当前位置:文档之家› 组合变形及强度理论

组合变形及强度理论

组合变形及强度理论
组合变形及强度理论

组合变形和强度理论习题及解答

题1.图示,水平放置圆截面直角钢杆(2

ABC

p ?),直径100d mm =,2l m =,1q k N m =,[]MPa 160=σ,试校核该杆的强度。

解:

1)各力向根部简化,根截面A 为危险面 扭矩:212nA M

ql =

,弯矩 23

2

zA M ql =+,剪力2A Q ql = 2) 2348ZA M ql W d s p ==, 3132W d p =,3

116

p W d p =, 扭转剪应力:2

3

810.18n P M ql MPa W d

t p ===, 3) []364.42r MPa s s =

=<,

∴梁安全

题2、 平面曲杆在C 端受到铅重力P 作用。材料的

[σ]=160MPa 。若P=5KN ,l =1m ,a=0.6m 。试根据第四强度理论设计轴AB 的直径d. 解:属于弯扭组合变形

危险面A 处的内力为:

53z M kN m

T kN m =??

422

6

3

50.753 5.6332 5.631071160

r M kN m

d mm

p =+??创=

=′

题3、平面曲拐在C 端受到铅垂力P 作用,材料的[σ]=160MPa ,E=2.1?105MPa ,=0.28 。 杆的直径d=80mm ,l =1.4m ,a=0.6m ,l 1=1.0m 。若P=5KN (1) 试用第三强度理论校核曲拐的强度。 (2) 求1-1截面顶端处沿45?方向的正应变。

解:

(1)危险A 上的内力为:5 1.47z M kN m =??

50.6

3T kN m =??

[]33

322344

6

4

737.6280 5.031032

7.62101511605.0310r z

r r z M kN m W mm M MPa MPa

W p

s s =

+=???′===<=′

曲拐安全 (2)1-1截面内力:5,

3z M kN m

T

kN m =?? 顶点的应力状态

450

στ

6

4

51099.45.0310MPa s ′==′ 6

4

31029.82 5.0310MPa t ′==创

A

B C P

l 1

450

a

I

79.522

19.882MPa MPa

a b s

s t s

s t =

+==-=

455

79.5219.88

0.28 3.52102.110 2.110

a e -=-=?创

题4. 图示一悬臂滑车架,杆AB 为18 号工字钢,其长度为 2.6l m =。试求当荷载F =25kN 作用在AB

B

解:18号工字钢4

3421851030610.,.W m A m --=??

AB 杆系弯庄组合变形。

()000

33

4

4

3003025212630251625222

2510162510

2878370794918510

30610

max max cos ,sin .,.sin ........中中压BC A BC BC BC M F W A

l

M F l F F kN l

M F kN m

MPa s s -=+

==?

=?

创=创′=

+=+=创?

题5. 砖砌烟囱高30h m =,底截面m m -的外径13d m =,内径22d m =,自重

2000P kN =,受1/q kN m =的风力作用。试求:

(1)烟囱底截面上的最大正应力;

(2)若烟囱的基础埋深04h m =,基础及填土自重按21000P kN =计算,土壤的许用应力

最新10组合变形汇总

10组合变形

图10.4 斜弯曲分析参考图 10 组合变形 10.1 组合变形的概念和实例 分析组合变形问题时,通常是先把作用在杆件上的载荷向杆件的轴线简化,即把构件上的外力转化成几组静力等效的载荷,其中每一组载荷对应着一种基本变形。 工程中,常见的组合变形主要有斜弯曲、拉伸(压缩)与弯曲的组合、弯曲与扭转的组合。下面讨论这三种组合变形的强度计算问题。 10.2 斜弯曲 10.2.1 斜弯曲时横截面上的应力 外力简化 ? ?sin ,cos z y P P P P == 内力: ? ?cos )(cos )(y z M x l P x l P M =-=-= ? ?sin )(sin )(z y M x l P x l P M =-=-= 式中)(x l P M -=是集中力P 在横截面m-n 上所引起的弯矩,在计算中可取绝对值。 应力: 任意截面m-n 上任意点C (y ,z )处的应力可采用叠加法计算。在xy 平面内的平面 弯曲(由于z M 的作用)产生的正应力为 y I M I y M z z z cos ? σ== ' 由于在xz 平面内的平面弯曲(由于y M 的作用) 产生的正应力为 图10.1起重机构ACB 梁受力分析 图10.2传动轴受力分析

z I M I z M y y y sin ? = = σ'' C 点处的正应力,即 y y z z I z M I y M += ''+'=σσσ???? ??+=z I y I M y z sin cos ?? (10.1) 10.2.2 斜弯曲时的强度计算 强度条件为 max 11z y cos sin M y z I I ??σ?? =+≤ ? ???[]σ (10.2) 对于有棱角的矩形截面,根据图10.4所示的应力分布,公式(10.2)还可写成 ≤ + = z zmax y y max max W M W M σ[]σ (10.3) 若材料的抗拉强度和抗压强度不同,则应分别对1D 点和2D 点都进行强度计 算。 0 sin cos 0y 0z =???? ??+=z I y I M ??σ 因为0≠M ,所以有 0sin cos 0y 0z =+z I y I ? ? (10.4) 此即斜弯曲时的中性轴方程。设中性轴与z 轴的夹角为α,根据公式(10.4)有 ? αtg tan y z 00I I z y -== (10.5) 由式(10.5)可得出以下两点结论: (1) 对于z y I I ≠的截面,则?α≠。这表明此种梁在发生斜弯曲时,其中性轴与外力P 所在的纵向平面不垂直(图10.5b )。 (2) 对于圆形、正方形及其他正多边形截面,由于z y I I =,故可由式(10.5)得:?α-=,这说明中性轴总是与载荷所在的纵向面垂直,即此类截面的梁不会产生斜弯曲。 10.2.3 斜弯曲的变形计算 3 3 y y z z cos 33P l P l f EI EI ?==-- 3 3z z y y cos 33Pl P l f EI EI ?==-- 2 z 2y f f f += (10.6) 设总挠度f 与y 轴的夹角为β(图10.6b ), 则有 ? βtg tan y z y z I I f f == (10.7) 关于挠度、中性轴及外力P 的位置之间的关系,现作进一步讨论: 图10.6斜弯图

第八章组合变形构件的强度习题

第八章组合变形构件的强度习题 一、填空题 1、两种或两种以上基本变形同时发生在一个杆上的变形,称为()变形。 二、计算题 1、如图所示的手摇绞车,最大起重量Q=788N,卷筒直径D=36cm,两轴承间的距离l=80cm,轴的许用应力[]σ=80Mpa。试按第三强度理论设计轴的直径d。 2、图示手摇铰车的最大起重量P=1kN,材料为Q235钢,[σ]=80 MPa。试按第三强度理论选择铰车的轴的直径。 3、图示传动轴AB由电动机带动,轴长L=1.2m,在跨中安装一胶带轮,重G=5kN,半径R=0.6m,胶带紧边张力F1=6kN,松边张力F2=3kN。轴直径d=0.1m,材料许用应力[σ]=50MPa。试按第三强度理论校核轴的强度。 4、如图所示,轴上安装有两个轮子,两轮上分别作用有F=3kN及重物Q,该轴处于

平衡状态。若[σ]=80MPa。试按第四强度理论选定轴的直径d。 5、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度l BC=140mm,承受集中载荷F 的作用,许用应力[σ]=160Mpa,若AB轴的抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴的强度条件确定此结构的许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动的轴上,装有一直径D=1m的皮带轮,皮带紧边张力为2F=5KN,松边张力为F=2.5KN,轮重F P=2KN,已知材料的许用应力[σ]=80Mpa,试按第三强度理论设计轴的直径d。 7、如图所示,有一圆杆AB长为l,横截面直径为d,杆的一端固定,一端自由,在自由端B处固结一圆轮,轮的半径为R,并于轮缘处作用一集中的切向力P。试按第三强度理论建立该圆杆的强度条件。圆杆材料的许用应力为[σ]。

电梯受力计算修订稿

电梯受力计算 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

一、曳引力校核 1.钢丝绳曳引应满足以下三个条件: (1)轿厢装载至125%额定载荷的情况下应保持平层状态不打滑; (2)必须保证在任何紧急制动的状态下,不管轿厢内是空载还是满载,其减速度的值不能超过缓冲器(包括减行程的缓冲器)作用时减速度的值。 (3)当对重压在缓冲器上而曳引机按电梯上行方向旋转时,应不可能提升空载轿厢。 GB7588-2003附录M 提示曳引力计算采用下面的公式: 式中: —当量摩擦系数; α—钢丝绳在绳轮上的包角, rad ; T 1、T 2—曳引轮两侧曳引绳中的拉力。e —自然对数的底,e ≈ 2.校核步骤 (1)求出当量摩擦系数 a)对曳引轮为半圆槽和带切口半圆槽,使用下面公式: 式中: μ——摩擦系数。 β——下部切口角度值, rad ; γ——槽的角度值, rad ; 式中的 γ βγβπβγsin sin 2sin 2cos 4+---? ?? ?? -的数值可由绳槽的 β、γ数值代入经计算得出;也可以从下图直接查 得: 图8-1 b) 对曳引轮为V 形槽,使用下面公式: 轿厢装载和紧急制停的工况: 轿厢滞留的工况: c) 计算不同工况下值 摩擦系数μ使用下面的数值: 装载工况μ1=;轿厢滞留工况μ2=;紧急制停 工况μ3= 10 /11 .0s v + (v s ——轿厢额定速度下对应的绳速,m/s )。 (2)计算 еα

分别计算出装载工况、轿厢滞留工况、紧急制停工况的е1α、е2α、е3α 数值。 ( 数值在步骤①求出;钢丝绳在绳轮上包角α的弧度值由曳引系统结构得到) (3)轿厢装载工况曳引力校核 (按125%额定载荷轿厢在最低层站计算,轿底平衡链与对重顶部曳引绳质量忽略不计) 式中: T 1、T 2——曳引轮两侧曳引绳中的拉力,N ; Q ——额定载重量,kg ;K ——电梯平衡系 数; W 1——曳引钢丝绳质量,kg ;W 1≈H(电梯提升高度,m) ×n 1(采用钢丝绳根数) ×q 1(钢丝绳 单位长度重量,kg/m) ×r(曳引钢丝绳倍率); W 2——补偿链悬挂质量,kg ;W 2≈H(电梯提升高度,m) ×n 2(采用补偿链根数) ×q 2(补偿链 单位长度重量,kg/m) r ——曳引钢丝绳的倍率; g n ——标准重力加速度,m/s 2α(gn ≈9.81m/s 2) 校核:轿厢装载工况条件下应能满足 2 1T T ≤е1α,即曳引钢丝绳在曳引轮上不滑移。 (4)在紧急制停工况曳引力校核: (按空轿厢在顶层工况计算,且轿顶曳引绳与对重底部平衡链质量忽略不计,滑动轮惯量折算值与导轨摩擦力因数值小忽略不计) 式中: α——轿厢制动减速度(绝对值),m/s 2(正常情况α为0.5m/s 2,对于使用了减行程缓冲器的 情况,α为0.8m/s 2); W 3——随行电缆的悬挂质量,kg ;W 3≈H/2(电梯提升高度,m) ×n 3(随行电缆根数) ×q 3(随行 电缆单位长度重量,kg/m)。 校核:紧急制停工况条件下,当空载的轿厢位于最高层站时应能满足 2 1T T ≤е3α,即曳引钢丝 绳在曳引轮上不滑移。 (5)在轿厢滞留工况曳引力校核: (以轿厢空载,对重压在缓冲器上的工况计算) 校核:在轿厢滞留工况,当轿厢空载,对重压在缓冲器上时,在轿厢滞留工况条件下,应能满足 2 1T T ≥е2α,即曳引钢丝绳可以在曳引轮上滑移。 计算实例: 曳引系统参数

材料力学_强度理论与组合变形1

第八章强度理论与组合变形 §8-1 强度理论的概念 1.不同材料在同一环境及加载条件下对“破坏”(或称为失效)具有不同的抵抗能力(抗力)。 例1常温、静载条件下,低碳钢的拉伸破坏表现为塑性屈服失效,具有屈服极限 σ, s 铸铁破坏表现为脆性断裂失效,具有抗拉强度 σ。图9-1a,b b 2.同一材料在不同环境及加载条件下也表现出对失效的不同抗力。 例2常温静载条件下,带有环形深切槽的圆柱形低碳钢试件受拉时,不再出现塑性变形,而沿切槽根部发生脆断,切槽导致的应力集中使根部附近出现两向和三向拉伸型应力状态。图(9-2a,b)

例3 常温静载条件下,圆柱形铸铁试件受压时,不再出现脆性断口,而出现塑性变形,此时材料处于压缩型应力状态。图(9-3a ) 例4 常温静载条件下,圆柱形大理石试件在轴向压力和围压作用下发生明显的塑性变形,此时材料处于三向压缩应力状态下。图9-3b 3.根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹性失效准则,考虑安全系数后,其强度条件为 []σσ≤ ,根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失效准则,考虑安全系数后,强度条件为 []ττ≤ 。 建立常温静载一般复杂应力状态下的弹性失效准则——强度理论的基本思想是: 1)确认引起材料失效存在共同的力学原因,提出关于这一共同力学原因的假设; 2)根据实验室中标准试件在简单受力情况下的破坏实验(如拉伸),建立起材料在复杂应力状态下共同遵循的弹性失效准则和强度条件。 3)实际上,当前工程上常用的经典强度理论都按脆性断裂和塑性屈服两类失效形式,分别提出共同力学原因的假设。 §8-2四个强度理论 1.最大拉应力准则(第一强度理论) 基本观点:材料中的最大拉应力到达材料的正断抗力时,即产生脆性断裂。 表达式:u σσ=+ max 复杂应力状态

排列组合概念

排列与组台的概念教案 教学目标 1.正确理解排列、组合的意义. 2.掌握写出所有排列、所有组合的方法,加深对分类讨论方法的理解.3.发展学生的抽象能力和逻辑思维能力. 教学重点与难点重点:正确理解两个原理(加法原理、乘法原理)以及排列、组合的概 念.难点:区别排列与组合. 教学过程设计师:上节课我们学习了两个基本原理,请大家完成以下两题的练习:(用投影仪出示) 1.书架上层放着50 本不同的社会科学书,下层放着40 本不同的自然科学的书.(1)从中任取1 本,有多少种取法? (2)从中任取社会科学书与自然科学书各 1 本,有多少种不同的取法? 2 .某农场为了考察三个外地优良品种A, B, C,计划在甲、乙、丙、丁、戊共 五种类型的土地上分别进行引种试验,问共需安排多少个试验小区? (全体同学参加笔试练习. ) 4 分钟后,找一同学谈解答和怎样思考的? 生:第1(1)小题从书架上任取1 本书,有两类办法,第一类办法是从上层取社会科学书,可以从50 本中任取1 本,有50 种方法;第二类办法是从下层取自然科学书,可以从40 本中任取1 本,有40 种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各 1 本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书, 根据乘法原理,得到不同的取法种数是:50 X 40=2000 ?第2题说,共有A , B , C 三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3X 5=15个实验小区. 师:学习了两个基本原理之后,继续学习排列和组合,什么是排列?什么是组合?这两个问题有什么区别和联系?这是我们讨论的重点.先从实例入手: 1 .北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?希望同学 们设计好方案,踊跃发言. 生甲:首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制 2 种飞机票;若起点站 是广州,终点站是北京或上海,又需要2 种飞机票,共需要2+2+2=6 种飞机票. 师:生甲用加法原理解决了准备多少种飞机票问题.能不能用乘法原理来设计方案呢? 生乙:首先确定起点站,在三个站中,任选一个站为起点站,有 3 种方法.即

导轨强度及变形计算

导轨强度和变形计算 一.有关导轨强度和变形的要求: 1. 根据《GB7588-2003 电梯制造与安装安全规范》中10.1.1,本类型乘客电梯的电梯 导轨应满足以下要求: 根据《GB7588-2003 电梯制造与安装安全规范》的附录G中规定的轿厢内额定载荷分布状况,应对导轨的应力予以限制。 2. 根据《GB7588-2003 电梯制造与安装安全规范》中10.1.2,本类型乘客电梯的电 梯导轨还应满足以下要求: a.根据《GB7588-2003 电梯制造与安装安全规范》中10.1.2.1提供的许用应力 计算式、安全系数和许用应力值进行相应的导轨变形计算; b.“T”型导轨的最大计算允许变形,对于装有安全钳的轿厢、对重导轨,安全 钳动作时,在两个方向上为5mm。 二.本类型电梯选用的轿厢导轨截面的力学特性 电梯采用T127-2/A-B导轨,查标准知,其截面的力学特性如下: S=28.9cm2W x=31cm3I x=200cm4i x=2.68cm e=2.46cm W y=36.8cm3 I y=235cm4i y=2.86cm 三.本类型电梯导轨计算许用应力和变形要求 本类型电梯采用T127-2/A-B导轨,其钢材抗拉强度为370MPa,根据《GB7588-2003 电梯制造与安装安全规范》中10.1.2.1和10.1.2.2的要求,本类型电梯导轨计算许用应力σperm和变形要求为: a.正常使用载荷情况:σperm=165MPa b.安全钳动作时的情况:σperm=205MPa c.T型导轨的最大计算允许变形为:δperm=5mm

四.本类型电梯导轨强度及挠度校核计算 4.1 计算选用参数: 表4.1中的参数为本计算选用参数。 表4.1

组合变形及强度理论

组合变形和强度理论习题及解答 题1.图示,水平放置圆截面直角钢杆(2 ABC p ?),直径100d mm =,2l m =,1q k N m =,[]MPa 160=σ,试校核该杆的强度。 解: 1)各力向根部简化,根截面A 为危险面 扭矩:212nA M ql = ,弯矩 23 2 zA M ql =+,剪力2A Q ql = 2) 2348ZA M ql W d s p ==, 3132W d p =,3 116 p W d p =, 扭转剪应力:2 3 810.18n P M ql MPa W d t p ===, 3) []364.42r MPa s s = =<, ∴梁安全 题2、 平面曲杆在C 端受到铅重力P 作用。材料的 [σ]=160MPa 。若P=5KN ,l =1m ,a=0.6m 。试根据第四强度理论设计轴AB 的直径d. 解:属于弯扭组合变形 危险面A 处的内力为: 题3、平面曲拐在C 端受到铅垂力P 作用,材料的[σ]=160MPa ,E=2.1?10 5 MPa ,。 杆的直径 d=80mm ,l =1.4m ,a=0.6m ,l 1=1.0m 。若P=5KN (1) 试用第三强度理论校核曲拐的强度。 (2) 求1-1截面顶端处沿45?方向的正应变。 解: (1)危险A 上的内力为:5 1.4 7z M kN m =?? B

曲拐安全 (2)1-1截面内力:5,3z M kN m T kN m =?? 顶点的应力状态 题4. 图示一悬臂滑车架,杆AB 为18 号工字钢,其长度为 2.6l m =。试求当荷载F =25kN 作用在AB 的中点D 处时,杆内的最大正应力。设工字钢的自重可略去不计。 B 解:18号工字钢4 3421851030610.,.W m A m --=?? AB 杆系弯庄组合变形。 题5. 砖砌烟囱高30h m =,底截面m m -的外径13d m =,内径22d m =,自重 2000P kN =,受1/q kN m =的风力作用。试求: (1)烟囱底截面上的最大正应力; (2)若烟囱的基础埋深04h m =,基础及填土自重按21000P kN =计算,土壤的许用应力 []0.3MPa s =圆形基础的直径D 应为多大? 注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。 解:烟囱底截面上的最大正应力:

组合变形的强度计算

§9.1 组合变形概述 前面研究了杆件在拉伸(压缩)、剪切、扭转和弯曲四种基本变形时的强度和刚度问题。但在工程实际中,许多构件受到外力作用时,将同时产生两种或两种以上的基本变形。例如建筑物的边柱,机械工程中的夹紧装置,皮带轮传动轴等。 我们把杆件在外力作用下同时产生两种或两种以上的基本变形称为组合变形。常见的组合变形有: 1.拉伸(压缩)与弯曲的组合; 2.弯曲与扭转的组合; 3.两个互相垂直平面弯曲的组合(斜弯曲); 4.拉伸(压缩)与扭转的组合。 本章只讨论弯曲与扭转的组合。 处理组合变形问题的基本方法是叠加法,将组合变形分解为基本变形,分别考虑在每一种基本变形情况下产生的应力和变形,然后再叠加起来。组合变形强度计算的步骤一般如下: (1) 外力分析将外力分解或简化为几种基本变形的受力情况; (2) 内力分析分别计算每种基本变形的内力,画出内力图,并确定危险截面的位置; (3) 应力分析在危险截面上根据各种基本变形的应力分布规律,确定出危险点的位置及其应力状态。 (4) 建立强度条件将各基本变形情况下的应力叠加,然后建立强度条件进行计算。 §9.2 弯扭组合变形强度计算 机械中的转轴,通常在弯曲和扭转组合变形下工作。现以电机为例,说明此种组合变形的强度计算。图10-1a所示电机轴,在轴上两轴承中端装有带轮,工作时,电机给轴输入一定转矩,通过带轮的皮带传递给其它设备。带紧边拉力为F T1,松边拉力为F T2,不计带轮自重。

图10-1 (1) 外力分析将作用于带上的拉力向杆的轴线简化,得到一个力和一个力偶,如图10-1(b),其值分别为 力F使轴在垂直平面内发生弯曲,力偶M1和电机端产生M2的使轴扭转,故轴上产生弯曲和扭转组合变形。 (2) 内力分析画出轴的弯矩图和扭矩图,如图10-1(c)、(d)所示。由图知危险截面为轴上装带轮的位置,其弯矩和扭矩分别为

电梯1350kg梯速1.75设计计算

设计计算书TKJ(1350/1.75-JXW)

目录 1 设计的目的 2 主要技术参数 3电机功率的计算 4 电梯运行速度的计算 5 电梯曳引能力的计算 6 悬挂绳或链安全系数计算 7 绳头组合的验算 8 轿厢及对重导轨强度和变形计算 9 轿厢架的受力强度和刚度的计算 10 搁机梁受力强度和刚度的计算 11 安全钳的选型计算 12 限速器的选型计算与限速器绳的计算 13 缓冲器的选型计算 14轿厢和门系统计算说明 15井道顶层和底坑空间的计算 16轿厢上行超速保护装置的选型计算 17盘车力的计算 18操作维修区域的空间计算 19电气选型计算 20机械防护的设计和说明 21主要参考文献

1 设计的目的 TKJ(1350/1.75-JXW-VVVF)型客梯,是一种集选控制的、交流调频调压调速的乘客电梯,额定载重1350Kg,额定运行速度1.75m/s。本客梯采用先进的永磁同步无齿轮曳引机进行驱动,曳引比为2:1,绕绳方式为单绕,采用2导轨结构,用一个主轿架承受轿厢,在曳引绳的牵动下沿着2根主导轨上下运行,以达到垂直运输乘客和医疗设备的目的。 本客梯的轿厢内净尺寸为宽2100mm*深1600mm,内净面积为3.36M2,完全符合GB7588-2003《电梯制造与安装安全规范》的要求。 本计算书按照GB7588-2003《电梯制造与安装安全规范》的要求进行计算,以验证设计是否满足GB7588-2003标准和型式试验细则的要求。 本计算书验算的电梯为本公司标准的1350kg乘客电梯,主要参数如下: 额定速度1.75m/s 额定载重量1350kg 提升高度43.5m 层站数15层15站 轿厢内净尺寸2100mm*1600mm 开门尺寸1100mm*2100mm 开门方式为中分式 本电梯对以下主要部件进行计算: (一)曳引机、承重部分和运载部分 曳引机永磁同步无齿轮曳引机,GETM6.0H型,15 Kw,绕绳比2:1,单绕,曳引轮节径450 mm,速度1.75m/s 搁机大梁主梁25#工字钢 轿厢2100mm*1600mm,2导轨 钢丝绳7-φ10,2∶1曳引方式 导轨轿厢主导轨T89/B (二)安全部件计算及声明 安全钳渐进式AQ11B型,总容许质量3500kg,额定速度1.75m/s 限速器LOG03型,额定速度1.75m/s 缓冲器YH68-210型油压缓冲器,额定速度1.0~1.75m/s,总容许质量800-3500 kg,行程210 mm,总高675mm 2 主要技术参数

第八章组合变形构件的强度

第八章 组合变形构件的强度 8.1概 述 到现在为止,我们所研究过的构件,只限于有一种基本变形的情况,例如拉伸(或压缩)、剪切、扭转和弯曲。而在工程实际中的许多构件,往往存在两种或两种以上的基本变形。例如图8—1a 中悬臂吊车的横梁AB ,当起吊重物时,不仅产生弯曲,由于拉杆BC 的斜向力作用,而且还有压缩(图8—lb)。又如图8—2a 所示的齿轮轴,若将啮合力P 向齿轮中心平移、则可简化成如图8—2b 所示的情况。载荷P 使轴产生弯曲变形;矩为C m 和D m 的两个力偶则使轴产生扭转变形。这些构件都同时存在两种基本变形,前者是弯曲与压缩的组合;后者则是弯曲与扭转的组合。在外力作用下,构件若同时产生两种或两种以上基本变形的情况,就称为组合变形。

由于我们所研究的都是小变形构件,可以认为各载荷的作用彼此独立,互不影响,即任一载荷所引起的应力或变形不受其他载荷的影响。因此,对组合变形构件进行强度计算,可以应用叠加原理,采取先分解而后综合的方法。其基本步骤是:(1)将作用在构件上的载荷进行分解,得到与原载荷等效的几组载荷,使构件在每组载荷作用下,只产生一种基本变形;(2)分别计算构件在每种基本变形情况下的应力;(3)将各基本变形情况下的应力叠加,然后进行强度计算。当构件危险点处于单向应力状态时,可将上述应力进行代数相加;若处于复杂应力状态,则需求出其主应力,按强度理论来进行强度计算。 本章将讨论弯曲与拉伸(或压缩)的组合以及弯曲与扭转的组合构件的强度问题。 8.2 弯曲与拉伸 (或压缩) 的组合 在外力作用下,构件同时产生弯曲和拉伸(或压缩)变形的情况,称为弯曲与拉伸(或压缩)的组合变形。图8—1所示悬臂吊的横梁同时受到横向载荷和纵向载荷的作用,这是弯曲与拉伸(或压缩)组合构件的一种受力情况。在工程实际中,常常还遇到这样一种情况,即载荷与杆件的轴线平行,但不通过横截面的形心,此时,杆件的变形也是弯曲与拉伸(或压缩)的组合,这种情况通常称为偏心拉伸(或压缩)。载荷的作用线至横截面形心的垂直距离称为偏心距。例如图8—3a 中的开口链环和图8—4a 中的厂房柱子,如果将其上的载荷P 向杆件横截面的形心平移,则作用于杆件上的外力可视为两部分:一个轴向力P 和一个矩为Pe M =0 的力偶(图8—3b 、8—4b)。轴向力P 将使杆件产生轴向拉伸(或压缩);力偶将使杆件产生弯曲。由此可见,偏心拉伸(或压缩)实际上就是弯曲与拉伸(或压缩)的组合变形。 现在讨论弯曲与拉伸(或压缩)组合变形构件的应力和强度计算。 设一矩形截面杆,一端固定,一端自由(图8—5a),作用于自由端的集中力P 位于杆的纵对称面Oxy 内,并与杆的轴线x 成一夹角?。将外力P 沿x 轴和y 轴方向分解,得到两个分力(图8—5b): ?cos P P x = ?sin P P y = 其中,分力x P 为轴向外力,在此力的单独作用下,杆将产生轴向拉伸,此时,任一横

工程力学-组合变形

10 组合变形 1、斜弯曲,弯扭,拉(压)弯,偏心拉伸(压缩)等组合变形的概念; 2、危险截面和危险点的确定,中性轴的确定; 如双向偏心拉伸, 中性轴方程为 p p o o 22 y z z y 1z y0 i i ++?= 3、危险点的应力计算,强度计算,变形计算、。 4、截面核心。 10.1、定性分析图10.1 示结构中各构件将发生哪些基本变形? 图10.1 解题范例

[解](a)AD杆时压缩、弯曲组合变形,BC杆是压缩、弯曲组合变形;AC杆不发生变形。 (b)AB杆是压弯组合变形,BC杆是弯曲变形。 (c)AB是压缩弯曲组合变形,BC是压弯组合变形。 (d)CD是弯曲变形,BD发生压缩变形,AB发生弯伸变形,BC发生拉弯组合变形。 10.2分析图10.2中各杆的受力和变形情况。 图10.2 [解] (a)力可分解成水平和竖直方向的分力,为压弯变形。 (b)所受外力偶矩作用,产生弯曲变形。 (c)该杆受竖向集中荷载,产生弯曲变形.

(d)该杆受水平集中荷载,偏心受压,产生压缩和弯曲变形。 (e)AB段:受弯,弯曲变形,BC段:弯曲。 (f)AB段:受弯,弯曲变形,BC段:压弯组合。 (g)AB段:斜弯曲,BC段:弯纽扭合。 10.3分析图10.3 示构件中(AB、BC和CD) 各段将发生哪些变形? 图10.3 [解] AB段发生弯曲变形,BC段发生弯曲、扭转变形;CD段发生拉伸、双向弯曲变形。 10.4一悬臂滑车架如图10.4 所示,杆AB为18号工字钢(截面面积30.6cm2,Wz=185cm3),其长度为l=2.6m。试求当荷载F=25kN作用在AB的中点处时,杆内的最大正应力。设工字钢的自重可略去不计。 B l/2 F 20kN 300 C D A l 图10.4 [解]取AB为研究对象,对A点取矩可得 NBCY F12.5kN = 则3 2 25 = = NBCX NAB F F

排列组合基本概念

排列组合基本概念 两个基本原理 1.加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有 N=m1十m2十…十m n种不同的方法. 2.乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么完成这件事共有N=m1m2…m n种不同的方法. 例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书. 1)从中任取一本,有多少种不同的取法 2)从中任取数学书与语文书各一本,有多少的取法解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11. 答:从书架任取一本书,有11种不同的取法. (2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是N=6X5=30. 答:从书架上取数学书与语文书各一本,有30种不同的方法. 例2(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数 (2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数 (3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数 解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是 N=5X5X5=125. 答:可以组成125个三位数. 排列 什么叫排列

第八章组合变形构件的强度习题

第八章 组合变形构件得强度习题 一、填空题 1、两种或两种以上基本变形同时发生在一个杆上得变形,称为( )变形。 二、计算题 1、如图所示得手摇绞车,最大起重量Q =788N,卷筒直径D =36cm ,两轴承间得距离l =80cm ,轴得许用应力=80Mpa 。试按第三强度理论设计轴得直径d 。 2、图示手摇铰车得最大起重量P =1kN,材料为Q 235钢,[σ]=80 MPa 。试按第三强度理论选择铰车得轴得直径。 3、图示传动轴AB 由电动机带动,轴长L =1、2m ,在跨中安装一胶带轮,重G =5kN,半径R =0、6m ,胶带紧边张力F 1=6kN ,松边张力F 2=3kN 。轴直径d =0、1m,材料许用应力[σ]=50MPa 。试按第三强度理论校核轴得强度。 kN 8.1? kN 2.4? 4、如图所示,轴上安装有两个轮子,两轮上分别作用有F =3kN 及重物Q ,该轴处于平衡状态。若[σ]=80MPa 。试按第四强度理论选定轴得直径d 。

5、图示钢质拐轴, AB轴得长度l AB=150mm, BC轴长度l BC=140mm,承受集中载荷F得作用,许用应力[σ]=160Mpa,若AB轴得抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴得强度条件确定此结构得许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动得轴上,装有一直径D=1m得皮带轮,皮带紧边张力为2F=5KN,松边张力为F=2、5KN,轮重F P=2KN,已知材料得许用应力[σ]=80Mpa,试按第三强度理论设计轴得直径d。 7、如图所示,有一圆杆AB长为l,横截面直径为d,杆得一端固定,一端自由,在自由端B处固结一圆轮,轮得半径为R,并于轮缘处作用一集中得切向力P。试按第三强度理论建立该圆杆得强度条件。圆杆材料得许用应力为[σ]。

第八章组合变形构建的强度习题答案.

第八章 组合变形构件的强度习题答案 一、填空题 1、组合 二、计算题 1、解:31 7888010157.610(N mm)4M =???=?? 336 78810141.8410(N mm)2T =??=?? 33 800.1r d σ= =≤ 解得 d ≥30mm 2 、解:(1) 轴的计算简图 画出铰车梁的内力图: 险截面在梁中间截面左侧,P T P M 18.02.0max == (2) 强度计算 第三强度理论:() ()[]σπσ≤+=+= 2 2 322318.02.032 P P d W T M Z r []()()()() mm m d 5.320325.010118.01012.010 8032 10118.01012.032 3 2 32 36 32 32 3==??+????=??+??≥πσπ 所以绞车的轴的最小直径为32.5mm 。 3、解:

m kN 8.1? m kN 2.4? (1)外力分析,将作用在胶带轮上的胶带拉力F 1、F 2向轴线简化,结果如图b . 传动轴受竖向主动力: kN 1436521=++=++=F F G F , 此力使轴在竖向平面内弯曲。 附加力偶为: ()()m kN 8.16.03621?=?-=-=R F F M e , 此外力偶使轴发生变形。 故此轴属于弯扭组合变形。 (2)内力分析 分别画出轴的扭矩图和弯矩图如图(c )、(d ) 危险截面上的弯矩m kN 2.4?=M ,扭矩m kN 8.1?=T (3)强度校核 ()() []σπσ≤=??+?= += MPa W T M Z r 6.4632 1.0108.110 2.43 2 32 32 23 故此轴满足强度要求。 4、解:1)外力分析 kN F Q Q F 625 .01==∴?=?Θ 2)内力分析,做内力图

导轨的选型及计算

导轨的选型及计算 按结构特点和摩擦特性划分的导轨类型见表6-1[5],各类导轨的主要特点及应用列于表中。 表6-1 导轨类型特点及应用 6.1 初选导轨型号及估算导轨长度 X 方向初选导轨型号为494012GGB 20B AL2P -? [6]具体数据见《机械设计手册》9-149 Y 方向初选导轨型号为4109022G G B20AAL 1-?P 导轨的运动条件为常温,平稳,无冲击和震动 为何选用滚动直线导轨副: 1)滚动直线导轨副动静摩擦力之差很小,摩擦阻力小,随动性极好。有利

于提高数控系统的响应速度和灵敏度。驱动功率小,只相当普通机械的十分之一。 2)承载能力大,刚度高。 3)能实现高速直线运动,起瞬时速度比滑动导轨提高10倍。 4)采用滚动直线导轨副可简化设计,制造和装配工作,保证质量,缩短时间,降低成本。 导轨的长度: 由于导轨长度影响工作台的工作精度和高度,一般可根据滑块导向部分的长度来确定导轨长度。 其公式为: L=H+S+△l-S1-S2 由此公式估算出Lx=940mm,Ly=1090mm 其中L—导轨长度 H—滑块的导向面长度 S—滑块行程 △l—封闭高度调节量 S1—滑块到上死点时,滑块露出导轨部分的长度 S2—滑块到下死点时,滑块露出导轨部分的长度 6.2 计算滚动导轨副的距离额定寿命 X方向的导轨计算 X方向初选导轨型号为4 940 12 GGB20B AL2P- ?,查表9.3-73[1]得,这种导轨的额定动,静载荷分别为Ca=13.6kN,Coa=20.3kN。 4个滑块的载荷按表9.3-48序号1的载荷计算式计算。 其中工作台的最大重量为: G=100×9.8=980N F1=F2=F3=F4=1/4(G1+F)=250N 1)滚动导轨的额定寿命计算公式[6]为: L=(f h f t fc fa Ca/ fwPc) ε ?K=27166km 式中 L——额定寿命(km); Ca——额定动载荷(KN); P——当量动载荷(KN); Fmax——受力最大滑块所受的载荷(KN); Z——导轨上的滑块数;

第二章组合变形.

第十一章组合变形 2.5 组合变形 一、教学目标 1、掌握组合变形的概念。 2、掌握斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的概念和区分、危险截面和危险点的确定、应力计算、强度计算、变形计算、中性轴的确定等。 3、正确区分斜弯曲和平面弯曲。 4、了解截面核心的概念、常见截面的截面核心计算。 二、教学内容 1、讲解组合变形的概念及组合变形的一般计算方法:叠加法。 2、举例介绍斜弯曲和平面弯曲的区别。 3、讲解斜弯曲的应力计算、中性轴位置的确定、危险点的确立、强度计算、变形计算。 4、讲解弯曲和扭转组合变形内力计算,确定危险截面和危险点,强度计算。 5、讲解拉伸(压缩)和弯曲组合变形的危险截面和危险点分析、强度计算。 6、讲解偏心拉伸(压缩)组合变形的危险截面和危险点分析、应力计算、强度计算。 7、简单介绍截面核心的概念和计算。 三、重点难点 重点:斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的应力和强度计算。 难点: 1、解决组合变形问题最关键的一步是将组合变形分解为两种或两种以上的基本变形: 斜弯曲——分解为两个形心主惯性平面内的平面弯曲;

弯曲和扭转组合变形——分解为平面弯曲和扭转; 拉伸(压缩)和弯曲组合变形——分解为轴向拉伸(压缩)和平面弯曲(因剪力较小通常忽略不计); 偏心拉伸(压缩)组合变形——单向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和一个平面弯曲,双向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和两个形心主惯性平面内的平面弯曲。 2、组合变形的强度计算,可归纳为两类: ⑴危险点为单向应力状态:斜弯曲、拉(压)弯、偏心拉伸(压缩)组合变形的强度计算时只需求出危险点的最大正应力并与材料的许用正应力比较即可; ⑵危险点为复杂应力状态:弯扭组合变形的强度计算时,危险点处于复杂应力状态,必须考虑强度理论。 四、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 五、学时:2学时 六、讲课提纲 (一)斜弯曲 斜弯曲梁的变形计算 仍以矩形截面的悬臂梁为例:

最新组合变形习题及参考答案

组合变形 一、判断题 1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。( ) 2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。( ) 3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。( ) 4.正方形杆受力如图1所示,A点的正应力为拉应力。( ) 图 1 5. 上图中,梁的最大拉应力发生在B点。( ) 6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。( ) 图 2 7.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。( ) 8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。( )

图 3 9. 矩形截面的截面核心形状是矩形。( ) 10.截面核心与截面的形状与尺寸及外力的大小有关。( ) 11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。( ) 12.计算组合变形的基本原理是叠加原理。() 二、选择题 1.截面核心的形状与()有关。 A、外力的大小 B、构件的受力情况 C、构件的截面形状 D、截面的形心 2.圆截面梁受力如图4所示,此梁发生弯曲是() 图 4 A、斜弯曲 B、纯弯曲 C、弯扭组合

D、平面弯曲 三、计算题 1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。 图 5 2.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。 3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为 ,试校核挡土墙的强度。

工程力学-组合变形

10 组合变形 1、 斜弯曲,弯扭,拉(压)弯,偏心拉伸(压缩)等组合变形的概念; 2、危险截面和危险点的确定,中性轴的确定; 如双向偏心拉伸, 中性轴方程为 p p o o 22y z z y 1z y 0i i + + ?= 3、危险点的应力计算,强度计算,变形计算、。 4、截面核心。 10.1、定性分析图10.1 示结构中各构件将发生哪些基本变形? 图 10.1 [解](a )AD 杆时压缩、弯曲组合变形,BC 杆是压缩、弯曲组合变形;AC 杆不发生变形。 (b )AB 杆是压弯组合变形,BC 杆是弯曲变形。 (c )AB 是压缩弯曲组合变形,BC 是压弯组合变形。 (d )CD 是弯曲变形,BD 发生压缩变形,AB 发生弯伸变形,BC 发生拉弯组合变形。 10.2 分析图10.2中各杆的受力和变形情况。 解题范例

图 10.2 [解] (a)力可分解成水平和竖直方向的分力,为压弯变形。 (b)所受外力偶矩作用,产生弯曲变形。 (c)该杆受竖向集中荷载,产生弯曲变形. (d)该杆受水平集中荷载,偏心受压,产生压缩和弯曲变形。 (e)AB段:受弯,弯曲变形,BC段:弯曲。 (f)AB段:受弯,弯曲变形,BC段:压弯组合。 (g)AB段:斜弯曲,BC段:弯纽扭合。 10.3分析图10.3 示构件中 (AB、BC和CD) 各段将发生哪些变形?

图10.3 [解] AB 段发生弯曲变形,BC 段发生弯曲、扭转变形;CD 段发生拉伸、双向弯曲变形。 10.4一悬臂滑车架如图 10.4 所示,杆AB 为18号工字钢(截面面积30.6cm 2 ,Wz=185cm 3 ),其长度为l =2.6m 。试求当荷载F=25kN 作用在AB 的中点处时,杆的最大正应力。 设工字钢的自重可略去不计。 l /2 F 20kN 300C D A l 图 10.4 [解] 取AB 为研究对象,对A 点取矩可得NBCY F 12.5kN = 则 32 25 = =NBCX NAB F F 分别作出AB 的轴力图和弯矩图: kN l l /2 32 25 Fl kN.m l B l /2 F 20kN 300 C D A F NBC F NBCY NBCX

组合变形构件的强度习题

一 、 填空题 1两种或两种以上基本变形同时发生在一个杆上的变形 ,称为( )变形 、计算题 1如图所示的手摇绞车,最大起重量Q=788N,卷筒直径D=36cm 两轴承间的距离l=80cm, 轴的许用应力 =80Mpa 。试按第三强度理论设计轴的直径 d o 2、图示手摇铰车的最大起重量 P=1kN ,材料为Q235钢,[q]=80 MPa 。试按第三强度理 论选择铰车的轴的直径。 400 -id n 3、图示传动轴AB 由电动机带动,轴长L=1.2m,在跨中安装一胶带轮,重 G=5kN,半径 R=0.6m,胶带紧边张力 F 1=6kN 松边张力 R=3kN 。轴直径 d=0.1m ,材料许用应力 [d =50MPa 。试按第三强度理论校核轴的强度。 4、如图所示,轴上安装有两个轮子,两轮上分别作用有 F=3kN 及重物Q ,该轴处于平 第八章 组合变形构件的强度习题 40-0

5 、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度1BC=140mm,承受集中载荷F 的作用,许用应力[c)=160Mpa,若AB轴的抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴的强度条件确定此结构的许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动的轴上,装有一直径D =1m的皮带轮,皮带紧边张力为 2F=5KN松边张力为F=,轮重F P=2KN,已知材料的许用应力[q]=80Mpa,试按第三强度理论设计轴的直径d。 7、如图所示,有一圆杆AB长为I,横截面直径为d,杆的一端固定,一端自由,在自由端B处固结一圆轮,轮的半径为R,并于轮缘处作用一集中的切向力P。试按第三强度理论建立该圆杆的强度条件。圆杆材料的许用应力为[可。 衡状态。若[d=80MPa。试按第四强度理论选定轴的直径d

排列组合是组合学的最基本概念

排列组合是组合学的最基本概念。排列就是从指定的n个元素中取出指定的m个元素进行排序。组合则是指从给定个数的元素中取出指定个数的元素,而不进行排序。排列组合的核心问题是研究给定的排列组合可能出现的情况总数。排列组合的公式如下: 排列:从n个不同的元素中取出m个互不相同的元素并排序,一共有Pnm种取法。排列公式: Pnm=n!/(n-m)!=n×(n-1)×(n-2)×…×(n-m+1)。 组合:从n个不同的元素中取出m个互不相同的元素。一共有Cnm种取法。组合公式: Cnm=n!/(n-m)!m!=n×(n-1)(n-2)...(n-m+1)/ m×(m-1)(m-2) (1) 排列组合中还涉及到两个概念问题。分步与分类。 分步乘法原理:完成一件事,一共需要m个步骤。完成第一个步骤有n1种方法,完成第二个步骤有n2种方法…那么完成这件事情,一共有n1×n2×n3×…×nm种方法。 分类加法原理:完成一件事,一共有m类不同的方法,每一类方法都能完成这件事。第一类方法中有n1种不同的方法,第二类方法中有n2种不同方法…。那么完成这件事一共有n1+n2+n3+…+nm种方法。 老师分别以公考真题为例来详细介绍这两个概念。 例:(2011河南法检真题)从五本不同的书中抽出4本,分给两个同学,每人两本,共有多少种分法?() A. 11 B. 30 C. 60 D. 120 【解析】这是一道典型的排列组合题目。元素总个数为5。事件为从5本书中抽出4本分别给两个同学。完成这件事一共需要两个步骤:从5本书中取出4本;把4本书分给两个同学。第一个步骤:从5本书中取出4本,没有排序,是一个组合问题。故完成第一个步骤有C54=5种方法。第二个步骤:把4本书分给两个同学,有顺序,是一个排列问题。故完成第二个步骤有P42=(4×3×2×1)/(2×1)=12种方法。所以完成这件事情一共有5×12=60种方法。所以答案为C。

相关主题
文本预览
相关文档 最新文档