α=φ,α称为天然休止角,其值等于砂在松散状态时的内摩擦角。如是经过压密后的无粘性土,内摩擦角增大,稳定坡角也随之增大。 二、有渗透水流的均质土坡 挡水土堤内形成渗流场,如果浸润线在下游坡面逸出,这时在浸润线以下,下游坡内的土体除受重力作用外,还受渗透力的作用,因而会降低下游边坡的稳定性。先分析浸润线逸出点以下部分边坡的稳定性(图7-8)。如果水流的方向与水平面成夹角θ,则沿水流方向的渗透力i j w γ=。在坡面上取土体V 中的土骨架为隔离体,其有效重量为V 'γ。分析这块土骨架的稳定性,作用在土骨架上的总渗透力为iV jV J w γ==。沿坡内的全部滑动力,包括重力和渗透力,为 )cos(sin θαγαγ-+'=iV V T w 坡面的正压力为

恒智天成安全计算软件土坡稳定性计算

土坡稳定性计算计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:50; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000 基坑内侧水位到坑顶的距离(m):6.000

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式: 式子中: F s --土坡稳定安全系数; c --土层的粘聚力; l i--第i条土条的圆弧长度; γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角;

φ --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; h1i――第i条土水位以上的高度; h2i――第i条土水位以下的高度; γ' ――第i条土的平均重度的浮重度; q――第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs: 第1步:安全系数=1.417,标高=-2.000,圆心X=0.962米,圆心Y=1.344米,半径R=3.344米示意图如下:

土坡稳定性分析方法综述_寇海磊

Value Engineering 0引言 土坡稳定性一般用土坡稳定性安全系数来表示。计算土坡稳定性安全系数的方法通常有二种:一是对构成土体的土条进行受力分析。但是此土条受力分析法存在静不定问题。为解决此问题,往往将土条所受的某些应力当零处理。因此,由此法计算的土坡稳定性系数必然存在误差比较大的问题;二对土坡圆弧滑动体进行整体稳定性分析,但假定的土坡圆弧滑动面与实际的滑动面不相符。其计算结果精度差.目前在工程实际应用中,都是应用土体在某一确定强度条件下,假定土体是理想塑性材料,把土条作为一个刚体,按极限平衡的原则进行受力分析,不考虑土体本身的应力一应变关系,建立坡体稳定分析方法,求得土坡稳定的安全系数来进行评价。土坡稳定性计算的方法主要有:瑞典条分法,简化毕肖普法,Morgenstern&Price法,陈祖煜法,Sarma法,Janbu法。 1瑞典条分法 瑞典圆弧滑动面条分法,是将假定滑动面以上的土体分成n个垂直土条,对作用于各土条上的力进行力和力矩平衡分析,求出在极限平衡状态下土体稳定的安全系数。该法由于忽略土条之间的相互作用力的影响,因此是条分法中最简单的一种方法。 2简化毕肖普法 毕肖普法提出的土坡稳定系数的含义是整个滑动面上土的抗剪强度与实际产生剪应力的比,并考虑了各土条侧面间存在着作用力根据静力平衡条件和极限平衡状态时各土条力对滑动圆心的力矩之和为零等,可得毕肖普法求土坡稳定系数的普遍公式。毕肖普法提出的土坡稳定系数的含义是整个滑动面上土的抗剪强度τf与实际产生剪应力τ的比,并考虑了各土条侧面间存在着作用力,假设土条二侧力相等方向相反。把有效应力原理引进斜坡分析,还将安全系数定义为沿整个滑裂面的抗剪强度与实际产生的剪应力的比值.这比原先由全部抗滑力矩与滑动力矩之比定义的安全系教原理,适应性广。 3Morgenstern&Price法 工程中很多土坡的外形复杂并不是简单土坡,土坡的土质不均匀,坡顶和坡面作用有荷载,因而滑动面不一定为圆弧形,这给选择滑动面上的抗剪强度和计算滑动或抗滑力矩带来困难,解决的方法是将滑坡体分成一系列铅直薄土条。对任意曲线形状的滑裂面进行分析,导出满足力的平衡及力矩平衡条件的微分方程式,然后假定两相邻土条法向条间力和切向条间力之间存在对水平方向坐标的函数关系,从而根据整个滑动面土体的边界条件求出问题的解答。 4陈祖煜法 陈祖煜法也是普遍条分法的一种。它是在Morgenstern法的基础上对Morgenstern法做了改进,使之更加结合工程实际,考虑了地震力、坡面载荷等因素,从土条的静力平衡得到的微分方程出发,结合相应的边界条件,推导出带有普遍意义的极限平衡方程式。 5Sarma法 Sarma是对土条侧向力的大小分布做出假定。萨尔玛法(Sarma)假想在每一土条重心作用着一个水平地震惯性力,由于它的作用,使滑裂面恰好达到极限状态,也就是使滑裂面上的稳定安全系数F=1,此时水平地震加速度K称为临界地震加速度,以K表示.K作为判断土坡稳定程度的一个标准,同时,萨尔玛推导出切向条间力X的分布,从而使超静定问题变成静定的。 6Janbu法 Janbu法是对土条的侧向力的作用位置作出假定的。Janbu通过假设滑体推力线位置并考虑微分条块的力矩平衡,巧妙地推导出条块水平推力与竖向剪力的关系,再根据条块的力平衡条件导出安全系数迭代求解格式。Janbu普遍条分法因其严格简明而很快在国际岩土工程界广泛应用。但是,大量工程应用表明,Janbu普遍条分法存在着严重的不收敛问题,特别是条块划分过密如100块以上,简单均质边坡的安全系数计算收敛性都难以得到保证。 7应用中常出现的问题 在土坡稳定性分析方法的应用中应注意的问题主要有滑裂面的形状问题,强度指标选择问题和考虑条间力的影响问题。一般来说,土坡滑动时其滑裂面都是非圆弧的,但对于匀质的黏性土坡,真正的临界剪切面与圆柱面相差不大,而且在临界剪切面附近,稳定安全系数的变化也不太灵敏,所以采用圆弧滑动分析仍可得到满意的结果。土体强度指标测定与选用值的精确与否,对土坡的稳定验算关系甚大。在测定土的强度时,应该使试验室的模拟条件尽量符合实际受力情况,使试验指标具有一定的代表性,否则验算结果就可能与实际情况有较大的出入。各类条分法(除瑞典法外)都不同程度的考虑了相邻土条条间力的影响。一般来说,这些影响考虑的愈多,求得的安全系数也愈高。但这绝不是无限制的,特别对于滑裂面是平面、圆柱面或一些简单的光滑曲面,滑动土体下滑时,土体内相邻土条并不会产生很大的相对变形,因此其抗剪阻力不可能达到或接近极限,此时求出的土条分界面上的抗剪安全系数应远大于1。 8结论 在土建工程中经常会遇到土坡稳定性问题,如果处理不当,土坡失稳产生滑动,不仅影响工程进展,甚至危及人的生命安全和造成工程事故。因此,研究土坡的稳定性有重要的实际意义。土坡稳定分析是一个比较复杂的问题,本文主要从理论上对简单土坡进行了稳定分析,并且,这种建立在极限平衡理论基础上的条分法,由于方法本身没有考虑到土体内部的应力一应变关系,所求出的安全系数只是所假定的滑裂面上的安全系数,所求出的土条之间内力或土条底部反力并不是滑动土体真实存在的力。 参考文献: [1]郑颖人,王恭先等.边坡与滑坡工程治理[M].北京:人民交通出版社,2007. [2]龚晓南.土力学.北京:中国建筑工业出版社,2002. [3]卢廷浩,刘祖德等.高等土力学.北京:机械工业出版社,2006. [4]彭德红,浅谈边坡稳定性分析方法[J].上海地质,2005,(3):44-47. 土坡稳定性分析方法综述 Overview of Analysis Methods of Slopes Stability 寇海磊Kou Hailei (青岛理工大学,青岛266033) (Qingdao Technological University,Qingdao266033,China) 摘要:计算土坡稳定性安全系数的方法通常有二种:一是对构成土体的土条进行受力分析;二是对土坡圆弧滑动体进行整体稳定性分析。但这两种方法均存在不足之处。本文综述了各种土坡稳定性分析方法并做出比较,并给出了工程应用中应注意的问题。 Abstract:There are two methods calculating safety coefficient of slopes stability:one is to analyze soil mechanics on soil slices;the other is to analyze stability of the whole body on slope circular sliding.But both of these methods exist deficiencies.This article summarizes the analysis methods of slopes stability and makes comparisons.And also the problems that should be paid attention to in the application of engineering are presented. 关键词:滑裂面;基本条分法;瑞典条分法 Key words:sliding plane;basic slice method;Sweden slice method 中图分类号:TU4文献标识码:A文章编号:1006-4311(2010)13-0083-01 —— —— —— —— —— —— —— —— —— —— —— — 作者简介:寇海磊(1984-),男,山东寿光人,硕士研究生,研究方向为地基处 理与桩基。 ·83·

《土力学》第十章习题集及详细解答讲课稿

《土力学》第十章习题集及详细解答 第10章土坡和地基的稳定性 1.填空题 1.黏性土坡稳定安全系数的表达式为。 2.无黏性土坡在自然稳定状态下的极限坡角,称为。 3.瑞典条分法稳定安全系数是指 和之比。 4.黏性土坡的稳定性与土体的、、 、 和等5个参数有密切关系。 5.简化毕肖普公式只考虑了土条间的作用力而忽略了作用力。 2.选择题 1.无粘性土坡的稳定性,( B )。 A.与坡高无关,与坡脚无关 B.与坡高无关,与坡脚有关 C.与坡高有关,与坡脚有关 D.与坡高有关,与坡脚无关 2.无黏性土坡的稳定性( B )。 A.与密实度无关 B.与坡高无关 C.与土的内摩擦角无关 D.与坡角无关 3.某无黏性土坡坡角β=24°,内摩擦角φ=36°,则稳定安全系数为( C ) A.K=1.46 B. K=1.50 C.K=1.63 D. K=1.70 4. 在地基稳定性分析中,如果采用分析法,这时土的抗剪强度指标应该采用下列哪 种方法测定?( C ) A.三轴固结不排水试验 B.直剪试验慢剪 C.现场十字板试验 D.标准贯入试验 5. 瑞典条分法在分析时忽略了( A )。 A.土条间的作用力 B.土条间的法向作用力 C.土条间的切向作用力 6.简化毕肖普公式忽略了( C )。 A.土条间的作用力 B.土条间的法向作用力 C.土条间的切向作用力 3判断改错题

1. ,只有黏性土坡的稳定性才与坡高无关。 2. ,只有最小安全系数所对应的滑动面才是最危险的滑动面。 3. ,只适用于均质土坡。 4. √ 5. ,毕肖普条分法也适用于总应力法 1.黏性土坡的稳定性与坡高无关。 2.用条分法分析黏性土的稳定性时,需假定几个可能的滑动面,这些滑动面均是最危险的滑动面。 3.稳定数法适用于非均质土坡。 4.毕肖普条分法的计算精度高于瑞典条分法。 5.毕肖普条分法只适用于有效应力法。 4.简答题 1.土坡稳定有何实际意义?影响土坡稳定的因素有哪些? 2.何为无黏性土坡的自然休止角?无黏性土坡的稳定性与哪些因素有关? 3.简述毕肖普条分法确定安全系数的试算过程? 4.试比较土坡稳定分析瑞典条分法、规范圆弧条分法、毕肖普条分法及杨布条分法的异同? 5.分析土坡稳定性时应如何根据工程情况选取土体抗剪强度指标和稳定安全系数? 6.地基的稳定性包括哪些内容?地基的整体滑动有哪些情况?应如何考虑? 7.土坡稳定分析的条分法原理是什么?如何确定最危险的圆弧滑动面? 8.简述杨布(Janbu)条分法确定安全系数的步骤。 5.计算题 1.一简单土坡,。(1)如坡角,安全系数K= 1.5,试用稳定数法确定最大稳定坡高;(2)如坡高,安全系数仍为1.5,试确定最大稳定坡角;(3)如坡高,坡角,试确定稳定安全系数K。 2. 某砂土场地经试验测得砂土的自然休止角,若取稳定安全系数K=1.2,问开挖基坑时土坡坡角应为多少?若取,则K又为多少? 3. 某地基土的天然重度,内摩擦角,黏聚力,当采取坡度1∶1开挖坑基时,其最大开挖深度可为多少? 4. 已知某挖方土坡,土的物理力学指标为=18.9,若取安全系数,试问: (1)将坡角做成时边坡的最大高度; (2)若挖方的开挖高度为6m ,坡角最大能做成多大?

边坡稳定性分析

浅谈土坡稳定性分析方法 摘要:土坝、路堤、河岸、挖坡以及山坡有可能因稳定性问题而产生滑坡。大片土体从上面滑下堆积于坡脚前。滑动也可能影响到深层,上部土体大幅度下滑而坡脚向上隆起,向外挤出,整个滑动体呈转动状。滑坡将危及到滑坡体及其附近人的生命和财产的安全。目前,边坡失稳的防治仍然是一项很艰巨的任务,对边坡的稳定性分析及处治技术进行深入研究具有重要的意义。本文通过对土坡失稳原因分析,对目前常用的边坡稳定分析方法进行总结,以供学习和参考。 关键字:土坡;稳定性;方法 0 前言 边坡一般是指具有倾斜坡面的土体或岩体,由于坡表面倾斜,在坡体本身重力及其他外力作用下,整个坡体有从高处向低处滑动的趋势,同时,由于坡体土(岩)自身具有一定的强度和人为的工程措施,它会产生阻止坡体下滑的抵抗力。一般来说,如果边坡土(岩)体内部某一个面上的滑动力超过了土(岩)体抵抗滑动的能力,边坡将产生滑动,即失去稳定;如果滑动力小于抵抗力,则认为边坡是稳定的。土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本文主要介绍目前常用的土坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 1 土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。

产生滑动的内部因素主要有:(1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。(2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。(3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 促使滑动的外部因素主要有:(1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结构破坏,从而降低土的抗剪强度;施工打桩或爆破,由于振动也可使邻近土坡变形或失稳等。(3)人为影响:由于人类不合理地开挖,特别是开挖坡脚;或开挖基坑、沟渠、道路边坡时将弃土堆在坡顶附近;在斜坡上建房或堆放重物时,都可引起斜坡变形破坏。 3 土坡稳定性分析 3.1无粘性土坡稳定性分析 干的无粘性土坡:处于不渗水的砂、砾、卵石组成的无粘性土坡,只要坡面上颗粒能保持稳定,那么整个土坡便是稳定的。有均质无粘性土坡,坡角为β,自坡面上取一单元土体,其重量为W,由W引起的顺坡向下的滑力为T=Wsin β,对下滑单元体的阻力为:

土坡稳定性计算计算书

土坡稳定性计算计算书 品茗软件大厦工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:某某施工单位。 本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:14; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000; 基坑内侧水位到坑顶的距离(m):6.000; 放坡参数:

序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 1 2.00 3.00 1.00 0.00 2 3.00 4.00 1.00 0.00 荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m) 1 满布 10.00 0.00 0.00 土层参数: 序号土名称土厚度(m) 坑壁土的重度γ(kN/m3) 坑壁土的内摩擦角φ(°) 内聚力C(kPa) 饱容重(kN/m3) 1 填土 7.00 18.00 20.00 10.00 22.00 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

《土力学》第十章习题及答案

《土力学》第十章习题及答案 第10章土坡和地基的稳定性 一、填空题 1.无粘性土坡的稳定性仅取决于土坡,其值越小,土坡的稳定性越。 2.无粘性土坡进行稳定分析时,常假设滑动面为面,粘性土坡进行稳定分析时,常假设滑动面为面。 3.无粘性土坡的坡角越大,其稳定安全系数数值越,土的内摩擦角越大,其稳定安全系数数值越。 4.当土坡坡顶开裂时,在雨季会造成抗滑力矩,当土坡中有水渗流时,土坡稳定安全系数数值。 二、名词解释 1.自然休止角 2.简单土坡 三、简答题 1.举例说明影响土坡稳定的因素有哪些? 2.位于稳定土坡坡顶上的建筑物,如何确定基础底面外边缘线至坡顶边缘线的水平距离? 四、单项选择题 1.某粘性土的内摩擦角?=5?,坡角β与稳定因数(N s=γh cr/c)的关系如下: β (?) 50 40 3020 N s7.0 7.9 9.2 11.7 当现场土坡高度H=3.9m,内聚力C=10kPa,土的重度γ=20kN/m3,安全系数K=1.5,土坡稳定坡角β为: (A)20? (B)30? (C)40? (D)50? 您的选项() 2.土坡高度为8 m,土的内摩擦角?=10?( N s=9.2),C=25kPa,γ=18kN/m3的土坡,其稳定安全系数为: (A)0.7 (B) 1.4 (C) 1.5 (D) 1.6 您的选项() 3.分析砂性土坡稳定时,假定滑动面为: (A)斜平面 (B)中点圆 (C)坡面圆 (D)坡脚圆 您的选项() 4.若某砂土坡坡角为200,土的内摩擦角为300,该土坡的稳定安全系数为: (A) 1.59 (B) 1.50

(C) 1.20 (D) 1.48 您的选项() 5.分析均质无粘性土坡稳定时,稳定安全系数K为: (A)K=抗滑力/滑动力 (B)K=滑动力/抗滑力 (C)K=抗滑力距/滑动力距 (D)K=滑动力距/抗滑力距 您的选项() 6.分析粘性土坡稳定时,假定滑动面为: (A)斜平面 (B)水平面 (C)圆弧面 (D)曲面 您的选项() 7. 由下列哪一种土构成的土坡进行稳定分析时需要采用条分法: (A)细砂土 (B)粗砂土 (C)碎石土 (D)粘性土 您的选项() 8.影响无粘性土坡稳定性的主要因素为: (A)土坡高度 (B)土坡坡角 (C)土的重度 (D)土的粘聚力 您的选项() 9.下列因素中,导致土坡失稳的因素是: (A)坡脚挖方 (B)动水力减小 (C)土的含水量降低 (D)土体抗剪强度提高 您的选项() 10.地基的稳定性可采用圆弧滑动面法进行验算,规范GB50007规定: (A)M R / M S≥1.5 (B)M R / M S≤1.5 (C)M R / M S≥1.2 (D)M R / M S≤1.2 您的选项() 第10章土坡和地基的稳定性 一、填空题 1.坡角、稳定 2.斜平、圆筒 3. 小、大 4.减小、减小

《岩体力学》第九章边坡岩体稳定性

第九章边坡岩体稳定性 斜坡:倾斜的地面,是天然斜坡和人工边坡的总称。 边坡的分类: 自然边坡:天然的山坡和谷坡(地壳隆起或下降引起) 人工边坡:人工开挖、改造形成如采矿边坡、铁路公路路堑与路堤边 土质边坡 岩质边坡 本章主要讨论人工开挖的岩质边坡的稳定性。 岩质边坡稳定性分析方法: 1) 数学力学分析法(包括块体极限平衡法、弹性力学法和弹塑性力学分析法及有限 元法等) 2) 模型模拟试验法(相似材料模型试验、光弹试验法和离心模型试验) 3) 原位观测法 此外,还有破坏概率法、信息论方法及风险决策法等。 「、 稳定性系数 稳定性计算* 核心内容: 安全性系数(安全系数) 第一节 边坡岩体中的应力分布特征 一、应力分布特征 假定岩体为连续、均质、各向同性的介质,且不考虑时间效应的情况下 (1 )边坡面附近的主应力迹线明显偏转, 与坡面趋于平行,二3与坡面趋于正交, 而向坡体内逐渐恢复初始应力状态; (2 )坡面附近出现应力集中现象; (3) 坡面处的径向应力为零,故坡面岩体仅处于双向应力状态,向坡内逐渐转为三 向应力状态; (4) 因主应力偏转,坡体内的最大剪应力迹线由直线变为凹向坡面的弧线。 、影响边坡应力分布的因素 (1 )天然应力:h f,坡体内拉应力范围加大。 (2) 坡形、坡高、坡角及坡底宽度等,对边坡应力分布有一定的影响; 坡高f, 「、二3也大; 按成因分丿 按岩性分丿 坡等 Ko =K 允

坡角f,拉应力范围f,坡脚剪应力f。 (3)岩体性质及结构特征 变形模量E对边坡影响不大,□对边坡应力影响明显。 第二节边坡岩体的变形与破坏 一、边坡岩体变形破坏的基本类型 1?边坡变形的基本类型 根据其形成机理分为两种类型:卸荷回弹和蠕变变形。 2.边坡破坏的基本模型 四类,见教材P l77 1平面滑动:单平面滑动,双平面滑动,多平面滑动丄 2楔形状滑动剪切破坏以滑坡形式「3 )圆弧形滑动' (4 )倾倒破坏(以崩塌形成) 拉断破坏(以崩塌形式) 实际上,就是两种:滑坡和崩塌。 二、影响岩体边坡变形破坏的因素 1?岩性:岩体越坚硬,边坡不易破坏,反之,容易破坏(一般情况) 。 2.岩体结构:岩体结构控制着边坡的破坏形式及稳定程度。 3.水的作用:水的渗入,滑动力f;软化作用;产生动水压力和静水压力,不利于 边坡稳定。 4.风化作用:风化作用降彳氐f。 5.地形地貌:影响坡内的应力分布特征T影响边坡的变形破坏形成及稳定性。 6.地震:加速边坡破坏。 7.天然应力:、一h影响边坡拉应力及剪应力分布范围及大小。 8?人为因素:不合理设计、爆破、开挖或加载等等。

相关主题
文本预览
相关文档 最新文档