当前位置:文档之家› 冷却塔的正规计算

冷却塔的正规计算

冷却塔的正规计算
冷却塔的正规计算

NH-5000m 3/h 热工及阻力计算书

总循环水量:20000m 3/h

1. 单塔循环水量: NH-5000m 3/h 钢混框架机械通风玻璃钢冷却塔4台

2.热力性能计算

根据用户冷却塔的实际使用需要,采用方型逆流式钢筋混凝土玻璃钢围护结构冷却塔,现对冷却塔进行热力计算和设计,确定冷却塔各主要参数。此计算方法参照GB7190.2-1997《玻璃钢纤维增强塑料冷却塔》国家标准规定,用焓差法进行计算,积分计算采用辛普逊n 段近似积分计算公式。 2.1设计参数

根据贵公司冷却塔提供的气象参数作为计算设计参数,其各气象参数如下: 干球温度:θ1=31.5℃ 湿球温度:τ=28℃ 大气压力:P 0=101.1kpa

已知单塔冷却水量为5000m 3/h ,根据工艺要求进塔水温为41℃,出塔水温为32℃,即水温差为9℃,属中温型冷却塔 2.2计算公式

进塔空气相对湿度:

()

"

1

10"

θττθP AP P --=

Φ (1)

其中P θ1"和P τ"分别为对应于θ1和τ时饱和空气的水蒸气分压。 A 为不同干湿球温度计的系数,对通风式阿斯曼干湿球温度计

A=0.000622

饱和空气的水蒸气分压在0℃~100℃时按式(2)计算:

142305.30057173.2lg "

-=p ??? ??+???

? ??-T T 16.373lg 2.816.2731010330024804

.0-()T -16.373 (2)

式中P "—饱和空气的蒸气分压,kpa ;

T —绝对温度,T=273.16+t K 。 P 0—大气压, kpa 进塔干空气密度ρ1

()

(

)1

3

"

1

27314.287101θρθ+?Φ-=

P P (3)

气水比λ

Q

G

1ρλ=

(4)

进塔空气焓1i

()

"

1

0"

1

111858.12500622.0006.1θθθθP P P i Φ-Φ++= (5)

出塔空气焓2i

λ

K t

C i i W ?+

=12 ……………………………………………(6) ()

2056.0586122

---

=t t K

21t t t -=?

水的比热 ./187.4kg kJ C W =℃ 塔内空气的平均焓m i 2

2

1i i i m +=

………………………………(7) 温度为t 时饱和空气焓"i ()

"

0"

"

858.12500622.0006.1t

t

P P P t t i -++= (8)

逆流式冷却塔热力计算基本公式 ?-=?=

Ω12"t t w xv i i dt C Q

V

k β …………………………… (9) 式中:Ω——交换数

βxv ——容积散质系数,kg/(m 3·h ) V ——淋水填料体积

式(9)的积分可采用辛普逊n 段近似积分公式

????

???+?++?+?+?+??=-=Ω-?

n n w t w t t i i i i i i n t C i i d C 144241313210

"1

2

(10)

由水温差?t<15,常取n=2,可达到足够的精度,则式(10)变为:

???

?

??-+-+-?=-=Ω?

2"

1"1"2"14161

2

i i i i i i t C i i d C m m w t w t t ……………………(11) 2.3NH-5000m 3/h 热力性能计算结果 式(2)得 P θ1"=4.6194 P τ"=3.7773 由式(1)得 Φ=0.6127 由式(3)得 ρ1=0.9991 由t 2=32℃得 k=0.9447

进塔空气焓由式(5)得 i 1=89.4858kJ/kg

温度为进水温度 t 1=41℃ 时的饱和空气焓由式(8)得 i 1"=174.748J/kg 温度为出水温度 t 2=32℃ 时的饱和空气焓 i 2"=110.714kJ/kg 平均饱和空气焓 i m "=139.336kJ/kg 气水比λ=0.753 风量G=3300km 3/h

由式(10)得冷却塔 Ω=1.5258 满足设计条件下所需容积散质系数 由式

Ω=?Q

V

k XV β βxv =16974kg/(m 3·h ) 填料特性

电算结果说明以上塔型完全满足用户提出的工况条件,并有富余。

3.NH-5000阻力计算

通过冷却塔通风阻力计算可以校核冷却塔设计是否合理,选用风机是否恰当,在冷却塔的工作条件下,风机的通风量取决于冷却塔的空气动力阻力,即各部件的局部阻力和风机的动压,这一阻力等于风机的全压。 3.1各部件局部阻力计算。

3.1.1. 进风口高设计为5.5m ,长18m ,两侧进风,总风量 Q=330×104m 3/h ,

故进风口段平均风速: V 1=

3600

2??L h Q =4.6296(m 3/s)

?P1=ξ1ρ1

2

21V =4.4(Pa)

式中:h —进风口高度, m ;

L —进风口长度, m ; ρ1—进塔干空气密度, Kg/m 3 ; ξ1—阻力系数,取0.55 ;

3.1.2 导风装置气流阻力损失?P 2 ξ2=(0.1+0.025q) ×8=

4.02

V 2=2

1

V 1=2.0(m/s)

?P 2=ξ2·ρ12

22

v =8.1(Pa)

式中:q -淋水密度 m 3/(m 2·h) ;

L -空气水平方向上流过的长度,9m ; 3.1.3. 进入淋水填料的气流转弯损失?P3

V 3=3600

2?L Q

=2.8292(m/s)

?P3=ξ3·ρ12

23

v =1.3(Pa)

式中:ξ3-阻力系数, 取 0.5 ; 3.1.4. 淋水填料的气流阻力损失?P4

S 波1.5m的阻力性能方程式?P4=9.81·ρ1A Vm 4

式中:A=-0.0016q 2+0.0576q+0.8591=1.3 m= 0.0005q 2-0.0065q+1.5140=1.8 ;

q -淋水密度, m 3/(m 2·h) ; V 4-淋水段风速, m/s ; V 4= V 3=2.82(m/s)

淋水填料阻力?P4=65(Pa) 3.1.5. 气流穿过配水装置的阻力损失?P5

f =s s s 1

-=0.68 ξ5=[0.5+1.3(1-f )2]×

2

1f

=1.32

V 5=

3600

)(1?-s s Q

=4.29(m/s)

?P5=ξ5·ρ12

25

v =7.6(Pa)

式中:f —通流面积和总面积之比 ; s —总面积 324m 2 ; s 1—管道总面积97.2m 2 ;

3.1.6. 收水器阻力?P6

V 6=2.82m/s

?

P6=1.85·ρ1·V 96

.16

=8.9(Pa) 式中:V 6—收水器段风速 m/s ; 3.1.7. 风机进口气流阻力损失?P7

V 7=

3600

2?s Q

=10.8(m/s)

?P7=ξ7·ρ12

27

v =14(Pa)

式中:ξ7—阻力系数,取 0.1562 ; s 2—风筒风机处的面积66m 2 ; 3.1.8. 扩风筒处气流阻力损失?P8 V 8=

3600

3?s Q

=8.5(m/s)

扩散角α为10o,故ξ=0.19 ξ8=ξ[1-2

7

8)(

V V ]=0.0741 ?P8=ξ8·ρ12

27

v =2.7(Pa )

式中:s 3—为风筒上口面积 85m 2 ;

3.1.9.收水器上部至风机进口损失?P9根据经验为15(Pa) 3.1.10. 塔的总局部阻力损失为 ?P=∑

8

1ξi ·ρi 2

2

i v =127(Pa)

3.2. 风机动压

V E =

2

S Q

=10.8(m/s) E P '? =2

1

ρi 2E V =58(Pa)

式中:Q —为总风量330×104 m 3/h ; S 2—风筒风机处的面积66m 2; VE—为风机旋转平面平均风速 ;

采用动能回收型玻璃钢风筒,动能回收率为30%,因此,风机动压为40Pa 。

3.3. 风机全压为:

?P+?PE =167(Pa)

3.4.风机轴功率N 0=Q* P 0/(3600*η1η2)=173773W=173kW η1——风机全压效率,取0.85 η2——机械传动效率,取0.98 3.5. 风机性能:

查得L975型空气动力性能曲线图可知:

风机为L975型,风机叶片安装角度10°,风量330×104m3/h,全压为167Pa,静压127Pa,风机轴功率173kw,配用电机功率为200kw,富有一定余量。

冷却塔选型须知 1、请注明冷却塔选用的具体型号,或每小时处理的流量。 2 、冷却塔进塔温度和出塔水温。 3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。 4、若需要备品备件及其他配件,有无其他要求等请注明。 5、非常条件使用请说明使用环境和具体情况,以便选择适当的冷却塔型号。 6、特殊情况、型号订货时请标明,以双方合同、技术协议约定专门进行设计。 冷却塔详细选型: 1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。 2、确定使用设备或者可以按照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。 3、根据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。(一般取1.2—1.25倍)。 4、多台并联时尽量选择同一型号冷却塔。 其次,冷却塔选型时要注意: 1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。 2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。 3、冷却塔淋水填料的型式符合水质、水温要求。 4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。 5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。 6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。 7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求。 8、冷却塔的进水管方向可按90°、180°、270°旋转。 9、冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%。 10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。 11、布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。 12、冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。 13、圆塔多塔设计,塔与塔之间净距离应保持不小于0.5倍塔体直径。横流塔及逆流方塔可并列布置。 14、选用水泵应与冷却塔配套,保证流量,扬程等工艺要求。 15、当选择多台冷却塔的时候,尽可能选用同一型号。 此外,衡量冷却塔的效果还通常采用三个指标: (1)冷却塔的进水温度t1和出水温度t2之差Δt。Δt被称为冷却水温差,一般来说,温差越大,则冷却效果越好。对生产而言,Δt越大则生产设备所需的冷却水的流量可以减少。但如果进水温度t1很高时,即使温差Δt很大,冷却后的水温不一定降低到符合要求,因此这样一个指标虽是需要的,但说明的问题是不够全面的。 (2)冷却后水温t2和空气湿球温度ξ的接近程度Δt’。Δt’=t2-ξ(℃)Δt’称为冷却幅高。Δt’值越小,

冷却塔及冷却水泵选型计算方法: 1冷却塔冷却水量 方法一: 冷却水量=860×Q(kW)×T/5000=559 m3/h T------系数,离心式冷水机组取1.3,吸收式制冷机组取2.5 5000-----每吨水带走的热量 方法二: 冷却水量: G= 3.6 Q/C (tw1-tw2)=559 m3/h Q—冷却塔冷却热量,kW,对电制冷机取制冷负荷1.35倍左右,吸收式取2.5倍左右。C—水的比热(4.19kJ/kg.k) tw1-tw2—冷却塔进出口温差,一般取5℃;压缩式制冷机,取4~5℃;吸收式制冷机,取6~9℃ 冷却塔吨位=559×1.1=614 m3/h 2冷却水泵扬程 冷却水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷却水管路系统总的沿程阻力和局部阻力,mH2O; h m——冷凝器阻力,mH2O;

h s——冷却塔中水的提升高度(从冷却盛水池到喷嘴的高差),mH2O;(开式系统有,闭式系统没哟此项) h o——冷却塔喷嘴喷雾压力,mH2O,约等于5 mH2O。 H p=(h f+h d)+h m+h s+h o=0.02×50+5.8+19.8+5=31.6mH2O 冷却水泵所需扬程=31.6×1.1=34.8 mH2O 冷却水泵流量=262×2×1.1=576 m3/h 3冷冻水泵扬程 冷冻水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷冻水管路系统总的沿程阻力和局部阻力,mH2O ; h m——蒸发器阻力,mH2O ; h s——空调器末端阻力,mH2O ; h o——二通调节阀阻力,mH2O 。 H p=(h f+h d)+h m+h s+h o=0.02×150+5+2.78+4=14.78mH2O 冷却水泵所需扬程=14.78×1.1=16.3 mH2O

冷却塔设计计算参考方法 本文简述了冷却塔、冷却塔的选型,校核计算,模拟计算方法等,供大家参考。 一、简述 如上图,冷却塔放于层间,运行时冷却塔进/排风大致可分为6个区间(图中箭头表示风向,其长度表示风量大小);它们分别是: a 区——冷却塔在A轴方向的主要进风面,该处装有1250mm高百叶3层。 b1/b2——冷却塔入风回流区,在这两个区很可能出现负压;回流在b2区会较多出现。 c 区——冷却塔高速排风区。 d 区——冷却塔在1/A轴方向通风区,该区为负压区,风速较a区高,且以乱流出现居多。 e 区——热风扩散区;冷却塔排风经过一段距离(冷却塔排风口到建筑顶部百叶约

4000mm)后,动压明显下降,静压上升,该区属正压区,其间大部分热风经建筑顶部百叶排入大气,少部分弥散后排风受阻会滞留一段时间,但,由于上下(e 区~b区)空间随机存在着压差,使得部分e区弥散的热风回流。 二、冷却塔的选型 1、设计条件 温度:38℃进水,32℃出水,27.9℃湿球; 水量:1430M3/H;水质:自来水; 耗电比:≤60Kw/台,≤0.04Kw/M3·h, 场地:23750mm×5750mm; 通风状况:一般。 2、冷却塔选型 符合以上条件的冷却塔为:LRCM-H-200SC8×1台。 (冷却塔[设计基准]37-32-28℃,此条件下冷却塔处理水量为名义处理水量) 其中,LRC表示良机方形低噪声冷却塔,M表示大陆性气候适用,H表示加高型,200表示冷却塔单元名义处理水量200M3/H,S表示该机型区别于一般冷却塔,C8表示该塔共由8个单元并联组合而成,即名义处理总水量为1600M3/H。 冷却塔的外观尺寸为:22630×3980×4130。 冷却塔配电功率:7.5Kw×8=60Kw,耗电比为60÷1600=0.0375Kw/M3·h。 三、校核计算 1、已知条件:

冷却塔简要计算方式 冷却塔的选择: 1.现在一般中央空调工程使用较多的是低噪声或超低噪声型玻璃钢逆流式冷却 塔,其国产品的代号一般为DBNL-水量数(m3/h)。如DBNL3-100型表示水量为100 m3/h,第三次改型设计的超低噪声玻璃钢逆流式冷却塔。 即:水量数(m3/h)=(主机制冷量+压缩机输入功率)÷3.165 2.初先的冷却塔的名义流量应满足冷水机组要求的冷却水量,同时塔的进水和 出水温度应分别与冷水机组冷凝器的出水和进水温度相一致。再根据设计地室外空气的湿球温度,查产品样本给出的塔热工性能曲线或说明,校核塔的实际流量是否仍不小于冷水机要求的冷却水量。 3.校核所选塔的结构尺寸、运行重量是否适合现场安装条件。 简要经验值计算公式: 设备总冷量(KW)×856(大卡)÷3000=冷却塔水流量 但在此基础上加上25T~100T=冷却塔实际规格流量 或冷却塔水流量×1.2~1.3=冷却塔实际规格流量

单位换算: ,埃 1 = 10-8cm = 10-10m 是光波长度和分子直径的常用计量单位。当讨论粉尘表面与其它表面间的范德瓦耳斯引力时,也用 来计量表面间的距离。气体分子的直径约为3 。从长度单位上讲, 比纳米小一个数量级。 与取自瑞典科学家 ngstr m(1814-1874)的名字, 的正确发音为“欧”、“埃”。 cfm(cubic foot per minute),立方英尺/分钟 英制风量单位,1 cfm ≈ 1.7 m3/h 特别地:2000 cfm = 3400 m3/h 英国人已经不用英制了。美国人和日本人有时仍用英制单位。 ℉ (Fahrenheit),华氏温标 华伦海特(1686-1736)确定了三个温度固定点:海水结冰时为零度、人的体温为96度、水结冰时为32度。在现代温标中,纯净水的冰点0℃=32℉,沸点100℃=212℉。 北美国家仍使用华氏温标。 fpm (foot per minute),英尺/分钟 英制风速单位,1000 fpm ≈ 5.08 m/s mbar (millibar),毫巴 气压单位,有时用于过滤器阻力,1 mbar = 100 Pa = 10 mm WG mg (milligram),毫克

冷却塔的热力计算 冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。 为了便于计算,我们对冷却塔中的热力过程作如下简化假设: (1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看作是常量,不随空气温度及水温变化。 (2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。 (3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。 (4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。 (5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。 冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。 麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一个以焓差为动力的传热公式。在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。 () dV h h dH t xv q 0"-=β (1) 式中:q dH —— 水散出热量; xv β —— 以含湿差为基准的容积散质系数()[] kg kg s m kg //3?? ; "t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。 将式(1)代入冷却塔内热平衡方程: n w w q tdQ c Qdt c dH += (2) 式中:q dH —— 水散出热量;

冷却塔的选型 冷却塔是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置;其冷是利用水与空气流动接触后进行冷热交换产生蒸汽,蒸汽挥发带走热量达到蒸发散热、对流传热和辐射传热等原理来散去工业上或制冷空调中产生的余热来降低水温的蒸发散热装置,以保证系统的正常运行,装置一般为桶状,故名为冷却塔。英文名叫做The cooling tower。 最近几年,冷却塔高速发展,产品不断更新。正因如此,才使玻璃钢冷却塔问世。玻璃钢冷却塔开始和闭式,玻璃钢维护结构的冷却塔冷却塔设计气象条件大气压力: P =99.4×103 kPa 干球温度:θ=31.5℃ 湿球温度:τ=28℃(方形和普通型为27℃) 冷却塔设计参数1.标准型:进塔水温37℃,出塔水温32℃ 2.中温型:进塔水温43℃,出塔水温33℃ 3.高温型:进塔水温60℃,出塔水温35℃ 4.普通型:进塔水温37℃,出塔水温32℃ 5.大型塔:进塔水温42℃,出塔水温32℃工业中,使热水冷却的一种设备。水被输送到塔内,使水和空气之间进行热交换,或热、质交换,以达到降低水温的目的。 分类编辑 一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷

却塔。 二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。 三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。 四、按用途分一般空调用冷却塔、工业用冷却塔、高温型冷却塔。 五、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。 六、其他如喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。 七、按玻璃钢冷却塔的外形分为圆型玻璃钢冷却塔和方型玻璃钢冷却塔。 适用范围编辑 工业生产或制冷工艺过程中产生的废热,一般要用冷却水来导走。冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气中。例如:火电厂内,锅炉将水加热成 高温高压蒸汽,推动汽轮机做功使发电机发电,经汽轮机作功后的废汽排入冷凝器,与冷却水进行热交换凝结成水,再用水泵打回锅炉循环使用。这一过程中乏汽的废热传给了冷却水,使水温度升高,挟带废热的冷却水,在冷却塔中将热量传递给空气,从风筒处排入大气环境中。冷却塔应用范围:主要应用于空调冷却系统、冷冻系列、注塑、制革、发泡、发电、汽轮机、铝型材加工、空压机、工业水冷却等领域,应用最多的为空调冷却、冷冻、塑胶化工行业。

冷却塔选型 1.冷却水流量计算: L=(Q1+Q2)/(Δt*1.163)*1.1 L—冷却水流量(m3/h) Q1—乘以同时使用系数后的总冷负荷,KW Q2—机组中压缩机耗电量,KW Δt—冷却水进出水温差,℃,一般取4.5-5 冷却塔的水流量= 冷却水系统水量×(1.2~1.5); 冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32o C/37oC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得. 冷却塔与周围障碍物的距离应为一个塔高。 冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m3/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。 湿球温度每升高1℃,冷却效率约下降17% 2.冷却塔冷却能力计算: Q=72*L*(h1-h2) Q-冷却能力(Kcal/h) L-冷却塔风量,m3/h h1-冷却塔入口空气焓值 h2-冷却塔出口空气焓值 3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。 4.冷却水泵扬程的确定 扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力 5.冷却塔不同类型噪音及处理方法:

. 6.冷却水管径选择

7.冷却水泵扬程: 扬程通常是指水泵所能够扬水的最高度,用H表示。最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。 其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。 通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。 按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6。 8.冷却塔的选择:

冷却塔是水与空气进行热交换的一种设备,它主要由风机、电机、填料、播水系统、塔身、水盘等组成,而进行热交换主要由在风机作用下比较低温空气与填料中的水进行热交换而降低水温。水塔的构造及设计工况在说明书上有注明,而我们现在采用的水吨为单位是国际上比较常用的单位。在计算选型上比较方便,另冷却塔在选型上应留有20%左右的余量。 以日立RCU120SY2 为例: 冷凝:37℃ 蒸发:7 ℃ 蒸发器:Q = 316000 Kcal/h Q = 63.2m3/h 冷凝器:Q = 393000 Kcal/h Q = 78.6m3/h 这些在日立的说明书上可以查到; 如选用马利冷却塔则: 78.6×1.2 = 94.32 m3/h(每小时的水流量) 选用马利SR-100 可以满足(或其它系列同规格的塔,如SC-100L) 在选用水泵时要在SR-100 的100 吨水中留有10%的余量,在比较低的扬程时可选用管道泵,在扬程高时则宜选用IS 泵。 100×1.1=110 吨水/小时 选用管道泵GD125-20 可以满足; 而在只知道蒸发器Q=316000Kcal/h 时,则可以通过以下公式算出需要多大的冷却塔: 316000×1.25(恒值)= 395000 Kcal/h, 1.25——冷凝器负荷系数 395000÷5 = 79000 KG/h = 79 m3/h 79×1.2(余量) = 94.8m3/h(冷却塔水流量) (电制冷主机—通式:匹数×2700×1.2×1.25÷5000 或冷吨×3024×1.2×1.25÷5000 = 冷却塔水流量m3/h) 冷却塔已知基它条件确定冷却塔循环水量的常用公式: a. 冷却水量=主机制冷量(KW)×1.2×1.25×861/5000(m3/h) b. 冷却水量=主机冷凝器热负荷(kcal/h)×1.2/5000(m3/h) c. 冷却水量=主机冷凝器热负荷(m3/h)×1.2(m3/h) d. 冷却水量=主机制冷量(冷吨)×0.8(m3/h) e. 冷却水量=主机蒸发器热负荷(kcal/h)×1.5×1.25/5000(m3/h) f. 冷却水量=主机蒸发器热负荷(m3/h)×1.2×1.25(m3/h) g. 冷却水量=主机蒸发器热负荷(冷吨)×1.2×1.25×3024/5000(m3/h) 注:以上:1.2为选型余量 1.25为冷凝器负荷系数。 Q=cm(T2-T1)t是时间,即降温需要多少时间 算出来的制冷量单位是大卡(kcal/h),然后再除以0.86就是制冷量(w) 如果是风冷,再除以2500,就是匹数 如果是水冷,再除以3000,就是匹数 Q单位J ; 冷却塔C比热,如果是水就是4.2kJ/K*kg ; T2-T1就是降温差值 制冷量=Q/4.2/t

冷却塔的热力计算 冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。 为了便于计算,我们对冷却塔中的热力过程作如下简化假设: (1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看 作是常量,不随空气温度及水温变化。 (2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。 (3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。 (4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。 (5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。 冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦 克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。 麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一 个以焓差为动力的传热公式。在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。 ( ) dV h h dH t xv q 0" -=β (1) 式中:q dH —— 水散出热量; xv β —— 以含湿差为基准的容积散质系数()[] kg kg s m kg //3?? ; " t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。 将式(1)代入冷却塔内热平衡方程: n w w q tdQ c Qdt c dH += (2) 式中:q dH —— 水散出热量;

冷却塔选型 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

冷却塔选型 冷却水量的计算: [1]. Q = m s △ t Q 冷却能力 Kcal / h (冷冻机/ 空调机的冷冻能力) m 水流量(质量) Kg / h s 水的比热值 1 Kcal / 1 kg - ℃ △ t 进入冷凝器的水温与离开冷凝器的水温之差 [2]. Q 的计算 Q = 72 q ( I 入口- I 出口 ) Q 冷却能力 Kcal / h q 冷却水塔的风量 CMM I 入口冷却水塔入口空气的焓(enthalpy) I 出口冷却水塔出口空气的焓(enthalpy) [3]. q 冷却水塔的风量 CMM 的计算 q = Q / 72 ( I 入口- I 出口 ) 上述计算系依据基本的热力学理论,按空气线图(psychrometrics)的湿空气性能,搭配基本代数式计算之。 更深入的数学式依Merkel Theory的Enthalpy potential 观念导算出类似更精确的计算方程式: Q = K ×S × ( hw -ha ) Q 冷却水塔的总传热量 K 焓的热传导系数 S 冷却水塔的热传面积 hw 空气与冷却水蒸发的混合湿空气之焓 ha 进入冷却水塔的外气空气之焓 此时,导入冷却水流量(质量),建立 KS / L 的积分(Integration) 遂计算出更为精确的冷却水塔热传方程式。详细的计算你可以从Heat Transfer的热力学内查阅。 冷却水塔的正确选用,是根据外气的湿球温度计算而来,绝非凭经验而来。诸多人士认为冷却水塔的能力一定大于冷冻空调的主机,这是完全错误的导论与说法,实不足为取。这是一种「积非成是,以讹传讹」的谬论。 顺便一提,楼上有一位兄弟提到,湿球温度从27℃→28℃,冷却水塔的能力降低,why?其实这就是基础热力学上湿球温度的应用。 湿球温度愈高,湿球温度的冷却能力愈差。所以,当湿球温度增高时,冷却水塔的能力下降,换言之,冷却水塔的出水量减少了。 从事空调制冷,空气的性能曲线图──Psychrometrics(空气线图)一定得充分认识、了解。Psychrometrics 就像医学上的X 光照片、心电图等等一样,让我门100%掌握空气性能的变化,所有制冷空调的问题均迎刃而解。

1前言 冷却塔的热力计算相当复杂,手算程序尤其繁琐,并且还涉及到查表,而目前市场上虽然有一些商业性的软件,但大部分是针对小型玻璃钢冷却塔设计的,对于大型的工业冷却塔而言,计算起来误差较大,并且使用起来不方便,图形法分析能省去计算,但存在只能定性分析而不能定量分析等缺陷,考虑到焓差法计算是冷却塔热力计算的基础理论,结合冷却塔工艺热平衡图,笔者采用EXCEL电子表格设计了热力计算程序,只需具备EXCEL编辑公式的能力就可直接操作,操作简单,方便实用。非常适合于从事冷却塔设计和运行管理的工程技术人员使用。 2理论分析 式(1)中右边表示冷却塔的冷却任务的大小,称冷却数或交换数。与设计的进出水水温、温差以及大气气象条件决定的,左边为选定的淋水填料所具有的冷却能力,称冷却特性数,与选择填料的热力性能和气水比有关,对于给定的冷却任务而言,可以选择适当的填料以及填料体积来满足冷却任务。(1)式右边可用1所示的冷却塔工艺热平衡形象地表述水与空气之间的关系及焓差推动力。 3 评价

结合图1的原理,利用EXCEL编程计算冷却效率,可以简化查表步骤,既方便又快捷。 首先设计如图6所示的表头,图中B~H项为设计者直接填入数值,I~X项为计算机自动显示值处,下面分步介绍自动计算表格的设计。 1).饱和水蒸汽压力的计算 计算饱和水蒸汽压力 则相当于湿球温度τ的水蒸气压力编写方法是用鼠标单击K6处,然后在如图所示的编辑输入=98.065*10^(0.014196-3.142305*(1000/(273+D6)-1000/373.16)+8.2* Lg(373.16/(273+D6))-0.0024804*(373.16-(273+D6))),输完之后单击编辑栏右侧的等于号,待屏幕弹出对话框,再单击“Enter”键,此时相当于湿球温度τ水蒸气压力公式编辑完毕。同理,相当于干球温度θ的水蒸气压力编写方法是用鼠标单击L6处,将上式中的D6改为E6即可。 2).相对湿度的计算 相对湿度可按 进行计算, 则相对湿度的编写方法是用鼠标单击M6处,然后在如图所示的编辑栏输入=(K6-0.0006628*F6*(E6-D6))/L6,输完之后单击编辑栏右侧的等于号,待屏幕弹出对话框,再单击“Enter”键,此时相对湿度的公式编辑完毕。

冷却塔计算公式与单位 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

经某一过程温度变化为△T,它吸收(或放出)的热量. Q=cm·△T. 其中C是与这个过程相关的比热(容). 热量的单位与功、能量的单位相同.在国际单位制中热量的单位为焦耳(简称焦,缩写为J).历史上曾定义为卡路里(简称卡,缩写为cal),目前只作为能量的辅助单位,1卡=焦.注意:1千卡=1大卡=1000卡路里=4184焦耳=千焦 在国际单位制中,比热的单位是焦耳/(千克·摄氏度)读作焦每千克摄氏度。 比热容是单位质量的某种物质温度升高1℃吸收的热量(或降低1℃释放的热量),比热容本质是吸收的热量,不管固体液体的,单位都是一样的。 单位质量的某种物质温度升高1℃吸收的热量叫做这种物质的比热容,简称比热。 比热是通过比较单位质量的某种物质温升1℃时吸收的热量,来表示各种物质的不同性质。 水的比热最大。这就意味着,在同样受热或冷却的情况下,水的温度变化要小些。水的这个特征对气候的影响很大。在受太阳照射条件相同时,白天沿海地区比内陆地区温升慢,夜晚沿海地区温度降低也少。所以一天之中,沿海地区温度变化小,内陆地区温度变化大。在一年之中,夏季内陆比沿海炎热,冬季内陆比沿海寒冷。

水比热大的特点,在生产、生活中也经常利用。如汽车发动机、发电机等机器,在工作时要发热,通常要用循环流动的水来冷却。冬季也常用热水取暖 水的比热容是*103焦/千克·摄氏度,蒸气的比热容是*103焦/千克·摄氏度 汽化热是一个物质的物理性质。其定义为:在标准大气压 kPa)下,使一摩尔物质在其沸点蒸发所需要的热量。常用单位为千焦/摩尔(或称千焦耳/摩尔),千焦/千克亦有使用。其他仍在使用的单位包括 Btu/lb(英制单位,Btu为British Thermal Unit,lb为磅)。 水的汽化热为千焦/摩尔,相当于2260千焦/千克。一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量。 湿比热容 以单位千克绝干气体为基准,将(1+H)kg湿空气温度升高或降低1oC所需要吸收或放出的热量,称为湿空气的比热容,简称湿比热容,用cH表示,单位为kJ/(kg干空气.K) cH=ca+cvH (12-9) 式中,ca—干空气的比热容,kJ/; cv—水汽的比热容,kJ/. 在常用的温度范围内,ca≈ (kgK),cv≈ (kgK),将这些数据代入式(12—9),得

冷却塔计算公式与单位 Modified by JACK on the afternoon of December 26, 2020

经某一过程温度变化为△T,它吸收(或放出)的热量. Q=cm·△T. 其中C是与这个过程相关的比热(容). 热量的单位与功、能量的单位相同.在国际单位制中热量的单位为焦耳(简称焦,缩写为J).历史上曾定义为卡路里(简称卡,缩写为cal),目前只作为能量的辅助单位,1卡=焦.注意:1千卡=1大卡=1000卡路里=4184焦耳=千焦 在国际单位制中,比热的单位是焦耳/(千克·摄氏度)读作焦每千克摄氏度。 比热容是单位质量的某种物质温度升高1℃吸收的热量(或降低1℃释放的热量),比热容本质是吸收的热量,不管固体液体的,单位都是一样的。 单位质量的某种物质温度升高1℃吸收的热量叫做这种物质的比热容,简称比热。 比热是通过比较单位质量的某种物质温升1℃时吸收的热量,来表示各种物质的不同性质。 水的比热最大。这就意味着,在同样受热或冷却的情况下,水的温度变化要小些。水的这个特征对气候的影响很大。在受太阳照射条

件相同时,白天沿海地区比内陆地区温升慢,夜晚沿海地区温度降低也少。所以一天之中,沿海地区温度变化小,内陆地区温度变化大。在一年之中,夏季内陆比沿海炎热,冬季内陆比沿海寒冷。 水比热大的特点,在生产、生活中也经常利用。如汽车发动机、发电机等机器,在工作时要发热,通常要用循环流动的水来冷却。冬季也常用热水取暖 水的比热容是*103焦/千克·摄氏度,蒸气的比热容是*103焦/千克·摄氏度 汽化热是一个物质的物理性质。其定义为:在标准大气压 kPa)下,使一摩尔物质在其沸点蒸发所需要的热量。常用单位为千焦/摩尔(或称千焦耳/摩尔),千焦/千克亦有使用。其他仍在使用的单位包括 Btu/lb(英制单位,Btu为British Thermal Unit,lb为磅)。 水的汽化热为千焦/摩尔,相当于2260千焦/千克。一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量。 湿比热容

冷却塔的工作原理: 冷却塔是利用水和空气的接触,通过蒸发作用来散去工业上或制冷空调中产生的废热的一种设备。基本原理是:干燥(低焓值)的空气经过风机的抽动后,自进风网处进入冷却塔内;饱和蒸汽分压力大的高温水分子向压力低的空气流动,湿热(高焓值)的水自播水系统洒入塔内。当水滴和空气接触时,一方面由于空气与水的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带到目前为走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温之目的。 冷却塔的工作过程: 圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。一般情况下,进入塔内的空气、是干燥低湿球温度的空气,水和空气之间明显存在着水分子的浓度差和动能压力差,当风机运行时,在塔内静压的作用下,水分子不断地向空气中蒸发,成为水蒸气分子,剩余的水分子的平均动能便会降低,从而使循环水的温度下降。从以上分析可以看出,蒸发降温与空气的温度(通常说的干球温度)低于或高于水温无关,只要水分子能不断地向空气中蒸发,水温就会降低。但是,水向空气中的蒸发不会无休止地进行下去。当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态。蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变。由此可以看出,与水接触的空气越干燥,蒸发就越容易进行,水温就容易降低。 冷却塔的分类: 一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷却塔。 二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。 三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。 四、按形状分有圆形冷却塔、方形冷却塔、矩形冷却塔。 五、按冷却温度分有标准型冷却塔、中温型冷却塔、高温型冷却塔。 六、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。 七、按用途分有塑机专用冷却塔、发电机专用冷却塔、中频炉专用冷却塔、中央空调冷却塔、电厂冷却塔。 八、其他有喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。 冷却水的补水问题 冷却塔水量损失,包括三部分 :蒸发损失,风吹损失和排污损失,即: Qm=Qe+ Qw+Qb

冷却塔设计选型的简单方法 1、确定流体排热总量Q,Kw/h; 2、确定冷却塔希望达到的进出水温度差Δt,即T1-T2。在空调工程中,吸收式冷机一般取Δt=8℃;压缩式制冷剂一般取取Δt=5℃。 3、按下列公式计算冷却水量: 名义水量=3.6×Q×K/(C×Δt)m3/h 注:K吸收式取3.0; 压缩式取1.56; C水的比热4.19KJ/(㎏℃)。 4、根据当地的气象条件,当湿球温度小于27℃时,可不加设计富余量。 例: 为一制冷量为1160KW/H的溴化锂制冷机配冷却塔,要求入制冷剂冷却水温度不高于32℃,安装现场大气湿球温度为28℃。 取K=3,C=4.19Kj/kg,Δt=8℃; 那么名义水量=3.6×1160×3/(4.19×8)=373m3/h; 冷却塔的型号为375或者400m3/h,温差为40-32=8℃;

除外,冷却塔的选型受环境条件制约因素较多。特别在置放在层间冷却塔,应当注意进、排风区间,是选型计算需要考虑的重要因素。如示例: 冷却塔放于层间,运行时冷却塔进/排风大致可分为6个区间(图中箭头表示风向,其长度表示风量大小); 它们分别是: a区——冷却塔在A轴方向的主要进风面,该处装有1250mm高百叶3层。 b1/b2——冷却塔入风回流区,在这两个区很可能出现负压;回流在b2区会较多出现。 c区——冷却塔高速排风区。 d区——冷却塔在1/A轴方向通风区,该区为负压区,风速较a区高,且以乱流出现居多。 e区——热风扩散区;冷却塔排风经过一段距离(冷却塔排风口到建筑顶部百叶约40 00mm)后,动压明显下降,静压上升,该区属正压区,其间大部分热风经建筑顶部百叶排入大气,少部分弥散后排风受阻会滞留一段时间,但,由于上下(e区~b区)空间随机存在着压差,使得部分e区弥散的热风回流。

一、简述 如上图,冷却塔放于层间,运行时冷却塔进/排风大致可分为6个区间(图中箭头表示风向,其长度表示风量大小);它们分别是: a 区——冷却塔在A轴方向的主要进风面,该处装有1250mm高百叶3层。 b1/b2——冷却塔入风回流区,在这两个区很可能出现负压;回流在b2区会较多出现。

c 区——冷却塔高速排风区。 d 区——冷却塔在1/A轴方向通风区,该区为负压区,风速较a区高,且以乱流出现居多。 e 区——热风扩散区;冷却塔排风经过一段距离(冷却塔排风口到建筑顶部百叶约4000m m)后,动压明显下降,静压上升,该区属正压区,其间大部分热风经建筑顶部百叶排入大气,少部分弥散后排风受阻会滞留一段时间,但,由于上下(e 区~b区)空间随机存在着压差,使得部分e区弥散的热风回流。 二、冷却塔的选型 1、设计条件 温度:38℃进水,32℃出水,27.9℃湿球; 水量:1430M3/H;水质:自来水; 耗电比:≤60Kw/台,≤0.04Kw/M3·h, 场地:23750mm×5750mm; 通风状况:一般。 2、冷却塔选型 符合以上条件的冷却塔为:LRCM-H-200SC8×1台。 (冷却塔[设计基准]37-32-28℃,此条件下冷却塔处理水量为名义处理水量) 其中,LRC表示良机方形低噪声冷却塔,M表示大陆性气候适用,H表示加高型,200表示冷却塔单元名义处理水量200M3/H,S表示该机型区别于一般冷却塔,C8表示该塔共由8个单元并联组合而成,即名义处理总水量为1600M3/H。 冷却塔的外观尺寸为:22630×3980×4130。

冷却塔配电功率:7.5Kw×8=60Kw,耗电比为60÷1600=0.0375Kw/M3·h。 三、校核计算 1、已知条件: 冷却塔LRCM-H-200SC8在37-32-28℃温度条件下单元名义处理水量L=200 M3/H;冷却塔风量G=1690M3/min。 2、设计条件: 热水温度:T1=38℃; 冷水温度:T2=32℃; 外气湿球温度:T w=27.9℃; 大气压:Pa=76mmHg; 处理水量:L=179 M3/min; 水气比:L/G=1.605; 热负荷:Q=1074000Kcal/h; 组合单元数:N=8。 3、冷却塔特性值 依照CTI标准所给出的计算公式 Ka·V/L= 近似计算为 Ka·V/L=× 代入数据得,Ka·V/L=1.251。 其中

冷却塔型号选择 1、按照被冷却水的温度,冷却塔选择包括:高温塔、中温塔、常温塔。 2、按照安装位置的现状及对噪声的要求,冷却塔选择包括:横流塔与逆流塔。 3、按照冷水机组的冷却水量选择冷却水量,原则上冷却塔的水量要略大于冷水机组的冷却水量。 4、选用多台水塔时尽量选择同一型号的冷却塔。 其次,冷却塔选型需要注意: 1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。 2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。 3、冷却塔淋水填料的型式符合水质、水温要求。 4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。 5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。 6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。 7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求。 8、冷却塔的进水管方向可按90°、180°、270°旋转。 9、冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%。 10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。 11、布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。 12、冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。

冷却塔设计技术规范 8.4.1 选型。 1 机械通风冷却塔:分为逆流式和横流式,见图8.4.1—1。逆流塔又有圆形和方形。设计时应根据外形,环境条件,占地面积,管线布置,造价和噪声要求等因素,因地制宜,合理选用。逆流式和横流式的比较见表8.4.1。 塔型 性能比较 逆流式 1.冷却水与空气逆流接触,热交换效率高,当循环水量、容积散质系数βxg 相同,填料容积比横流式要少 约15%~20%。 2. 循环水量和热工性能相同条件下,造价比横流塔低约20%~30%; 3.成组布置时,湿热空气回流影响比横流塔小; 4. 由于淋水填料面积基本同塔体面积,故占地面积要比横流塔小约20%~30%。 横流式 1、塔内有近人空间,且采用池式配水,维修上比逆流塔方便; 2、高度比逆流塔低,结构稳定性好,并有利于建筑物立面布局和外观要求; 3、风阻比逆流塔小,风机节电约20%~30%; 4、配水系统需要水压比逆流塔低,水泵节电约15%~20%;

5、风机功率低,填料底部为塔底,滴水声小,同样条件下 噪声值比逆流塔低3~4db(A)。 2 喷射式冷却塔:是湿式冷却塔中另一种型式的冷却塔。按工艺构造分为喷雾填料型(见图 8.4.1—2)和喷雾通风型(见图8.4.1—3)两种。 喷射式冷却塔具有无电力风机、无振动、噪声相对较低、 结构简单等特点,但供水压力和水质要求较高,与机械通风 冷却塔相比,在节能、售价和运行管理方面无明显的综合优势,且喷雾通风型冷却塔还存在占地面积较大,塔体偏高, 喷雾通风装置上旋转部件有出现生锈卡死不转现象。因此, 该塔目前作为工程设计选用的一种塔型,有待进一步完善和 长期运行考察。 8.4.2 位置选择。 1 气流应通畅,湿热空气回流影响小,且应布置在建筑 物的最小频率风向的上风侧。 2 冷却塔不应布置在热源、废气和烟气排放口附近,不 宜布置在高大建筑物中间的狭长地带上。 3 冷却塔与相邻建筑物之间距离,除满足冷却塔的通风 要求外,还应考虑噪声、飘水等对建筑物的影响。 4 有裙房的高层建筑,当机房在裙房地下室时,宜将冷却 塔设在靠近机房的裙房屋面上。 5 冷却塔如布置在主体建筑屋面上,应避开建筑物立面和

冷却塔选型 欧阳学文 1.冷却水流量计算:L=(Q1+Q2)/(Δt*1.163)*1.1L—冷却水流量(m3/h)Q1—乘以同时使用系数后的总冷负荷,KWQ2—机组中压缩机耗电量,KWΔt—冷却水进出水温差,℃,一般取4.55 冷却塔的水流量 = 冷却水系统水量×(1.2~1.5); 冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32oC/37oC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得. 冷却塔与周围障碍物的距离应为一个塔高。 冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m3/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。 湿球温度每升高1℃,冷却效率约下降17% 2.冷却塔冷却能力计算:Q=72*L*(h1h2)Q冷却能力(Kcal/h)L冷却塔风量,m3/hh1冷却塔入口空气焓值h2

冷却塔出口空气焓值 3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。 4.冷却水泵扬程的确定 扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力 5.冷却塔不同类型噪音及处理方法: .

6.冷却水管径选择 7.冷却水泵扬程: 扬程通常是指水泵所能够扬水的最高度,用H表示。最常用的水泵扬程计算公式是H=(p2p1)/ρg+(c2c1)/2g+z2z1。其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进

出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K) △P1为冷水机组蒸发器的水压降。△P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K 值取0.4~0.6。 8.冷却塔的选择:

冷却塔选型重点 冷却塔选型须知: 1、请注明冷却塔选用的具体型号,或每小时处理的流量。 2、冷却塔进塔温度和出塔水温。 3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。 4、若需要备品备件及其他配件,有无其他要求等请注明。 5、非常条件使用请说明使用环境和具体情况,以便选择适当的冷却塔型号。 6、特殊情况、型号订货时请标明,以双方合同、技术协议约定专门进行设计。冷却塔详细选型: 1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。 2、确定使用设备或者可以按照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。 3、根据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。(一般取1.2—1.25倍) 4、多台并联时尽量选择同一型号冷却塔。其次,冷却塔选型时要注意: ①冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。 ②配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。 ③冷却塔淋水填料的型式符合水质、水温要求。 ④风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。 ⑤电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。 ⑥冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。 ⑦冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及

检修要求。 ⑧冷却塔的进水管方向可按90°、180°、270°旋转。 ⑨冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%。 ⑩循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。 11布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。 12冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。 13圆塔多塔设计,塔与塔之间净距离应保持不小于0.5倍塔体直径。横流塔及逆流方塔可并列布置。 14选用水泵应与冷却塔配套,保证流量,扬程等工艺要求。 当选择多台冷却塔的时候,尽可能选用同一型号。 此外,衡量冷却塔的效果还通常采用三个指标: (1)冷却塔的进水温度t1和出水温度t2之差Δt。Δt被称为冷却水温差,一般来说,温差越大,则冷却效果越好。对生产而言,Δt越大则生产设备所需的冷却水的流量可以减少。但如果进水温度t1很高时,即使温差Δt很大,冷却后的水温不一定降低到符合要求,因此这样一个指标虽是需要的,但说明的问题是不够全面的。 (2)冷却后水温t2和空气湿球温度ξ的接近程度Δt。Δt=t2-t1。Δt称为冷却幅高。Δt值越小,则冷却效果越好。事实上Δt不可能等于零。 (3)考虑冷却塔计算中的淋水密度。淋水密度是指1㎡有效面积上每小时所能冷却的水量。用符号q表示。q=Q/F m3/㎡3h(Q-冷却塔流量,m3/h;F-冷却塔的有效淋水面积,m2)。

相关主题
文本预览
相关文档 最新文档