当前位置:文档之家› 视频参数介绍

视频参数介绍

视频参数介绍
视频参数介绍

(一):

分辨率大家应该比较熟悉了,视频文件的用途决定分辨率的大小。大家应该选择合适的分辨率,能有效提高视频编码效率和控制文件大小,并获得最佳观赏效果。

清晰度的高低在于是否能分辨出图像线条间的区别,即图像层次对景物质点的分辨或细微层次质感的精细程度。其分辨率愈高,图像表现得愈细致,清晰度愈高。在视频转换时,清晰度更多的是一个比较主观的感觉。画面锐利、整洁、细致都可以让人产生清晰的感觉。一般来说,在足够编码率的前提下,分辨率越高,画面越清晰。因为分辨率提高后,图像表现就会更细致,图像层次之间也更加分明。但如果编码率不够,即使分辨率比较高,但直接感觉就是画面模糊,也就谈不上高清晰。

如果是动作片等类型的影片,一般画面变化激烈,需要设置较大的编码率。如果是动画片、风景片等类型的影片,画面变动不激烈,可以设置相对较小的编码率即可达到相同的清晰度,以便缩小转换后的文件体积。具体需要自己体会。

转换视频文件的时候,大家最关心的就是转换后的画面是否清晰。经常听到有人说XX软件转换质量好,XX软件转换质量差,很多情况下其实并不是软件不好,而是那些人自己不懂。下面4个例子详细讲解。

注:下面4个例子中都使用相同的视频编码器Xvid,全部使用固定比特编码方式。

例1:下面2个画面取材于同一个影片,都已经使用了足够的编码率。

分辨率176×144

因为编码率足够,因此像素之间界限也算分明(下面的字幕在这种低分辨率的情况下依然能够识别)。但分辨率过低,导致无法识别更多的画面内容,因此清晰度低。

-------------------------------------------------------------------------------

--------------------

分辨率480×360

在足够的编码率支持下,画面锐利、整洁、清晰,能够获得更多的画面细节,明显给人主观上一种清晰的感觉。事实上片源画面更大,效果更好。

例2:使用固定视频编码率270Kbps,相同的编码格式,不同画面大小的清晰度存在区别。因此必须根据画面大小确定合适的编码率。(因为是动画片,取的编码率就低了一些,一般分辨率320×240的影片建议取320~350Kbps)

分辨率320×240,画面给人感觉清晰度不错。

-------------------------------------------------------------------------------

-------------------

分辨率640×480,与上图的视频编码率一致为270 Kbps,因编码率不够,给人模糊的感觉,

甚至出现马赛克的情况。

例3:使用了足够的编码率设置以后,大分辨率画面依然给人清晰的感觉。

此画面分辨率同样是640×480,与例2中使用同样的编码器,但将编码率提高到650Kbps,画面清晰度比例2中的同比例画面高很多。前提是片源有足够的分辨率和清晰度。例4中将

讲解片源分辨率不够的情况

例4:强行将小分辨率画面拉大为大分辨率画面,即使编码率足够也不会改善画面质量

分辨率176×144,编码率200Kbps

右边画面虽小,但起码看起来画面是锐利的。

将上图的视频文件作为片源,强制重新取样转换为分辨率320×240的视频文件,编码率设置为350Kbps。转换后的文件明显给人一直模糊的感觉。因为编码率足够,因此没有出现马赛克的情况,但并没有因为分辨率变大,就能识别更多的画面细节。下面的字幕都是模糊的,不锐利。

编码率/比特率直接与文件体积有关。且编码率与编码格式配合是否合适,直接关系到视频文件是否清晰。

在视频编码领域,比特率常翻译为编码率,单位是Kbps,例如800Kbps

其中,1K=1024bit 1M=1024K

b 为比特(bit)这个就是电脑文件大小的计量单位,1KB=8Kb,区分大小写,B代表字节(Byte)

s 为秒(second)

p 为每(per)

以800kbps来编码表示经过编码后的数据每秒钟需要用800K比特来表示。

1MB=8Mb=1024KB=8192Kb

Windows系统文件大小经常用B(字节)为单位表示,但网络运营商则用b(比特),也就是为什么512K速度宽带在电脑上显示速度最快只有约64K的原因,网络运营商宣传网速的时候省略了计量单位。

完整的视频文件是由音频流与视频流2个部分组成的,音频和视频分别使用的是不同的编码率,因此一个视频文件的最终技术大小的编码率是音频编码率+视频编码率。例如一个音频编码率为128Kbps,视频编码率为800Kbps的文件,其总编码率为928Kbps,意思是经过编码后的数据每秒钟需要用928K比特来表示。

了解了编码率的含义以后,根据视频播放时间长度,就不难了解和计算出最终文件的大小。编码率也高,视频播放时间越长,文件体积就越大。不是分辨率越大文件就越大,只是一般情况下,为了保证清晰度,较高的分辨率需要较高的编码率配合,所以使人产生分辨率越大的视频文件体积越大的感觉。

计算输出文件大小公式:

(音频编码率(KBit为单位)/8 + 视频编码率(KBit为单位)/8)× 影片总长度(秒为单位)= 文件大小(MB为单位)

这样以后大家就能精确的控制输出文件大小了。

例:有一个1.5小时(5400秒)的影片,希望转换后文件大小刚好为700M

计算方法如下:

700×8÷5400×1024≈1061Kbps

意思是只要音频编码率加上视频编码率之和为1061Kb,则1个半小时的影片转换后文件体积大小刚好为700M。

至于音频编码率和视频编码率具体如何设置,就看选择的编码格式和个人喜好了,只要2者之和为1061即可。如可以设置为视频编码格式H264,视频编码率900 Kbps,音频编码格式AAC,编码率161 Kbps。

与文件体积大小有关的码率是指的平均码率,因此,不论是使用固定比特一次编码方式还是使用二次(多次)动态编码方式,都是可以保证文件大小的。只有使用基于质量编码的方式的时候,文件大小才不可控制。

编码格式有很多种,在技术不断进步的情况下,针对不同的用途,产生了各种编码格式。不同编码格式的压缩率不一样,且有各自的特点,有些在低码率情况下能保持较高的画面质量,但在高码率情况下反而画面质量提示不大,有些适合在高码率情况下保持高清晰度画面,但可能在低码率情况下效果不佳。[url=https://www.doczj.com/doc/e95252334.html,/viewthread.php?tid=108&extra=page%3D1]常见的几种编码格式介绍[/url]

帧率:要了解帧率就必须了解视频播放的一个基本原理。人眼具有视觉延迟的特点,立即拿开眼睛前的一副图像,大脑中却不是立即反应出来的,大约在0.1秒以后,才会反应画面已经拿开。因此,如果给人眼观看一幅幅连续的画面,且速度超过每秒10幅以上的时候,在人脑中就会产生画面连续的感觉,从而感觉自己看到的不是一幅幅独立的图片,而是一个连续的视频。帧率就是视频文件每秒展示在人眼的画面的数量。24帧/秒的意思就是此视频画面每秒变化24次。因为电影的帧率是24帧/秒,所以一般认为,只要视频文件的帧率达到或超过24帧/秒,就可以理解为画面流畅。帧率太低,则必然导致视觉上感觉画面不流畅,如常见共享网站提供的FLV文件,就经常会感觉画面不流畅,因为帧率只有12帧/秒。对于非智能手机等设备,因为硬件运算能力不高,支持的帧率一般也不高,很多手机都只有15帧/秒播放能力,部分手机能力甚至更低,因此手机视频文件普遍不很流畅。当帧率达到30帧/秒的时候,即使非常激烈的画面变化,人眼也能感受到很流畅。人眼能感知的最高速度是60帧/秒。根据帧率的定义,我们能够了解到,当分辨率一定的时候,假设保持同样的清晰度,帧率越高,画面越流畅,需要的编码率也越高,文件体积也就相应变大。

现在我们已经能了解分辨率、清晰度、编码率、编码格式、文件体积大小、帧率之间的关系了。分辨率越大,清晰度越高,画面越流畅,帧率越高,编码率越高,文件体积越大,但越先进的编码标准,可以用更小的编码率实现同样的效果,从而减小文件的体积。一般来说,越先进的编码标准对硬件的运算能力要求越高。

根据具体使用的环境和片源的情况,确定合适的分辨率。在保持一定画面清晰度和声音质量的前提下,确定需要的编码格式,再根据设置的帧率、编码格式的压缩率特点,确定合适的编码率。

转换视频文件的时候,一般要遵循以下的原则,分辨率可以降低,但不能增加,例如可以将640×480的文件转换为320×240的文件,但不必将320×240的文件转换为640×480。因为320×240转换为640×480并不会带来清晰度的提高,只会增加编码率,使文件体积变大。同样的道理,帧率可以降低,但不能增加,人为将12帧的FLV文件转换为25帧的A VI文件,并不会使你的画面变得更流畅。这种转换只是一种纯粹的浪费。编码率与编码格式联系在一起,由于编码格式有些技术先进些,可用较低编码率实现较高的画面质量。因此如果转换时更改了编码格式,则应该根据实际情况确定编码率。更多的时候是根据使用经验确定。

在实际使用中,如果希望把视频网站提供的FLV文件转换为VCD或者DVD,是不实际的,并不会因为你转换了格式,就画面变得更加清楚、流畅,且这种强行转换可能会带来其他的问题,因为MPEG1、MPEG2编码设计的时候并未考虑到这种极低帧率和极低画面质量的情况。

视频编码格式

RMVB/RM在制定的时候主要考虑的是网络传播,目的在于利用不快的网速传播视觉可以接受的画面质量。因此,RMVB/RM编码格式的特点是较低码率下能获得较好的视频质量。但高视频编码率的情况下反不如其他编码格式。同样是RM/RMVB后缀的文件,其内部编码格式细分还有R8/R9/R10等,但总的来说,上面所说的特点依然是存在的。只是视频压缩率更高了,因此RMVB没人用在高清编码领域。RMVB追求的是高视频压缩率,能接受的画面质量,所以经常压缩掉一些不容易注意的细节。初看画面不错,细看就发现画面不锐利,层次不分明,总给人一直模糊的感觉。RMVB/RM后缀文件的音频编码部分同样存在这样的情况,声音压缩率很高,但只是能听,不要奢望达到声音动听的境界。RMVB的流行,一是因为REAL的这种格式适合低速网络的传播,能以较小的文件体积获得可以接受的画面质量。二是随着RMVB的使用,开始出现功能比较完善的转码软件和解决方案,方便了视频爱好者,扩大了影片来源。但随着网速越来越快,H264等更好的视频编码器出现,同时也因为RMVB不适合高清视频制作,且若对于其他硬件厂家希望支持RMVB/RM格式,就必须向REAL公司支付相当昂贵的专利费,导致很多硬件厂商放弃了对RMVB文件的支持。RMVB的文件已经不是以前那种完全压倒性的优势了。现在网络传播的视频文件已经很多都是A VI、MKV、MP4、3GP等后缀了。其中MKV等多用于高清视频文件,MP4、3GP 等多用于手机和便携式设备等领域,A VI则使用范围更加广,不但在高清晰度视频文件中有A VI文件,在便携式设备领域也有A VI使用。

VCD用的视频编码格式为MPEG1,DVD的则为MPEG2,VCD和DVD都主要用于家庭影音播放,而且一般来说,VCD用的MPEG1编码为固定码率的视频编码。DVD可以支持动态码率的MPEG2编码。为了能保证激烈变化画面的时候的清晰度,其默认编码率都比较高,VCD标准编码率为1152Kbps,DVD开放些,根据影片播放时间,常设置为5000 Kbps -8000 Kbps之间,在不浪费DVD碟容量的前提下尽可能的使用较高的码率获得更高的清晰度。MPEG1和MPEG2在超低码率情况效果不佳,且过分提高码率,画面效果带来的提示也不明显。

A VI文件常用的视频编码为Xvid和Divx,但Divx是一种收费的视频编码格式,开发之初利用了开源社区的力量,但后封闭起来成为一种收费的视频编码格式,违反了开源社区的游戏规则,因此与开源社区有过节。Xvid则是在Divx脱离开源社区以后,由开源社区在Divx 技术积累的基础上独立研发的新的符合MPEG4规范的视频编码格式,视频编码效果很好,对硬件要求也不高,同时由于Xvid的免费与开放性,Xvid获得了众多硬件厂家的支持,所以现在很多DVD碟机和MP4等硬件设备都可以直接播放Xvid编码的A VI文件。可以说,能支持Divx的设备一般都支持Xvid。同时Xvid视频编码也是DVD Rip的标准编码方式之一,因此很多高清视频文件也用Xvid进行视频编码。由于大量的DVD碟机和MP4提供了良好的硬件支持,Xvid编码已经成为事实上最常用的编码格式之一。Xvid编码的特点是在低码率的情况下,效果不输于RMVB,同时对于硬件运算能力的要求低于RMVB,高码率的情况下能达到很不错的清晰度,效果远远高于RMVB。同时Xvid对于动画视频还做了特殊优化。

H264编码也是一种符合MPEG4规范的视频编码格式。应该算目前能用上的最先进的视频

编码方式了,特点是在低码率的情况下,依然能获得很好的画面视觉效果。因此在320×240分辨率的情况下,要保持较高的清晰度,Xvid一般常用320-350Kbps码率,但H264只需要200多Kbps码率就能达到同样的画面效果。同时,H264的高压缩率,也能满足高清领域压缩的需求。随着画面分辨率的变大,为了保持清晰度,需要的编码率会以比分辨率更快的速度增加,导致文件体积快速增加,特别是达到1080P级别的时候,一个影片的体积为几G 乃至几十G,此时H264的高压缩率特点特别适合制作高清视频,H264的压缩率比MPEG2高出好几倍。一个使用MPEG2编码制作的高清文件可能会达到30G甚至更多,但使用H264编码制作的话,可能只需要4-5G就足够了。但是,H264的这种高压缩率带来的副作用就是最硬件运算能力要求比较高,用H264编码速度较慢,且使用H264编码的高清视频很多单核电脑放不了,好在现在双核电脑的流行基本解决了这个问题,在便携式设备上,由于多数厂家设计能力所限,普遍CPU运算能力都低,H264也就无法支持,因为在便携式设备上,一旦CPU速度超过400M Hz或者达到更高的速度的时候,不但对CPU设计、制作提出了高要求,而且对于电路设计也提出了新的要求,在低速CPU主板设计时可以忽略不计的射频干扰等问题,但如果要达到更高的速度,就必须解决,很多厂家的设计能力都不足以解决这方面的问题,因此,市面上的MP4设备多可以支持Xvid编码,但无法支持H264编码。微软自己的ASF/WMV文件有专用的视频编码格式,也有几代不同的视频编码格式,新一代的视频编码格式压缩率更高,效果更好。ASF文件其实与WMV文件是一回事,只是后缀不一样罢了,可以手动修改更换后缀,没关系的。但由于微软的这种格式可以附带播放权限控制,加入了文件权限控制的ASF/WMV文件,只能通过电脑播放,其他设备如标称支持ASF格式的MP4播放器等都无法播放,且在电脑上播放时,必须链接进授权者的网站,很多居心不良的网站就乘机在授权网页上挂木马。RMVB文件可以弹出网页木马,但RMVB 的弹出页面是设置在RMVB文件里面的,你可以用软件或者手工去除这种弹出设置,或者不联网看RMVB文件也可以,不链接到指定网页并不会影响到正常播放。但ASF/WMV的危害更加严重,如果需要播放有授权限制的ASF/WMV文件,必须链接进指定网页获得授权,否则不能播放。因此,假设授权页面暗藏木马,除非你不看这个ASF/WMV文件,否则开始获取播放授权就必中网页木马。由于ASF/WMV文件内部也有几代不同的编码器,即使在标准支持ASF的设备上,也可能遇到不能播放的ASF/WMA文件。因为可能不支持某种视频编码器或者编码组合,这个情况与A VI相似,其他封装格式也都有这类问题。而且ASF/WMV所用的编码器,论压缩率比不上H264,论兼容性和开放性比不上Xvid,因此,不是必须情况,一般不建议转换ASF/WMV文件。

随着FLV和3GP文件的流行,H263视频编码格式在日常使用中也经常用到。H263压缩率其实并不高,但对硬件要求比较低,因此被手机等平台选择为主要支持的视频编码之一。FLASH从FLASH8开始,就支持H263视频编码的FLV文件。现在很多视频共享网站的FLV 文件视频部分用的就是H263编码。但由于H263压缩率并不高,因此视频网站的约20分钟FLV视频文件体积大小约为40M左右,但并不清晰,激烈动作画面则更加模糊。很多非智能手机本身屏幕就不大,分辨率很低,也谈不上什么清晰度,用H263也无所谓。FLASH 完全就是为了适应网络传播而设计的,帧率极低,默认只有12帧,一般的FALSH动画文件用的是矢量技术,可以随意放大缩小而不失真,但FLASH的FLV文件是基于位图技术的,且第一代FLV文件标准就支持H263编码,FLV为了更快的进行网络传播,可以说将RMVB/RM格式的设计理念发挥到极致,一切为了缩小文件体积,视觉效果能看就行。因此,尽管FLV文件可以支持更高的视频编码率和帧率,新的FLASH播放器也能支持新的视频编码格式,但在我们常见的视频共享网站中,为了兼容性和尽可能的缩小文件体积,其FLV 文件分辨率多为320×240,帧率为12帧/秒,视频编码格式为本就压缩率并不高的H263,视

频编码率不足300Kbps,音频编码方面也是尽可能的能省就省。尽管压缩参数低,但网站播放界面的分辨率一般为400×300,本就已经很低的分辨率还被强行放大,这就是为什么大家总是觉得视频共享网站的视频有种模糊感觉的原因,且有时候还会觉得画面不流畅,这些网站的提供的视频节目,其声音效果也很烂,基本属于刚刚能听的范围。

音频编码方面,对于视频文件来说,除了RMVB自己封闭的编码标准,最常见的就是MP3和AAC。微软格式的ASF/WMV视频文件数量少,其配套的音频格式就是常见的WMA格式。但实际情况,WMA格式多是单纯的作为一种音频压缩格式存在,在非ASF/WMV类型

的视频文件中,一般不使用WMA格式。就目前的技术水平来说,音频编码对硬件的要求可以忽略不计。在有损音频编码领域,音频编码若追求通用性,首选自然是MP3格式,若

追求视频压缩率和视频压缩质量,首选自然是AAC,WMA由于高不成低不就,且是微软

的专利编码格式,在视频文件制作中使用并不广泛。在无损压缩领域使用的格式主要有WA V、APE、FLAC几种,理论上这些编码格式也可以用在视频文件制作中,但基本没人用,因为

会导致文件体积过大。

视频参数介绍以及之间的关系!!(二)

视频参数

编码率/比特率直接与文件体积有关。且编码率与编码格式配合是否合适,直接关系到视频文件是否清晰。

在视频编码领域,比特率常翻译为编码率,单位是Kbps,例如800Kbps

其中, 1K=1024 1M=1024K

b 为比特(bit)这个就是电脑文件大小的计量单位,1KB=8Kb,区分大小写,B代表字节(Byte)

s 为秒(second)

p 为每(per)

以800kbps来编码表示经过编码后的数据每秒钟需要用800K比特来表示。

1MB=8Mb=1024KB=8192Kb

Windows系统文件大小经常用B(字节)为单位表示,但网络运营商则用b(比特),也就是为什么512K速度宽带在电脑上显示速度最快只有约64K的原因,网络运营商宣传网速的时候省略了计量单位。

完整的视频文件是由音频流与视频流2个部分组成的,音频和视频分别使用的是不同的编码率,因此一个视频文件的最终技术大小的编码率是音频编码率+视频编码率。例如一个音频编码率为128Kbps,视频编码率为800Kbps的文件,其总编码率为928Kbps,意思是经过编码后的数据每秒钟需要用928K比特来表示。

了解了编码率的含义以后,根据视频播放时间长度,就不难了解和计算出最终文件的大小。编码率也高,视频播放时间越长,文件体积就越大。不是分辨率越大文件就越大,只是一般情况下,为了保证清晰度,较高的分辨率需要较高的编码率配合,所以使人产生分辨率越大的视频文件体积越大的感觉。

计算输出文件大小公式:

(音频编码率(KBit为单位)/8 + 视频编码率(KBit为单位)/8)×影片总长度(秒为单位)= 文件大小(MB为单位)

这样以后大家就能精确的控制输出文件大小了。

例:有一个1.5小时(5400秒)的影片,希望转换后文件大小刚好为700M

计算方法如下:

700×8÷5400×1024≈1061Kbps

意思是只要音频编码率加上视频编码率之和为1061Kb,则1个半小时的影片转换后文件体积大小刚好为700M。

至于音频编码率和视频编码率具体如何设置,就看选择的编码格式和个人喜好了,只要2者之和为1061即可。如可以设置为视频编码格式H264,视频编码率900 Kbps,音频编码格式AAC,编码率161 Kbps。

与文件体积大小有关的码率是指的平均码率,因此,不论是使用固定比特一次编码方式还是使用二次(多次)动态编码方式,都是可以保证文件大小的。只有使用基于质量编码的方式的时候,文件大小才不可控制。

编码格式有很多种,在技术不断进步的情况下,针对不同的用途,产生了各种编码格式。不同编码格式的压缩率不一样,且有各自的特点,有些在低码率情况下能保持较高的画面质量,但在高码率情况下反而画面质量提示不大,有些适合在高码率情况下保持高清晰度画面,但可能在低码率情况下效果不佳。[url=https://www.doczj.com/doc/e95252334.html,/viewthread.php?tid=108&extra=page%3D1]常见的几种编码格式介绍[/url]

帧率:要了解帧率就必须了解视频播放的一个基本原理。人眼具有视觉延迟的特点,立即拿开眼睛前的一副图像,大脑中却不是立即反应出来的,大约在0.1秒以后,才会反应画面已经拿开。因此,如果给人眼观看一幅幅连续的画面,且速度超过每秒10幅以上的时候,在人脑中就会产生画面连续的感觉,从而感觉自己看到的不是一幅幅独立的图片,而是一个连续的视频。帧率就是视频文件每秒展示在人眼的画面的数量。24帧/秒的意思就是此视频画面每秒变化24次。因为电影的帧率是24帧/秒,所以一般认为,只要视频文件的帧率达到或超过24帧/秒,就可以理解为画面流畅。帧率太低,则必然导致视觉上感觉画面不流畅,如常见共享网站提供的FLV文件,就经常会感觉画面不流畅,因为帧率只有12帧/秒。对于非智能手机等设备,因为硬件运算能力不高,支持的帧率一般也不高,很多手机都只有15帧/秒播放能力,部分手机能力甚至更低,因此手机视频文件普遍不很流畅。当帧率达到30帧/秒的时候,即使非常激烈的画面变化,人眼也能感受到很流畅。人眼能感知的最高速度是60帧/秒。根据帧率的定义,我们能够了解到,当分辨率一定的时候,假设保持同样的清晰度,帧率越高,画面越流畅,需要的编码率也越高,文件体积也就相应变大。

现在我们已经能了解分辨率、清晰度、编码率、编码格式、文件体积大小、帧率之间的关系了。分辨率越大,清晰度越高,画面越流畅,帧率越高,编码率越高,文件体积越大,但越先进的编码标准,可以用更小的编码率实现同样的效果,从而减小文件的体积。一般来说,越先进的编码标准对硬件的运算能力要求越高。

根据具体使用的环境和片源的情况,确定合适的分辨率。在保持一定画面清晰度和声音质量的前提下,确定需要的编码格式,再根据设置的帧率、编码格式的压缩率特点,确定合适的编码率。

转换视频文件的时候,一般要遵循以下的原则,分辨率可以降低,但不能增加,例如可以将640×480的文件转换为320×240的文件,但不必将320×240的文件转换为640×480。因为320×240转换为640×480并不会带来清晰度的提高,只会增加编码率,使文件体积变大。同样的道理,帧率可以降低,但不能增加,人为将12帧的FLV

文件转换为25帧的AVI文件,并不会使你的画面变得更流畅。这种转换只是一种纯粹的浪费。编码率与编码格式联系在一起,由于编码格式有些技术先进些,可用较低编码率实现较高的画面质量。因此如果转换时更改了编码格式,则应该根据实际情况确定编码率。更多的时候是根据使用经验确定。

在实际使用中,如果希望把视频网站提供的FLV文件转换为VCD或者DVD,是不实际的,并不会因为你转换了格式,就画面变得更加清楚、流畅,且这种强行转换可能会带来其他的问题,因为MPEG1、MPEG2编码设计的时候并未考虑到这种极低帧率和极低画面质量的情况。

视频转换和刻录要真正达到高水平,需要我们学习和理解的东西很多。有许多朋友和我一样,就是想打造像市场上的一张DVD连续剧。但有许多困惑一张普通DVD为什么能存放30多集电视,它是怎么做成的呢。在今后的日子里飞絮和大家一起学习,慢慢揭开这面面纱。

视频转换刻录之一:视频参数介绍以及各参数之间的关系

分辨率大家应该比较熟悉了,视频文件的用途决定分辨率的大小。大家应该选择合适的分辨率,能有效提高视频编码效率和控制文件大小,并获得最佳观赏效果。

清晰度的高低在于是否能分辨出图像线条间的区别,即图像层次对景物质点的分辨或细微层次质感的精细程度。其分辨率愈高,图像表现得愈细致,清晰度愈高。在视频转换时,清晰度更多的是一个比较主观的感觉。画面锐利、整洁、细致都可以让人产生清晰的感觉。一般来说,在足够编码率的前提下,分辨率越高,画面越清晰。因为分辨率提高后,图像表现就会更细致,图像层次之间也更加分明。但如果编码率不够,即使分辨率比较高,但直接感觉就是画面模糊,也就谈不上高清晰。

如果是动作片等类型的影片,一般画面变化激烈,需要设置较大的编码率。如果是动画片、风景片等类型的影片,画面变动不激烈,可以设置相对较小的编码率即可达到相同的清晰度,以便缩小转换后的文件体积。具体需要自己体会。

转换视频文件的时候,大家最关心的就是转换后的画面是否清晰。经常听到有人说XX软件转换质量好,XX软件转换质量差,很多情况下其实并不是软件不好,而是那些人自己不懂。下面4个例子详细讲解。

注:下面4个例子中都使用相同的视频编码器Xvid,全部使用固定比特编码方式。

例1:下面2个画面取材于同一个影片,都已经使用了足够的编码率。

分辨率176×144

因为编码率足够,因此像素之间界限也算分明(下面的字幕在这种低分辨率的情况下依然能够识别)。但分辨率过低,导致无法识别更多的画面内容,因此清晰度低。

---------------------------------------------------------------------------------------------------

分辨率480×360

在足够的编码率支持下,画面锐利、整洁、清晰,能够获得更多的画面细节,明显给人主观上一种清晰的感觉。事实上片源画面更大,效果更好。

例2:使用固定视频编码率270Kbps,相同的编码格式,不同画面大小的清晰度存在区别。因此必须根据画面大小确定合适的编码率。(因为是动画片,取的编码率就低了一些,一般分辨率320×240的影片建议取320~350Kbps)

分辨率320×240,画面给人感觉清晰度不错。

--------------------------------------------------------------------------------------------------

分辨率640×480,与上图的视频编码率一致为270Kbps,因编码率不够,给人模糊的感觉,甚至出现马赛克的情况。

例3:使用了足够的编码率设置以后,大分辨率画面依然给人清晰的感觉。

此画面分辨率同样是640×480,与例2中使用同样的编码器,但将编码率提高到650Kbps,画面清晰度比例2中的同比例画面高很多。前提是片源有足够的分辨率和清晰度。例4中将讲解片源分辨率不够的情况

例4:强行将小分辨率画面拉大为大分辨率画面,即使编码率足够也不会改善画面质量

分辨率176×144,编码率200Kbps

右边画面虽小,但起码看起来画面是锐利的。

将上图的视频文件作为片源,强制重新取样转换为分辨率320×240的视频文件,编码率设置为350Kbps。转换后的文件明显给人一直模糊的感觉。因为编码率足够,因此没有出现马赛克的情况,但并没有因为分辨率变大,就能识别更多的画面细节。下面的字幕都是模糊的,不锐利。

编码率/比特率直接与文件体积有关。且编码率与编码格式配合是否合适,直接关系到视频文件是否清晰。

在视频编码领域,比特率常翻译为编码率,单位是Kbps,例如800Kbps

其中b为比特(bit)这个就是电脑文件大小的计量单位,1KB=8Kb,区分大小写,B代表字节(Byte)

s为秒(second)

p为每(per)

以800kbps来编码表示经过编码后的数据每秒钟需要用800K比特来表示。

1MB=8Mb=1024KB=8192Kb

Windows系统文件大小经常用B(字节)为单位表示,但网络运营商则用b(比特),也就是为什么512K速度宽带在电脑上显示速度最快只有约64K的原因,网络运营商宣传网速的时候省略了计量单位。

完整的视频文件是由音频流与视频流2个部分组成的,音频和视频分别使用的是不同的编码率,因此一个视频文件的最终技术大小的编码率是音频编码率+视频编码率。例如一个音频编码率为128Kbps,视频编码率为800Kbps的文件,其总编码率为928Kbps,意思是经过编码后的数据每秒钟需要用928K比特来表示。

了解了编码率的含义以后,根据视频播放时间长度,就不难了解和计算出最终文件的大小。编码率越高,视频播放时间越长,文件体积就越大。不是分辨率越大文件就越大,只是一般情况下,为了保证清晰度,较高的分辨率需要较高的编码率配合,所以使人产生分辨率越大的视频文件体积越大的感觉。

计算输出文件大小公式:

((音频编码率(KBit为单位)/8+视频编码率(KBit为单位)/8)×影片总长度(秒为单位))/1024=文件大小(MB为单位)

这样以后大家就能精确的控制输出文件大小了。

例:有一个1.5小时(5400秒)的影片,希望转换后文件大小刚好为700M

计算方法如下:

700×8÷5400×1024≈1061Kbps

意思是只要音频编码率加上视频编码率之和为1061Kb,则1个半小时的影片转换后文件体积大小刚好为700M。

至于音频编码率和视频编码率具体如何设置,就看选择的编码格式和个人喜好了,只要2者之和为1061即可。如可以设置为视频编码格式H264,视频编码率900Kbps,音频编码格式AAC,编码率161Kbps。

与文件体积大小有关的码率是指的平均码率,因此,不论是使用固定比特一次编码方式还是使用二次(多次)动态编码方式,都是可以保证文件大小的。只有使用基于质量编码的方式的时候,文件大小才不可控制。

编码格式有很多种,在技术不断进步的情况下,针对不同的用途,产生了各种编码格式。不同编码格式的压缩率不一样,且有各自的特点,有些在低码率情

况下能保持较高的画面质量,但在高码率情况下反而画面质量提示不大,有些适合在高码率情况下保持高清晰度画面,但可能在低码率情况下效果不佳

帧率:要了解帧率就必须了解视频播放的一个基本原理。人眼具有视觉延迟的特点,立即拿开眼睛前的一副图像,大脑中却不是立即反应出来的,大约在0.1秒以后,才会反应画面已经拿开。因此,如果给人眼观看一幅幅连续的画面,且速度超过每秒10幅以上的时候,在人脑中就会产生画面连续的感觉,从而感觉自己看到的不是一幅幅独立的图片,而是一个连续的视频。帧率就是视频文件每秒展示在人眼的画面的数量。24帧/秒的意思就是此视频画面每秒变化24次。因为电影的帧率是24帧/秒,所以一般认为,只要视频文件的帧率达到或超过24帧/秒,就可以理解为画面流畅。帧率太低,则必然导致视觉上感觉画面不流畅,如常见共享网站提供的FLV文件,就经常会感觉画面不流畅,因为帧率只有12帧/秒。对于非智能手机等设备,因为硬件运算能力不高,支持的帧率一般也不高,很多手机都只有15帧/秒播放能力,部分手机能力甚至更低,因此手机视频文件普遍不很流畅。当帧率达到30帧/秒的时候,即使非常激烈的画面变化,人眼也能感受到很流畅。人眼能感知的最高速度是60帧/秒。根据帧率的定义,我们能够了解到,当分辨率一定的时候,假设保持同样的清晰度,帧率越高,画面越流畅,需要的编码率也越高,文件体积也就相应变大。

现在我们已经能了解分辨率、清晰度、编码率、编码格式、文件体积大小、帧率之间的关系了。分辨率越大,清晰度越高,画面越流畅,帧率越高,编码率越高,文件体积越大,但越先进的编码标准,可以用更小的编码率实现同样的效果,从而减小文件的体积。一般来说,越先进的编码标准对硬件的运算能力要求越高。

根据具体使用的环境和片源的情况,确定合适的分辨率。在保持一定画面清晰度和声音质量的前提下,确定需要的编码格式,再根据设置的帧率、编码格式的压缩率特点,确定合适的编码率。

转换视频文件的时候,一般要遵循以下的原则,分辨率可以降低,但不能增加,例如可以将640×480的文件转换为320×240的文件,但不必将320×240的文件转换为640×480。因为320×240转换为640×480并不会带来清晰度的提高,只会增加编码率,使文件体积变大。同样的道理,帧率可以降低,但不能增加,人为将12帧的FLV文件转换为25帧的AVI文件,并不会使你的画面变得更流畅。这种转换只是一种纯粹的浪费。编码率与编码格式联系在一起,由于编码格式有些技术先进些,可用较低编码率实现较高的画面质量。因此如果转换时更改了编码格式,则应该根据实际情况确定编码率。更多的时候是根据使用经验确定。

在实际使用中,如果希望把视频网站提供的FLV文件转换为VCD或者DVD,是不实际的,并不会因为你转换了格式,就画面变得更加清楚、流畅,且这种强行转换可能会带来其他的问题,因为MPEG1、MPEG2编码设计的时候并未考虑到这种极低帧率和极低画面质量的情况。

视频的参数主要有编码格式,分辨率,码率,帧率,这些影响着视频的清晰度和体积大小。

编码格式有很多种,在技术不断进步的情况下,针对不同的用途,产生了各种编码格式。不同编码格式的压缩率不一样,且在不同码率下保证的画面质量也不一样。

分辨率大家应该比较熟悉了,视频文件的用途决定分辨率的大小。大家应该选择合适的分辨率,能有效提高视频编码效率和控制文件大小,并获得最佳观赏效果。

码率直接与文件体积有关。完整的视频文件是由音频流与视频流2个部分组成的,音频和视频分别使用的是不同的码率,因此一个视频文件的码率是音频码率+视频码率。码率与编码格式配合是否合适,直接关系到视频文件是否清晰。

码率的一般计算公式:

文件大小(MB为单位)× 1024 × 8 / 影片总长度(秒为单位)= 码率(Kbps)

这里的码率是视频码率和音频码率的总和

所以码率越高,视频播放时间越长,文件体积就越大。不是分辨率越大文件就越大,只是一般情况下,为了保证清晰度,较高的分辨率需要较高的编码率配合。

帧率:一般认为,只要视频文件的帧率达到或超过24帧/秒,就可以理解为画面流畅。帧率太低,则必然导致视觉上感觉画面不流畅,如常见共享网站提供的FLV文件,就经常会感觉画面不流畅,因为帧率只有12帧/秒。对于非智能手机等设备,因为硬件运算能力不高,支持的帧率一般也不高,很多手机都只有15帧/秒播放能力,部分手机能力甚至更低,因此手机视频文件普遍不很流畅。当帧率达到30帧/秒的时候,即使非常激烈的画面变化,人眼也能感受到很流畅。人眼能感知的最高速度是60帧/秒。根据帧率的定义,我们能够了解到,当分辨率一定的时候,假设保持同样的清晰度,帧率越高,画面越流畅,需要的编码率也越高,文件体积也就相应变大。

现在我们已经能了解分辨率、清晰度、编码率、编码格式、文件体积大小、帧率之间的关系了。分辨率越大,需要较高的码率来支持,这样清晰度才会高,同时帧率越高,画面越流畅,但都会造成文件体积相应增大,但越先进的编码格式,可以用更小的编码率实现同样的效果,从而减小文件的体积。同时存在的问题就是,越先进的编码标准对硬件的运算能力要求越高。

所以根据实际情况,确定合适的分辨率。在保持一定画面清晰度和声音质量的前提下,确定需要的编码格式,再根据设置的帧率、编码格式的压缩率特点,确定合适的编码率。

视频线接口类型

查看文章 视频接口大全(HDMI、DVI、VGA、RGB、分量、S端子、USB接口) 1.S端子 标准S端子

标准S端子连接线 音频复合视频S端子色差常规连接示意图 S端子(S-Video)是应用最普遍的视频接口之一,是一种视频信号专用输出接口。常见的S端子是一个5芯接口,其中两路传输视频亮度信号,两路传输色度信号,一路为公共屏蔽地线,由于省去了图像信号Y与色度信号C的综合、编码、合成以及电视机机内的输入切换、矩阵解码等步骤,可有效防止亮度、色度信号复合输出的相互串扰,提高图像的清晰度。 一般DVD或VCD、TV、PC都具备S端子输出功能,投影机可通过专用的S端子线与这些设备的相应端子连接进行视频输入。 显卡上配置的9针增强S端子,可转接色差

S端子转接线 欧洲插转色差、S端子和AV

与电脑S端子连接需使用专用线,如VIVO线 2.VGA接口 DVI接口正在取代VGA,图为DVI转VGA的转接头 VGA是Video Graphics Adapter的缩写,信号类型为模拟类型,视频输出端的接口为15针母插座,视频输入连线端的接口为15针公插头。VGA端子含红(R)、黄(G)、篮(B)三基色信号和行(HS)、场(VS)扫描信号。VGA 端子也叫D-Sub接口。VGA接口外形象“D”,其具备防呆性以防插反,上面共有15个针孔,分成三排,每排五个。VGA接口是显卡上输出信号的主流接口,其可与CRT显示器或具备VGA接口的电视机相连,VGA接口本身可以传输VGA、SVGA、XGA等现在所有格式任何分辨率的模拟RGB+HV信号,其输出的信号已可和任何高清接口相貔美。

摄像机参数说明

1. 什么是CCD摄像机? CCD是Charge Coupled Device(电荷耦合器件)的缩写,它是一种半导体成像器件,因而具有灵敏度高、抗强光、畸变小、体积小、寿命长、抗震动等优点。 2.成像器件:又称为CCD,电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。CCD 的组成主要是由一个类似马赛克的网格、聚光镜片以及垫于最底下的电子线路矩阵所组成。目前有能力生产CCD 的公司分别为:SONY、Philps、Kodak、Matsushita、Fuji和Sharp,大半是日本厂商。我们主要用的是SONY 和SHARP。 3. CCD摄像机的工作方式 被摄物体的图像经过镜头聚焦至CCD芯片上,CCD根据光的强弱积累相应比例的电荷,各个像素积累的电荷在视频时序的控制下,逐点外移,经滤波、放大处理后,形成视频信号输出。视频信号连接到监视器或电视机的视频输入端便可以看到与原始图像相同的视频图像。 4. 水平清晰度 评估摄像机分辨率的指标是水平分辨率,其单位为线对,即成像后可以分辨的黑白线对的数目。常用的黑白摄像机的分辨率一般为380-600,彩色为380-480,其数值越大成像越清晰。一般的监视场合,用400线左右的黑白摄像机就可以满足要求。而对于医疗、图像处理等特殊场合,用600线的摄像机能得到更清晰的图像。 用摄像机拍摄的影音信号需要在电视上播放时,需要换算成与电视画质相同的单位。而电视的画面清晰度是以水平清晰度作为单位。通俗地说,我们可以把电视上的画面以水平方向分割成很多很多“条”,分得越细,这些画面就越清楚,而水平线数的数码就越多。这个单位是“电视行(TVLine)”也称线。 5. 成像灵敏度 通常用最低环境照度要求来表明摄像机灵敏度,黑白摄像机的灵敏度大约是0.02-0.5Lux(勒克斯),彩色摄像机多在1Lux以上。0.1Lux的摄像机用于普通的监视场合;在夜间使用或环境光线较弱时,推荐使用0.02Lux的摄像机。与近红外灯配合使用时,也必须使用低照度的摄像机。另外摄像的灵敏度还与镜头有关,0.97Lux/F0.75相当于2.5Lux/F1.2相当于3.4Lux/F1. 6. 参考环境照度: 夏日阳光下 100000Lux 阴天室外 10000Lux 电视台演播室 1000Lux 距60W台灯60cm桌面 300Lux 室内日光灯 100Lux 黄昏室内 10Lux 20cm处烛光 10-15Lux 夜间路灯 0.1Lux 7. 电子快门 电子快门的时间在1/50-1/100000秒之间,摄像机的电子快门一般设置为自动电子快门方式,可根据环境的亮暗自动调节快门时间,得到清晰的图像。有些摄像机允许用户自行手动调节快门时间,以适应某些特殊应用场合。 8. 外同步与外触发 外同步是指不同的视频设备之间用同一同步信号来保证视频信号的同步,它可保证不同的设备输出的视频信号具有相同的帧、行的起止时间。为了实现外同步,需要给摄像机输入一个复合同步信号(C-sync)或复合视频信号。外同步并不能保证用户从指定时刻得到完整的连续的一帧图像,要实现这种功能,必须使用一些特殊的具有外触发功能的摄像机。 9. 光谱响应特性 CCD器件由硅材料制成,对近红外比较敏感,光谱响应可延伸至1.0um左右。其响应峰值为绿光(550nm),分布曲线如右图所示。夜间隐蔽监视时,可以用近红外灯照明,人眼看不清环境情况,在监视器上却可以清晰成像。由于CCD传感器表面有一层吸收紫外的透明电极,所以CCD对紫外不敏感。彩色摄像机的成像单元上有红、绿、兰三色滤光条,所以彩色摄像机对红外、紫外均不敏感。 10. CCD芯片的尺寸 CCD的成像尺寸常用的有1/2"、1/3"等,成像尺寸越小的摄像机的体积可以做得更小些。在相同的

视频输入输出常用接口介绍

视频输入输出常用接口介绍 随着视频清晰度的不断提升,这也促使我们对高清视频产生了浓厚的兴趣,而如果要达某些清晰度的视频就需要配备相应的接口才能完全发挥其画质。所以说视频接口的发展是实现高清的前提,从早期最常见且最古老的有线TV输入到如今最尖端的HDMI数字高清接口,前前后后真是诞生了不少接口。但老期的接口信号还在继续使用,能过信号转换器就能达到更清晰的效果,比如: AV,S-VIDEO转VGA AV,S-VIDEO转HDMI,图像提升几倍,效果更好。 从现在电视机背后的接口也能看出这点,背后密密麻麻且繁琐的接口让人第一眼看过去有点晕的感觉。今天小编就将这些接口的名称与作用做一个全面解析,希望能对选购电视时为接口而烦恼的朋友起到帮助。 TV接口

TV输入接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。

AV输入接口与AV线 由于AV输出仍然是将亮度与色度混合的视频信号,所以依旧需要显示设备进行亮度和色彩分离,并且解码才能成像。这样的做法必然对画质会造成损失,所以AV接口的画质依然不能让人满意。在连接方面非常的简单,只需将3种颜色的AV线与电视端的3种颜色的接口对应连接即可。 总体来说,AV接口实现了音频和视频的分离传输,在成像方面可以避免音频与视频互相干扰而导致的画质下降。AV接口在电视与DVD连接中使用的比较广,是每台电视必备的接口之一。 S端子 S端子可以说是AV端子的改革,在信号传输方面不再将色度与亮度混合输出,而是分离进行信号传输,所以我们又称它为“二分量视频接口”。

easyui-属性详解

jquery_easyui_中文解析 最近经常接触easyui,但是easyui官网又总是上不去,所以在网上搜罗了easyui 的中文解析,以备查询。 CSS类定义: div easyui-window window窗口样式 属性如下: 1)modal:是否生成模态窗口。true[是] false[否] 2)shadow:是否显示窗口阴影。true[显示] false[不显示] div easyui-panel 面板 属性如下: 1)title:该标题文本显示在面板头部。 2)iconCls:在面板上通过一个CSS类显示16x16图标。 3)width:设置面板宽度。默认auto。 4)height:设置面板高度。默认auto。 5)left:设置面板左边距。 6)top:设置面板顶部位置。 7)cls:在面板中增加一个Class类。 8)headerCls:在面板头部中增加一个Class类。 9)bodyCls:在面板内容中增加一个Class类。 10)style:在面板中增加一个指定样式。 11)fit:当True时设置该面板尺寸适合于它的父容器。默认false。 12)border:当定义时显示面板边界。默认true。 13)doSize:如果设置为True,该面板将重绘大小,并重建布局。默认true。 14)collapsible:当定义时显示可折叠面板的按钮。默认false。 15)minimizable:当定义时显示最小化面板的按钮。默认false。 16)maximizable:当定义时显示最大化面板的按钮。默认false。 17)closable:当定义时显示关闭面板的按钮。默认false。 18)tools:自定义工具栏,每个工具都包含两个属性:iconCls、handler。 19)collapsed:当定义时该面板初始化时处于收缩状态。默认false。 20)minimized:当定义时该面板初始化时处于最小化状态。默认false。 21)maximized:当定义时该面板初始化时处于最大化状态。默认false。 22)closed:当定义时该面板初始化时处于关闭状态。默认false。 23)href:一个url,加载远程数据并显示在面板中。 24)loadingMessage:当加载远程数据时,在面板中显示一个消息。默认 Loading… 事件如下: 1)onLoad:当远程数据加载完毕后激活。

Access表中各种属性的设置分析

ACCESS数据表中各个属性的含义、设置方法: 格式: Format 属性:可以使用Format属性自定义数字、日期、时间和文本的显示方式。Format属性只影响数据的显示方式,不影响数据的存储方式。String型,可读/写。 expression.Format expression 必需。返回“应用于”列表中的一个对象的表达式。 说明 可以使用预定义的格式,或者使用格式符号创建自定义格式。 Format对不同的数据类型使用不同的设置,对于控件,可以在控件的属性表中设置该属性。对于字段,可以在表“设计”视图或“查询”窗口的“设计”视图中(“字段属性”的属性表中)设置该该属性。也可以使用宏或Visual Basic。 注释在 Visual Basic 中,可输入对应预定义格式的子符串表达式或者输入自定义格式。Access 为“时间/日期”、“数字”和“货币”、“文本”和“备注”和“是/否”数据类型提供预定义格式,预定义格式与国家/地区设置有关。Access显示对应于所选国家/地区的格式,例如,如果在“常规”选项卡中选取“英语(美国)”,则1234.56 的“货币”格式是$1,234.56,如果在“常规”选项卡中选取“英语(英国)”,该数字将显示为£1,234.56。 如果在表“设计”字视图中设置字段的Format属性,Access使用该格式在数据表中显示数据。对窗体和报表上的新控件也应用字段的Format属性。 在任意数据类型的自定义格式中都可以使用以下符号: 不能将“数字”和“货币”型的数据类型的自定义格式符号与“日期/时间”、“是/否”或“文本”和“备注”格式符号混合使用。 如果在数据上定义了输入掩码同时又设置了Format属性,在显示数据时,Format属性将优先,而忽略输入掩码。例如,如果在表“设计”视图中创建了“密码”输入掩码,同时又为字段设

摄像机四大关键参数图解

信噪比: 就是摄像机抵抗影像干扰的能力,信噪比越大约好。目前主流摄像机的信噪比是 的可以到60DB 超宽动态: 超宽动态是在非常强烈的对比下让摄像机看到影像的特色。具有280:1 的超宽动态范 围,统摄像机只具有的3:1 动态范围超出了90 倍。自然光线排列成从120,000Lux 到星 光夜里的0.00035Lux 。当摄像机从室内看窗户外面,室内照度为100Lux ,而外面风景的 照度可能是 52DB,最大 比传 1000:1

10,000Lux ,对比就是10,000/100=100:1 。这个对比人眼能很容易地看到,因为人眼能处理的对比度,然而传统的闭路监控摄像机处理它会有很大的问题,传统摄像机只有3:1 的对比性能,它只能选择使用1/60 秒的电子快门来取得室内目标的正确曝光,但是室外的影像会被清除掉(全白);或者换种方法摄像机选择1/6000 秒取得室外影像完美的曝光,但是室内的影像会被清除(全黑)。这是一个自从摄像机被发明以来就一直长期存在的缺陷。 背光补偿: 背光补偿提供在非常强的背景光线前面目标的理想的曝光。 一个不具有背光补偿的普通摄像机,当一个主要目标后面的非常亮的背景或一个点光源是不 可避免的,摄像机将取得所有近来光线的平均值并决定曝光的等级,这并不是一个好的方法,因为 当快门速度增加的时候,光圈会被关闭导致主要目标变得太黑而不被看见。为了克服这个问题,一

种称为背光补偿的方法通过加权的区域理论被广泛使用在多数摄像机上。影像首先被分割成7 块或6 个区域(两个区域是重复的),每个区域都可以独立加权计算曝光等级,例如中间部分就可以加到其余区块的9 倍,因此一个在画面中间位置的目标可以被看得非常清晰,因为曝光主要是参照中间区域的光线等级进行计算。然而有一个非常大的缺陷,如果主要目标从中闲移动到画面的上下左右位置,目标会变得非常黑,因为现在它不被区别开来已经不被加权。解决上面问题的唯一方法就是智能化摄像机,当主要目标移动时相应的加权区域立刻随之移动,这个技术称为超级背光补偿。数字讯号处理器首先将影像分割成320X240( 76,800 ) 个极微小的区域,每个区域都在不停地扫描寻找主要目标和过度曝光的像素,这些过度曝光的点将首先从计算方案中移除,剩下的灰度等级区域将用来计算曝光的等级。人工智能增强搜索主要目标并给以适当的加权等级以更深层调整到完美的曝光等级。用户会惊奇地发现数字讯号处理器是如此的快,不管主要目标移动到画面中的任意位置,曝光等级总是能直接跟进并取得清晰的影像。

参数面板介绍

Basic parameters(基本属性)参数 1.Diffuse(漫射) Diffuse(漫射):材质的基本色,红色小方块区是可加载贴图的选项。 2.Reflection(反射) (1)Reflection(反射):材质的反射选项,3ds Max的反射控制是数值的,VRay则是用色彩来控制,黑色为不反射,白色为反射;反射的强度用色彩的深度来控制,即色彩越黑,反射越少,色彩越白反射越多;用色彩控制的好处在于反射的色彩可以更准确地控制。(2)Hilight glossiness(高光光泽):当选择不反射材质时,可以激活L按钮,此时参数控制即被激活。 (3)Resl golssiness(反射光泽):控制反射的模糊率,同时也控制材质的高光受光曲线。 (4)Fresnel reflections(菲涅耳反射):一种和IOR相关的反射方式,IOR值的变化将影响其变化效果。

(5)Subdivs(细分):控制材质渲染质量,数值越高效果越好,用时也越多。 (6)Max depth(最大深度):控制反射次数(比如两个面对面的镜子,Max depth决定有多少此的反射)。 (7)Use interpolation(使用插值):加速光泽反射的计算方式。 (8)Exit color(色彩出口):用于控制反射种的反射的色彩。 3.Refraction(折射) 前面介绍了Diffuse(漫射)和Reflection(反射)的相关参数及其含义,下面接着来介绍一性爱Refraction(折射)的相关参数,如图所示的参数面板。 (1)Refract(折射倍增值):控制透明度及色彩,同样可以在小方块处加入贴图。(2)Glossiness(光泽度):同反射的参数,此参数项控制透明的模糊度。 (3)Subdivs(细分):控制材质渲染质量,数值越高效果越好,用时也越多。 (4)Use interpolation(使用插值):加速折射光泽的计算方式。 (5)IOR:该参数值决定材质的折射率。是指光线通过透明物体所发生的折射率,通过修改IOR值可以制作出类似钻石等一些有特殊折射属性的物质类型。 (6)Max depth(最大深度):控制折射次数。 (7)Exit color(色彩出口):用于控制折射中的折射的色彩。

摄像机参数详解

For personal use only in study and research; not for commercial use 问:什么是最低照度?什么是感光度?0.0001Lux代表什么? 答:最低照度是测量摄像机感光度的一种方法,换句话说,摄像机能在多黑的条件下看到可用的影像。但是因为没有管理的国际标准,因此每个大型CCD制造商都有自己测量CCD感光度的方法。然而一个标注为(1Lux,F10)的摄像机能和标注为(0.01Lux,F10)的摄像机完全一样!!!奇怪吗?为什么呢?问:F2.0、f3.4毫米代表什么意思?我如何通过这些数字来选择镜头? 答:F表示镜头的孔径,F停止2:1和f3.4毫米表示镜头的焦距是3.4毫米。 镜头F2.0和f3.4~4采用非常经济的形式,应此价格较低,广泛应用于单板摄像机,F2.0的镜头的孔径能收集人眼一半的光线,f3.4毫米的镜头在1/4英寸CCD上有60度的视角,在1/3英寸CCD上有90度视角,非常接近于人眼的视角。人眼的两只眼睛能包含更大的视角,就像是上帝巧妙的设计,从人到人一般有150到180的角度,但是请记住,F停止和f焦距只是一个镜头的基本参数,并不代表质量。一个具有同样F停止和焦距的优质镜头能比具有同样参数的劣质镜头贵100倍,请参阅下一个问答详细了解。问:漏光排斥比的物理含义是什么? 答:漏光是由CCD传感器设计的缺陷造成的,每个摄像机有一个CCD传感器,由于CCD传感器的缺陷,进入CCD传感器的强光将会穿透抵抗层产生过度的影像,这些不需要的影像称做拖光,CCD摄像机抵抗强光的能力称为漏光排斥比。 问:什么事CMOS摄像机?和CCD摄像机有何不同? 答:CMOS传感器是一种通常比CCD传感器低10倍感光度的传感器。 因为人眼能看到1Lux照度(满月的夜晚)以下的目标,CCD传感器通常能看到比人眼略好在0.1~3Lux,是CMOS传感器感光度的3到10倍。 什么是峰值感应模式? 答:峰值感应模式是用通过影像亮点代替整个影像的平均值来决定曝光指数,使用规则系统的用户能应对最苛刻的要求,如在黑夜抓取一个白点的影像,而且还要看到这个小亮白点的细节和色彩。 这对于在夜晚使用摄像机抓取车牌号码同时还要看到交通灯的颜色非常有用。........................................................................................................................ 什么是星光摄像机? 星光CCD摄影机,光子在CCD传感器上比普通CCD摄像机最大曝光时间(1/60 或1/50 秒)长2到128倍(1~2秒)的聚集。因此,摄像机产生可用影像的最低照度就降低了2到128倍。使用带有帧累积技术的星光摄像机,用户可以在星光照度情况(0.0035Lux)下看到彩色影像,而在多云的星光照度情况(0.0002Lux)下看到黑白影像,城市中散布的背景光(比如光污染)足够产生良好的彩色曝光。 什么是超高感度摄像机?它的优点和缺陷在哪里? 答:"EX-View"是索尼公司研发用来提高其CCD感光度的一个感光度提高技术,一是两个可见光的因素,二是四倍近红外波的波长。 EX-View是索尼专有技术,每个CCD基础光电二极管的P/N接口特殊组装来获得更好的光子到电子的转换效率。另外,每个光电二极管(描绘影像上的一个像素)有一个覆盖在上面的微型镜头能够较好的记录和聚焦光线到有效的半导体接口。它的结果对比于索尼提供的CCD可视范围提高了可见光的2倍和近红外光(800~900纳米)的4倍感光度。EX-View的Lux效率比优质的"Super HAD"可见光和近红外光波场高出了2倍。 EX-View技术的缺陷在于,因为CCD芯片制造过程的难度本质和芯片灵敏的本质,索尼公司只有有限的

视频接口大全

视频接口大全(HDMI、DVI、VGA、RGB、分量、S端子、USB接口) 2010-11-09 0:06 转载自xukongjingjue 最终编辑xukongjingjue 1.S端子 标准S端子 标准S端子连接线

音频复合视频S端子色差常规连接示意图 S端子(S-Video)是应用最普遍的视频接口之一,是一种视频信号专用输出接口。常见的S端子是一个5芯接口,其中两路传输视频亮度信号,两路传输色度信号,一路为公共屏蔽地线,由于省去了图像信号Y与色度信号C的综合、编码、合成以及电视机机内的输入切换、矩阵解码等步骤,可有效防止亮度、色度信号复合输出的相互串扰,提高图像的清晰度。 一般DVD或VCD、TV、PC都具备S端子输出功能,投影机可通过专用的S端子线与这些设备的相应端子连接进行视频输入。 显卡上配置的9针增强S端子,可转接色差

S端子转接线 欧洲插转色差、S端子和AV 与电脑S端子连接需使用专用线,如VIVO线

2.VGA接口 DVI接口正在取代VGA,图为DVI转VGA的转接头 VGA是Video Graphics Adapter的缩写,信号类型为模拟类型,视频输出端的接口为15针母插座,视频输入连线端的接口为15针公插头。VGA端子含红(R)、黄(G)、篮(B)三基色信号和行(HS)、场(VS)扫描信号。VGA端子也叫D-Sub接口。VGA接口外形象“D”,其具备防呆性以防插反,上面共有15个针孔,分成三排,每排五个。VGA接口是显卡上输出信号的主流接口,其可与CRT 显示器或具备VGA接口的电视机相连,VGA接口本身可以传输VGA、SVGA、XGA等现在所有格式任何分辨率的模拟RGB+HV信号,其输出的信号已可和任何高清接口相貔美。 VGA转DVI线,可用在没有VGA接口的设备上 目前VGA接口不仅被广泛应用在了电脑上,投影机、影碟机、TV等视频设备也有很多都标配此接口。很多投影机上还有BGA输出接口,用于视频的转接输出。 3.分量视频接口

mapgis属性编辑参数

图斑属性结构: 行政辖区属性结构

争议区属性结构 接合图表属性结构

分式编排:/分子/分母/ 如:/123/456/表示:123 456 2.13、修改文本 修改文本:用鼠标左键来捕获注释或版面,修改其文本内容。 子串统改文本:系统弹出统改文本的对话框,用户可输入“搜索文本内容”和“替换文本内容”,系统即将包含有“搜索文本内容”的字串替换成“替换文本内容”,它的替换条件是只要字符串包含有“搜索文本内容”即可替换。 全串统改文本:系统弹出统改文本的对话框,用户可输入“搜索文本内容”和“替换文本内容”,系统即将符合“搜索文本内容”的字串替换成“替换文本内容”,它的替换条件是只有字符串与“搜索文本内容”完全相同时才进行替换。 ⑶、比例尺分母 比例尺输入只需输入比例尺分母即可,值得注意的是本程序在进行投影转换时,输入的长度单位若为米,而MAPGIS系统中绘出图形的长度单位是毫米,因此转换时,需将米转换成毫米,这样在输入比例尺分母时,需在原有比例的基础上,除以1000,即生成1:10

00000图时,输入的比例尺分母应为1000,而非1000000。对于毫米单位,则直接输入相应的比例尺倒数即可,即1000000。若求高斯大地坐标,则设置单位为米,比例尺分母为1即可。 ⑶、比例尺分母 比例尺输入只需输入比例尺分母即可,值得注意的是本程序在进行投影转换时,输入的长度单位若为米,而MAPGIS系统中绘出图形的长度单位是毫米,因此转换时,需将米转换成毫米,这样在输入比例尺分母时,需在原有比例的基础上,除以1000,即生成1:1000000图时,输入的比例尺分母应为1000,而非1000000。对于毫米单位,则直接输入相应的比例尺倒数即可,即1000000。若求高斯大地坐标,则设置单位为米,比例尺分母为1即可。 4.7.5、条件合并 在用户选择条件合并的功能后,首先要求用户选择要合并的区文件,然后才弹出条件合并的对话框如下图: 合并条件:根据属性提取要合并的区实体。 合并方式: (1)、只合并符合条件的实体:指区的合并只在合并条件选择出来的区实体中进行;(2)、合并所有符合条件的选择的实体相邻的某一个区,如果两个区符合合并的条件,不管相邻的区是否在选择的实体中,都把他们合并起来。 相等字段条件:系统根据选择的字段的值决定两个区是否能合并。 注: 1 、对于要求全部合并的实体,用户可以选择可以包含全部实体的条件,如:ID >= 0,在进行辖区处理后,系统有可能没有对辖区进行合并,用户可在此进行条件和并。 2 、合并之前,用户需要确保区的拓扑关系正确 3 、如果用户不选择合并相等条件,则只合并按照合并条件选择的实体。 4.7.6、同类拼接 添加文件:选择要进行拼接的文件,用户可以按住CTRL或SHIFT键的同时用鼠标来

摄像头参数详细介绍

摄像头参数详细介绍 [日期: 2007-06-06 ] https://www.doczj.com/doc/e95252334.html, 千家网 [字体:大中 小] 一、不可小瞧的镜头 镜头是摄像机的眼睛,为了适应不同的监控环境和要求,需要配置不同规格的镜头。比如在室内的重点监视,要进行清晰且大视场角度的图像捕捉,得配置广角镜头;在室外的停车场,既要看到停车场全貌,又要能看到汽车的细部,这时候需要广角和变焦镜头,在边境线、海防线的监控,需要超远图像拍摄。 1、镜头的主要参数 焦距(f):焦距是镜头和感光元件之间的距离,通过改变镜头的焦距,可以改变镜头的放大倍数,改变拍摄图像的大小。当物体与镜头的距离很远的时候,我们可用下面公式表达:镜头的放大倍数≈焦距/物距。增加镜头的焦距,放大倍数增大了,可以将远景拉近,画面的范围小了,远景的细节看得更清楚了;如果减少镜头的焦距,放大倍数减少了,画面的范围扩大了,能看到更大的场景。 镜头的主要参数 视场角:在工程实际中,我们常用水平视场角来反映画面的拍摄范围。焦距f越大,视场角越小,在感光元件上形成的画面范围越小;反之,焦距f越小,视场角越大,在感光元件上形成的画面范围越大。 光圈:光圈安装在镜头的后部,光圈开得越大,通过镜头的光量就越大,图像的清晰度越高;光圈开得越小,通过镜头的光量就越小,图像的清晰度越低。通常用F(光通量)来表示。F=焦距(f)/通光孔径。在摄像机的技术指标中,

我们可以常常看到6mm/F1.4这样的参数,它表示镜头的焦距为6mm,光通量为1. 4,这时我们可以很容易地计算出通光孔径为4.29mm。在焦距f相同的情况下,F值越小,光圈越大,到达CCD芯片的光通量就越大,镜头越好。 2、镜头的分类 按视角的大小分类 按光圈分类 二、提高图像清晰的根本在于提高摄像机的感光能力 1、感光元件的作用 目前,主流监控摄像机的感光元件采用CCD元件,实际上就是光电转换元件。和以前的CMOS感光元件相比,CCD的感光度是CMOS的3到10倍,因此CCD芯片可以接受到更多的光信号,转换为电信号后,经视频处理电路滤波、放大形成视频信号输出。接受到的光信号越强,视频信号的幅值就越大。视频信号连接到

视频输入输出常用接口知识

视频接口 我们经常在家里的电视机、各种播放器上,视频会议产品和监控产品的编解码器的视频输入输出接口上看到很多视频接口,这些视频接口哪些是模拟接口、哪些是数字接口,哪些接口可以传输高清图像等,下面就做一个详细的介绍。 目前最基本的视频接口是复合视频接口、S-vidio接口;另外常见的还有色差接口、VGA接口、接口、HDMI接口、SDI接口。 1、复合视频接口 接口图: 说明: 复合视频接口也叫AV接口或者Video接口,是目前最普遍的一种视频接口,几乎所有的电视机、影碟机类产品都有这个接口。 它是音频、视频分离的视频接口,一般由三个独立的RCA插头(又叫梅花接口、RCA接口)组成的,其中的V接口连接混合视频信号,为黄色插口;L 接口连接左声道声音信号,为白色插口;R接口连接右声道声音信号,为红色插口。 评价: 它是一种混合视频信号,没有经过RF射频信号调制、放大、检波、解调等过程,信号保真度相对较好。图像品质影响受使用的线材影响大,分辨率一般可达350-450线,不过由于它是模拟接口,用于数字显示设备时,需要一个模拟信号转数字信号的过程,会损失不少信噪比,所以一般数字显示设备不建议使用。

2、S-Video接口 接口图: 说明: S接口也是非常常见的接口,其全称是Separate Video,也称为SUPER VIDEO。S-Video连接规格是由日本人开发的一种规格,S指的是“SEPARATE (分离)”,它将亮度和色度分离输出,避免了混合视讯讯号输出时亮度和色度的相互干扰。S接口实际上是一种五芯接口,由两路视亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成。 评价: 同AV 接口相比,由于它不再进行Y/C混合传输,因此也就无需再进行亮色分离和解码工作,而且使用各自独立的传输通道在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大地提高了图像的清晰度。但S-Video 仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb和Cr进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现) 。而且由于Cr Cb的混合导致色度信号的带宽也有一定的限制,所以S-Video虽然已经比较优秀,但离完美还相去甚远。S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口之一。

摄像头参数详细介绍

监控摄像头参数详细介绍 一、不可小瞧的镜头 镜头是摄像机的眼睛,为了适应不同的监控环境和要求,需要配置不同规格的镜头。比如在室内的重点监视,要进行清晰且大视场角度的图像捕捉,得配置广角镜头;在室外的停车场,既要看到停车场全貌,又要能看到汽车的细部,这时候需要广角和变焦镜头,在边境线、海防线的监控,需要超远图像拍摄。 1、镜头的主要参数 焦距(f):焦距是镜头和感光元件之间的距离,通过改变镜头的焦距,可以改变镜头的放大倍数,改变拍摄图像的大小。当物体与镜头的距离很远的时候,我们可用下面公式表达:镜头的放大倍数≈焦距/物距。增加镜头的焦距,放大倍数增大了,可以将远景拉近,画面的范围小了,远景的细节看得更清楚了;如果减少镜头的焦距,放大倍数减少了,画面的范围扩大了,能看到更大的场景。 镜头的主要参数 视场角:在工程实际中,我们常用水平视场角来反映画面的拍摄范围。焦距f越大,视场角越小,在感光元件上形成的画面范围越小;反之,焦距f越小,视场角越大,在感光元件上形成的画面范围越大。 光圈:光圈安装在镜头的后部,光圈开得越大,通过镜头的光量就越大,图像的清晰度越高;光圈开得越小,通过镜头的光量就越小,图像的清晰度越低。通常用F(光通量)来表示。F=焦距(f)/通光孔

径。在摄像机的技术指标中,我们可以常常看到6mm/F1.4这样的参数,它表示镜头的焦距为6mm,光通量为1.4,这时我们可以很容易地计算出通光孔径为4.29mm。在焦距f相同的情况下,F值越小,光圈越大,到达CCD芯片的光通量就越大,镜头越好。 2、镜头的分类 按视角的大小分类 按光圈分类 二、提高图像清晰的根本在于提高摄像机的感光能力 1、感光元件的作用 目前,主流监控摄像机的感光元件采用CCD元件,实际上就是光电转换元件。和以前的CMOS感光元件相比,CCD的感光度是CMOS的3到10倍,因此CCD芯片可以接受到更多的光信号,转换为电信号后,经视频处理电路滤波、放大形成视频信号输出。接受到的光信号越强,视频信号的幅值就越大。视频信号连接到监视器或电视机的视频输入端便可以看到视频图像。提高图像清晰的根本就在于提高摄像机的感光能力。

摄像机的几个重要参数说明

摄像机的几个参数 CCD图像传感器靶面上成像→CCD图像传感器输出电信号→经摄像机电路处理后→输出视频信号 CCD彩色摄像机的主要技术指标 1、CCD尺寸 1/2” 1/3” 1/4” 1/6” 目前摄像机多为1/3”,高速智能球多为1/4” 配接针孔镜头时,1/2”优于1/3”摄像机,因同等指标通光量更多 2、CCD像素 对于一定尺寸的CCD芯片,像素数越多则意味着每一像素单元的面积越小,图像分辨率也就越高、越清晰。 3、水平分辨率: 是衡量图像清晰度的标准,通常用电视线数TVL来表示。 与摄像器件和镜头的质量有关,还与摄像机系统的电路通道的频带宽度直接相关,通常规律是1MHz的频带宽度相当于清晰度为80条电视线。频带越宽,图像就越清晰,TVL的数值也就越大。 ≈25万像素≈彩色330线、黑白400线 537 x 597≈31万像素≈彩色380线、黑白420线 ≈万像素≈彩色420线、黑白线 752 x 582≈44万像素≈彩色460线、黑白600线 4、CCD的灵敏度一般用最低照度来表示 灵敏度高即要求在很低的照度下也能输出较为清晰的图像。 照度是反映光照强度的一种单位,是指照射到单位面积上的光通量。 照度的单位是每平方米的流明( lm)数,也叫勒克斯(lux),1Lux=1lm/m2 一只100W的白只灯,其发出的总光通量约为1200lm, 距光源1m处的光照度为191Lux,距光源5m处的光照度为7.64Lux, 直射太阳光阴天傍晚月圆星光阴暗的晚上 100000Lux 1000Lux 10Lux 0.1Lux 0.001Lux 0.00001 最低照度是当被射景物的光亮度低到一定程度而使摄像机输出的视频信号电平低到某一规定值时的景物光亮度值。 各厂家标注的最低照度值,要看它的相对孔径和输出视频信号的规定值。

各种视频接口的种类,包含常用的视频接口说明。

视频接口种类 S端子,AV,BNC,色差,VGA(D-SUB),DVI,HDMI接口知识 S端子,AV,BNC,色差,VGA(D-SUB),DVI,HDMI接口知识 S-Video具体英文全称叫Separate Video,为了达到更好的视频效果,人们开始探求一种更快捷优秀、清晰度更高的视频传输方式,这就是当前如日中天的S-Video(也称二分量视频接口),Separate Video 的意义就是将Video 信号分开传送,也就是在AV接口的基础上将色度信号C和亮度信号Y进行分离,再分别以不同的通道进行传输,它出现并发展于上世纪90年代后期通常采用标准的4 芯(不含音效) 或者扩展的7 芯( 含音效)。带S-Video 接口的视频设备( 譬如模拟视频采集/ 编辑卡电视机和准专业级监视器电视卡/电视盒及视频投影设备等) 当前已经比较普遍,同AV 接口相比由于它不再进行Y/C混合传输,因此也就无需再进行亮色分离和解码工作,而且由于使用各自独立的传输通道在很大程度上避免了视频设备信号串扰而产生的图像失真,极大提高了图像的清晰度,但 S-Video 仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备解码为Cb 和Cr 进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现) ,而且由于Cr Cb 的混合导致色度信号的带宽也有一定的限制,所以S -Video 虽然已经比较优秀但离完美还相去甚远,S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口之一。 (S端子又可以分为三种 1.普通S端子 最下面的5针型D端子是标准的S端子类型,也是通用的一种规格。除了显卡外电视机以及DVD等视频源上都是这种接口。 2.增强型S端子 中间的那个明显比下面5针的接口多了2个针孔,原先许多ATi原厂的Radeon都是采用的这种接口(上图中间的显卡就是一原厂的7500),这种7针接口并飞标准接口,这样就决定了不同厂家的7针接口有可能在多出的2针的定义上有所不同。不过除了多出的2针外,7针接口兼容5针标准接头,我们也能使用5针连线。 虽然多出的2针功能和定义各不相同,但是大家一般都是把这两针作为标准AV视频信号输出,这样就使得这个7针接口即能分离出一路5针标准S端子信号,又能分离出一路标准的AV视频信号来,于是有的配备7针S 端子的显卡还配备一个一转二的转接输出装置,可以分成S端子和AV输出两种模式,从这个角度来说7针接口要优越于5针标准借口。不过,绝大多数情况下S端子明显比AV视频输出效果优秀,且大部分电视机都具备这样的接口,所以从这个角度来说配备S同时又配备AV就显得有些添足之嫌了。 3.VIVO端子 最上面那两个多于7针的接口,我们只有在一些VIVO或者在ATi All-In-Wonder产品上面才能看到,平时很少看到。这种接口除了具备5针标准S端子信号以及TV视频信号以外,通常还包含两路音频信号。不过这种接口通常都不会兼容标准5针S端子,我们需要使用转接盒等设备扩展出S端子才能使用。除了可以为显卡增加电视输出功能外,还可以支持视频采集功能。需要注意的是:并不是所有采用这种接口的显卡都带视频输入功能,也

海康摄像机型号全参数

DS-2CC11A2P(N)-IR1(IR3)(IR5) 型号 型号DS-2CC11A2P(N)-IR1(IR3)(IR5) 名称700TVL 1/3" CCD红外防水筒型摄像机 摄像机传感器类型1/3"SONY CCD 信号系统PAL/NTSC 有效像素 PAL:976(水平)×582(垂直) NTSC:976(水平)×494(垂直) 最低照度 0.001Lux @ (F1.2,AGC ON),0 Lux with IR 0.002Lux @ (F1.8,AGC ON),0 Lux with IR 快门1/50(1/60)秒至1/100,000秒 镜头 “IR1”: 6mm @ F1.8(2.8mm,3.6mm 可选) “IR3”: 12mm @ F1.8(3.6mm,6mm,8mm,16mm 可选) “IR5”:16mm @ F1.8(3.6mm,6mm,8mm,12mm 可选) 镜头接口类型M12

1.主要特性 红外功能: ?最低照度0Lux ?采用高效红外阵列,低功耗,照射距离达60m ?红外灯与倍率距离匹配算法,根据倍率及距离调节红外灯亮度,使图像达到理想的状态?内置热处理装置,降低球机内腔温度,防止球机内罩起雾 ?恒流电路设计,红外灯寿命达3万小时 系统功能: ?采用索尼高性能CCD, 图像清晰 ?精密电机驱动, 反应灵敏, 运转平稳, 精度偏差少于0.1度, 在任何速度下图像无抖动?支持RS-485控制下对HIKVISION、Pelco-P/D协议的自动识别

?支持三维智能定位功能, 配合DVR和客户端软件可实现点击跟踪和放大 ?支持多语言菜单及操作提示功能, 用户界面友好 ?支持数据断电不丢失 ?支持断电状态记忆功能, 上电后自动回到断电前的云台和镜头状态 ?支持光纤模块接入 ?支持内置温度感应器, 可显示机内温度 ?支持防雷、防浪涌、防突波 ?室外球达到IP66防护等级 ?支持3D数字降噪 ?支持RS-485线路故障诊断功能, 把故障信息, 如地址错误、波特率错误等以文字形式显示在视频画面上 ?支持曼码协议及线路故障诊断功能, 把故障信息, 如地址错误、波特率错误等以特殊字符形式显示在视频画面上 ?支持定时任务预置点/花样扫描/巡航扫描/水平扫描/垂直扫描/随机扫描/帧扫描/全景扫描等功能 ?支持密码保护功能, 防止被人恶意修改球机菜单参数 ?支持球机标题功能, 可在视频画面叠加中、英文字符 ?支持区域扫描和显示, 球机在设定的区域设定的时间内没收到控制命令就执行区域扫描, 并显示区域名称 机芯功能: ?支持自动光圈、自动聚焦、自动白平衡、背光补偿和低照度(彩色/黑白)自动/手动转换功能, 宽动态功能可选 ?支持隐私遮蔽 云台功能: ?水平方向360°连续旋转, 垂直方向-10°-90°, 支持自动翻转, 无监视盲区 ?水平预置点速度最高可达120°/s, 垂直预置点速度最高可达100°/s ?水平键控速度为0.1°-80°/s, 垂直键控速度为0.1°-60°/s ?支持256个预置位, 并具有预置点视频冻结功能 ?支持8条巡航扫描, 每条可添加32个预置点 ?支持4条花样扫描, 总记录时间大于10分钟 ?支持比例变倍功能, 旋转速度可以根据镜头变倍倍数自动调整 ?支持守望功能, 预置点/花样扫描/巡航扫描/水平扫描/垂直扫描/随机扫描/帧扫描/全景扫描可在空闲状态停留指定时间后自动调用(包括上电后进入的空闲状态) ?支持报警功能, 内置2路报警输入(7路可选,优先级可调)和2路报警输出, 支持报警联动, 可在报警后触发报警输出/调用预置点/花样扫描/巡航扫描/水平扫描/垂直扫描/随机扫描/帧扫描/

常见的音视频接口介绍

常见的音视频接口介绍VGA输入接口:VGA 接口采用非对称分布的15pin 连接方式,其工作原理:是将显存内以数字格式存储的图像( 帧) 信号在RAMDAC 里经过模拟调制成模拟高频信号,然后再输出到等离子成像,这样VGA信号在输入端(LED显示屏内) ,就不必像其它视频信号那样还要经过矩阵解码电路的换算。从前面的视频成像原理可知VGA的视频传输过程是最短的,所以VGA 接口拥有许多的优点,如无串扰无电路合成分离损耗等。 DVI输入接口:DVI接口主要用于与具有数字显示输出功能的计算机显卡相连接,显示计算机的RGB信号。DVI(Digital Visual Interface)数字显示接口,是由1998年9月,在Intel开发者论坛上成立的数字显示工作小组(Digital Display Working Group简称DDWG),所制定的数字显示接口标准。 DVI数字端子比标准VGA端子信号要好,数字接口保证了全部内容采用数字格式传输,保证了主机到监视器的传输过程中数据的完整性(无干扰信号引入),可以得到更清晰的图像。 标准视频输入(RCA)接口:也称AV 接口,通常都是成对的白色的音频接口和黄色的视频接口,它通常采用RCA(俗称莲花头)进行连接,使用时只需要将带莲花头的标准AV 线缆与相应接口连接起来即可。AV接口实现了音频和视频的分离传输,这就避免了因为音/视频

混合干扰而导致的图像质量下降,但由于AV 接口传输的仍然是一种亮度/色度(Y/C)混合的视频信号,仍然需要显示设备对其进行亮/ 色分离和色度解码才能成像,这种先混合再分离的过程必然会造成色彩信号的损失,色度信号和亮度信号也会有很大的机会相互干扰从而影响最终输出的图像质量。AV还具有一定生命力,但由于它本身Y/C 混合这一不可克服的缺点因此无法在一些追求视觉极限的场合中使用。 S视频输入:S-Video具体英文全称叫Separate Video,为了达到更好的视频效果,人们开始探求一种更快捷优秀清晰度更高的视频传输方式,这就是当前如日中天的S-Video(也称二分量视频接口),Separate Video 的意义就是将Video 信号分开传送,也就是在AV 接口的基础上将色度信号C 和亮度信号Y进行分离,再分别以不同的通道进行传输,它出现并发展于上世纪90年代后期通常采用标准的4芯(不含音效) 或者扩展的7芯( 含音效)。带S-Video接口的显卡和视频设备( 譬如模拟视频采集/ 编辑卡电视机和准专业级监视器电视卡/电视盒及视频投影设备等) 当前已经比较普遍,同AV 接口相比由于它不再进行Y/C混合传输因此也就无需再进行亮色分离和解码工作,而且使用各自独立的传输通道在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大地提高了图像的清晰度,但S-Video 仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb 和Cr 进行处理,这样多少仍会

相关主题
文本预览
相关文档 最新文档