当前位置:文档之家› 不锈钢标准中的铬锰系之作用

不锈钢标准中的铬锰系之作用

不锈钢标准中的铬锰系之作用
不锈钢标准中的铬锰系之作用

各元素在高速钢中的作用

高速工具钢主要用于制造高效率的切削刀具。由于其具有红硬性高、耐磨性好、强度高等特性,也用于制造性能要求高的模具、轧辊、高温轴承和高温弹簧等。高速工具钢经热处理后的使用硬度可达HRC63以上,在600℃左右的工作温度下仍能保持高的硬度,而且其韧性、耐磨性和耐热性均较好。退火状态的高速工具钢的主要合金元素有多、钼、铬、钒,还有一些高速工具钢中加入了钴、铝等元素。这类钢属于高碳高合金莱氏体钢,其主要的组织特征之一是含有大量的碳化物。铸态高速工具钢中的碳化物是共晶碳化物,经热压力加工后破碎成颗粒状分布在钢中,称为一次碳化物;从奥氏体和马氏体基体中析出的碳化物称为二次碳化物。这些碳化物对高速工具钢的性能影响很大,特别是二次碳化物,其对钢的奥氏本晶粒度和二次硬化等性能有很大影响。碳化物的数量、类型与钢的化学成分有关,而碳化物的颗粒度和分布则与钢的变形量有关。钨、钼是高速工具钢的主要合金元素,对钢的二次硬化和其他性能起重要作用。铬对钢的淬透性、抗氧化性和耐磨性起重要作用,对二次硬化也有一定的作用。钒对钢的二次硬化和耐磨性起重要作用,但降低可磨削性能。 高速工个钢的淬火温度很高,接近熔点,其目的是使合金碳化物更多的溶入基体中,使钢具有更好的二次硬化能力。高速工具钢淬火后硬度升高,此为第一次硬化,但淬火温度越高,则回火后的强度和韧性越低。淬火后在350℃以下低温回火硬度下降在350℃以上温度回火硬度逐渐提高,至520~580℃范围内回火(化学成分不同,回火温度不同)出现第二次硬度高峰,并超过淬火硬度,此为二次硬化。这是高速工具钢的重要特性。 高速工个钢除了具有高的硬度、耐磨性、红硬性等使用性能外,还具有一定的热塑性、可磨削性等工艺性能。 多系高速工具钢主要合金元素是钨,不含钼或含少量钼。其主要特性是过热敏感性小,脱碳敏感性小、热处理和热加工温度范围较宽,但碳化物颗粒粗大,分布均匀性差,影响钢的韧性和塑性。 钨钼系高速工具钢的主要合金元素是钨和钼。其主要特性是碳化物的颗粒度和分布均优于钨系高速工具钢,脱碳敏感性和过热敏感性低于钼系高速工具钢,使用性能和工艺性能均较好。钼系高速工具钢的主要合金元素是钼,不含钨或含少量钨。其主要特性是碳化物颗粒细,分布均匀、韧性好,但脱碳敏感性和过热敏感性大、热加工和热处理范围窄。 含钻高速工具钢是在通用高速工具钢的基础上加入一定量的钴,可显著提高钢的硬度、耐磨性和韧性。 粉末高速工具钢是用粉末冶金方法产生的。首先用雾化法制取低氧高速工具钢预合金粉末,然后用冷、热静压机将粉末压实成全致密的钢坯,再经锻、轧成材。粉末高速工具钢的碳化物细小、分布均匀,韧性、可磨削性和尺寸稳定性等均很好,可生产用铸锭法个可能产生更高合金元素含量的超硬高速工具钢。粉末高速工具钢可分为3类,第一类是含钴高速工具钢,其特点是具有接近硬质合金的硬度,而且还具有良好的可锻性、可加工性、可磨性和强韧性。第二类是无钴高钨、钼、钒超硬高速工具钢。第三类是超级耐磨高速工具钢。其硬度不太高,但耐磨性极好,主要用于要求高耐磨并承受冲击负荷的工作条件。 Mn 1、在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性 2、降低钢的临界冷却速度,提高钢的淬透性 3、稍稍改善钢的低温韧性 4、在高含量范围内,作为主要的奥氏体化元素 Si 1、强化铁素体,提高钢的强度和硬度 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的氧化性腐蚀介质中的耐蚀性,提高钢的耐热性

不锈钢的市场前景

国内铬锰系不锈钢发展现状与前景 一、高速增长的中国不锈钢产量与消费 (一)2010年上半年中国主要不锈钢粗钢产量 2009年,我国不锈钢企业产能大幅释放,不锈钢粗钢生产量达到1200万t,比2008年增长了32.56%。2010年上半年,产量同比增长23%左右。在我会统计的44家粗钢生产企业中,产能释放最为明显的是山东泰山钢铁集团有限公司,比去年同期翻了6倍多。另外,产量同比翻倍的企业还有5家,如四川西南、浙江友谊、宁波东盟、佛冈东溢、沈阳德邦等。今年上半年产量增幅超过50%的有 酒泉钢铁、宁波华光、苏州吴中等3家。上半年产量出现下滑的有 11家,包括 联众(广州)、内蒙华业、瑞田钢业、梧州新盈等,其余企业均有不同幅度增长, 详细情况暂略。 在这些企业中,200系不锈钢生产厂家超过了18家,上半年不锈钢粗钢产量为236.85万t左右,与去年同期相比,增长并不多,增幅不到1%。 (二)2001~2010年全国不锈钢产量和消费量 2010年全年的产量和消费量简单地取上半年产量值的两倍,详见表1及图一。由表可见,我国不锈钢产量经过近十年的快速发展,由年产量67万t迅速增长到年产1400多万t。进口量2005年达到顶峰,2006年开始逐步减少,海关进出口数据显示,全国不锈钢材进口量从2009年12月开始低于出口量, 2010年上半年出口量比进口量总计多出10.2万t;出口方面,出口量不断扩大,到2007年不锈钢的出口达到高峰,2008年开始,受到国际金融危机的影响,我国钢材出口大幅萎缩,不锈钢也在所难免,2009年的出口更是下降严重。但国内 不锈钢产量仍然保持较大幅度增长。 表1 2001~2010年国内不锈钢产量及消费量

铬锰系

铬锰系(200系)奥氏体不锈钢现状、发展与前景 杨长强 中国特殊钢企业协会不锈钢分会 锰是不锈钢生产的重要合金元素,在CrNi系不锈钢生产中作为脱氧元素,一般加入 1.5%Mn,在Cr-Mn-Ni-N、Cr-Mn-N系不锈钢中作为重要的合金化元素,一般加入6~20%。铬系不锈钢研发始于1912年,Cr-Ni奥氏体不锈钢研发始于1913年,Cr-Mn-Ni-N不锈钢于1926年在德国首先开始研制,美国后来由于同样的原因,即战争导致镍短缺,开始以锰、氮代镍的不锈钢研究,至40年代便取得了显著成果。1955年美国钢铁协会(AISI)就将低Ni-CrMnN不锈钢AIASI201、AISI202纳入标准。1972年日本将它们(SUS201、SUS202)纳入JIS标准,苏联1972年将12Х17Г9АН4(相当AISI202)纳入标准。中国1975年将1Cr17Mn6Ni5N(相当201)和1Cr18Mn8Ni5N(相当202)纳入国标(GB)。研究发现CrMn系不锈钢有很多不可多得的特性,如1固溶处理后高的强度,2冷加工高的硬化率,高的强化系数,3无磁性(冷加工状态下极低的导磁率),4优良的耐磨性,5较小的晶间腐蚀倾向。所以CrMn系不断得到改良和创新,不断开发出一系列新钢种,这就形成CrMnN不锈钢与AISI300(CrNi系)并列的AISI200(CrMn 系)不锈钢。2002年美国ASTM不锈钢标准中CrNi300系有77个标准牌号,CrMn200系有22个牌号,如加上企业牌号将超过30个。中国特殊钢企业协会2003年12月发布《Cr-Mn系不锈钢厚板、薄板和钢带技术规范》中纳入16个牌号。CrMn系不锈钢已不完全是节镍概念上的钢种,而是发展一系列具有CrMn系不锈钢特有优异性能的材料。2003年全世界CrMn系不锈钢产量达到不锈钢总量的7.5%,2004年产量占世界不锈钢总产量的9%,已达230万吨,2007年中国CrMn系不锈钢产量为117.8万吨,占中国不锈钢总产量的16.35%。CrMn系不锈钢市场扩大,中心已转移到印度和中国。 一、200系不锈钢的概况 1、钢种和化学成分 200系早期开发是以锰、氮代镍,代替18-8型铬镍奥氏体不锈钢。18-8型Cr-Ni不锈钢301、302、304(包括321)占不锈钢总产量50%以上。这些钢种耐蚀性、机械性能、高低温性能、工艺性能、装饰性等综合性能极佳,广泛应用于民用到军用的各领域,民用的建筑装饰。家用电器,厨房设备和器皿,交通运输,环境保护,市政建设;军工的

镍和铬在不锈钢中的主要作用

镍在不锈钢中的主要作用 镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。

400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。 300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400系列不锈钢具有更好的可锻特性。由于300系列不锈钢的奥氏体结构,因此它在许多环境中具有很强的抗腐蚀性能,具有很好的抗金属超应力引起的腐蚀所造成的断裂的性能,而且其材料特性不受热处理的影响。 不锈钢是20世纪重要发明之一,经过近百年的研制和开发已形成一个有300多个牌号的系列化的钢种。在特殊钢体系中不锈钢性能独特,应用围广,起其它特殊钢无法代替的作用,而不锈钢几乎可以涵盖其它任何一类特殊钢。 1 奥氏钢的演变 在发达国家,每年消耗的不锈钢中约有70%是奥氏体不锈钢,尽管我国消费水平不高,奥氏体不锈钢的消耗量也达到总消耗量的65%左右。所以看不锈钢牌号发展动向首先要看奥氏体不锈钢的动向。 早期的研究者已发现碳是造成奥氏体不锈钢晶界腐蚀损坏的主要原因,限于当时的冶金设备水平,很难将碳控制到0.03%以下,

(整理)镍在不锈钢中作用

镍在不锈钢中作用 镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有

4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400 系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。 400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。 300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400系列不锈钢具有更好的可锻特性。由于300系列不锈钢的奥氏体结构,

不锈钢化学成分和性能对照

常用不锈钢种化学成分及性能对照 SUS304(不銹鋼):用途最多之不銹鋼種,因含有 Ni 故比 Cr 鋼較富耐蝕性耐熱性,且具低溫強度,故機械特性非常好,加工硬化性非常大,加熱處理不硬化,非磁性,強度佳,較沒彈性,常使用厚度 0.4T ~ 1.0T 之間。故目前在Notebook 常被廣泛運用在需 結構強度之Bracket ,運用上必須 指定級數,以期達到設計之需求.一般最好取3/4H 為宜.若是須引伸抽型,若運用於LCD bracket ,一般最好取1/2H 為宜. 參考價格: 98NT$/Kg --0.5T , 130NT$/Kg--0.3T , 195NT$/Kg--0.2T . SUS301(不銹鋼):Cr (鉻) 成分比 SUS304 低,耐蝕性較差,但冷間加工能得到非常高度的拉加及硬度,其特性用途廣大,因彈性佳,故目前在Notebook 常被廣泛運用在防EMI 上,做彈性接觸部份,但常用厚度在 0.4T ~ 0.07T 之間。運用上必須指定級數,以期達到設計之需求(例如彈力,強度).並須注意301材料有金屬結晶性方向性,越高級數者越是硬且脆,若成型上不注意,易造成隅角及側壁裂紋. 參考價格: 142NT$/Kg --0.5T , 183NT$/Kg--0.3T , 180NT$/Kg--0.2T . 285NT$/Kg --0.1T . SUS 301 與 SUS 304 材質硬度比較 SUS 301 H 材質 硬度 硬度 硬 度 硬度 SUS 301 H HV 480°±20° SUS 304 H HV 380°±20° SUS 430 HV 200° SUS 301 3/4H HV 380°±20° SUS 304 3/4H HV 300°±20° SUS 301 1/2H HV 300°±20° SUS 304 1/2H HV 260°±20° SUS 304 HV200°±20° 436L 436L ≤0.025 16.0~19.0 - 0.75~1.25 Ti 、Nb 、 Zr8×(C%+N%)~0.8 A ≥245 ≥410 ≥20 444 444 ≤0.025 17.0~20.0 1.75~2.50 Ti,Nb,Zr8×C%+N%)~0.8 A ≥245 ≥410 ≥20 马氏体 MARTENSITE 410 410 ≤0.15 11.5~13.5 - - - A ≥205 ≥440 ≥20 420J1 420J1 0.16~ 0.25 12.0~14.0 - - - A ≥225 ≥520 ≥18 420J2 420J2 0.26~0.4 12.0~14.0 - - - A ≥225 ≥540 ≥18

各种元素在不锈钢中所起的作用

各种元素在不锈钢中所起的作用: 碳钢一般是铁碳系的,元素一般有C、Fe、Mn、Si、S、p。 不锈钢一般是铬(Cr)或铬镍(Cr-Ni)系的。不过不锈钢也分铁素体不锈钢、奥氏体不锈钢、马氏体不锈钢、双相不锈钢等。 马氏体不锈钢一般Cr含量为13%左右,铁素体不锈钢一般Cr含量为17%左右。用的比较多的是奥氏体不锈钢,也就是Cr-Ni系的。用的较多的有304、308、316等等。 合金元素的影响: Mn 1、在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性 2、降低钢的临界冷却速度,提高钢的淬透性 3、稍稍改善钢的低温韧性 4、在高含量范围内,作为主要的奥氏体化元素 Si 1、强化铁素体,提高钢的强度和硬度 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的氧化性腐蚀介质中的耐蚀性,提高钢的耐热性 4、磁钢中的主要合金元素(含量在0.40%范围内时,改善热裂倾向,含量高时,易形成柱状晶,增加热裂倾向。) Cr 1、在低合金范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的耐热性 4、在高合金范围内,使钢具有对强氧化性酸类等腐蚀介质的耐腐蚀能力 Mo 1、强化铁素体,提高钢的强度和硬度 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的耐热性和高温强度 Ni 1、提高钢的强度,而不降低其塑性,改善钢的低温韧性 2、降低钢的临界冷却速度,提高钢的淬透性 3、扩大奥氏体区,是奥氏体化的有效元素 4、本身具有一定耐蚀性,对一些还原性酸类有良好的耐蚀能力 Al 1、炼钢中起良好的脱氧作用 2、细化钢的晶粒,提高钢的强度 3、提高钢的抗氧化性能,提高不锈钢对强氧化性酸类的耐蚀能力

合金元素在钢中的主要作用

简述几种常见合金元素在钢中的主要作用 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼 过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍%的钢可在-100℃时使用,含镍9%的钢则可在 -196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。 此外,镍加入钢中不仅能耐酸,而且也能抗碱,对大气及盐都有抗蚀能力,镍是不锈耐酸钢中的重要元素之一。 (3)钼(Mo)

元素对奥氏体不锈钢的影响

在奥氏体不锈钢中,有碳、铬、锰、硅、硫、磷、钼、氮、钛、铌、镍、铜、硼、铈、镧等元素组成.每种元素对奥氏体不锈钢的影响如下 1.碳的影响: 碳在奥氏体不锈钢中是强烈形成并稳定奥氏体且扩大奥氏体区的元素,碳形成奥氏体的能力为镍的30倍.钢中随着含碳量增加,奥氏体不锈钢强度也随之提高.此外,还能提高奥氏体不锈钢在高浓氯化物(如42%MgCl2沸腾溶液)中的耐应力腐蚀性能.但是在奥氏体不锈钢中,碳通常被视为有害元素,因为在焊接或加热到450度到850度,碳可以和钢中的铬形成Cr23C6型碳化物.导致局部铬贫化,使钢的耐晶间腐蚀性能下降.20世纪60年代以来新发展的铬镍奥氏体不锈钢,为含碳量小于0.03%或0.02%的超低碳型不锈钢.因此,在冷、热加工及焊接与碳弧气刨时应防止不锈钢表面增碳,以免铬的碳化物析出. 2.铬的影响: 在奥氏体不锈钢中,铬是强烈形成并稳定铁素体的元素,可以缩小奥氏体区.在铬镍奥氏体不锈钢中,当碳含量为0.1%,铬含量为18%时,为获得稳定单一奥氏体组织,所需镍的含最最低为8%,铬能增大碳的溶解度而降低铬的贫化度,因而提高铬含量对奥氏体不锈钢的耐晶间腐蚀是有益的.铬还能极有效地改善奥氏体不锈钢的耐点蚀及缝隙腐蚀性能.因此铬对奥氏体不锈钢性能影响最大的是耐蚀性.铬可提高

钢的耐氧化性介质和酸性氯化物介质的性能,在镍、钼、铜的复合作用下,铬可提高钢耐一些还原性介质、如有机酸、碱介质的性能. 3.镍的影响: 奥氏体不锈钢中主要合金元素镍,其主梌用是形成并稳定奥氏体,获得完全奥氏体组织,使强有良好的强度、塑性和韧性并具有优良的冷、热加工性、可焊性及低温与无磁性,镍还可以显著降低奥氏体不锈钢的冷加工硬化倾向.由于镍能改善铬的氧化膜成份、结构和性能,从而提高奥氏体不锈钢耐氧化性介质的性能.但是降低了钢的抗高温硫化性能,这是由于钢中晶界处形成低熔点硫化镍所致. 4.钼的影响: 钼的作用主要是提高钢在还原性介质(比如H2So4、H2PO4以及一些有机酸和尿素环境)的耐蚀性,并提高钢的耐点蚀及缝隙腐蚀等性能.含钼不儿钢的热加工性比不含钼的差,钼含量越高,热加工越坏.另外含钼奥氏体不锈钢中容易形成X(σ)沉淀,这会恶化钢的塑性和韧性.钼的耐点蚀和耐缝隙腐蚀能力相当于铬的3倍左右. 5.氮的影响: 氮日益成为铬镍氮奥氏体不锈钢的重要合金元素,氮能提高钢的耐局部腐蚀(耐晶间腐蚀、点蚀和缝隙腐蚀)性,氮形成奥氏体的能力与碳相当,约为镍的30倍.作为间隙元素的氮,其固溶强化作用很强,因

元素含量对奥氏体不锈钢性能的影响

元素含量对奥氏体不锈钢性能的影响奥氏体不锈钢含有较多的Cr、Ni、Mn、N等元素。与铁素体不锈钢和马氏体不锈钢相比,奥氏体不锈钢除了具有较高的耐腐蚀性外,还有许多优点。它具有很高的塑性,容易加工变形成各种型材,如薄板、管材等;加热时没有同素异构转变,即没有γ和α之间的相变,焊接性好;低温韧性好,一般情况下没有冷脆倾向;奥氏体不锈钢不具有磁性。由于奥氏体不锈钢的再结晶度比铁素体不锈钢的高,所以奥氏体不锈钢还可以用于550℃以上工作的热强钢。 奥氏体不锈钢是应用最广的不锈钢,约占不锈钢总产量的2/3。由于奥氏体不锈钢具有优异的不锈钢酸性、抗氧化性、高温和低温力学性能、生物相容性等,所以在石油、化工、电力、交通、航天、航空、航海、能源以及轻工、纺织、医学、食品等工业上广泛应用。 1.高钼(Mo>4%)奥氏体不锈钢 高钼奥氏体不锈钢的典型代表是:00Cr18Ni16Mo5和00Cr18Ni16Mo5N。因为含钼量高,所以在耐还原性酸和耐局部腐蚀方面性能有很大提高,可用于更加苛刻的腐蚀环境中。含氮00Cr18Ni16Mo5N钢,由于氮的加入,奥氏体更加稳定,由于铁素体的生成,σ(χ)等脆性相的析出受到一定抑制。 00Cr20Ni25Mo4.5Cu由于此钢含有更高的Cr、Ni、Mo等元素,加之Mo与Cu的复合作用,使00Cr20Ni25Mo4.5Cu既在含Cl离子的水介质中耐点蚀、缝隙腐蚀和应力腐蚀的能力有显著提高,图1~图4系在不同温度H2SO4、H3P O4和含F-50%H3P O4中

耐全面腐蚀和在氯化物水介质中耐应力腐蚀的实验结果。可以看出00Cr20Ni25Mo4.5Cu 比18-12-2型不锈钢的耐蚀范围有所扩大。 图1 00Cr20Ni25Mo4.5Cu 在H 2SO 4中的腐蚀 图2 00Cr20Ni25Mo4.5Cu 在H 3PO 4 中的腐蚀(≤0.1mm/a) 图3 00Cr20Ni25Mo4.5Cu 在50℃含HF 的50%P 2O 5溶液中的腐蚀

铬合金作用

铬合金作用 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低

些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑 性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐 蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密, 细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。

Ni元素在不锈钢中的作用

镍Ni元素在不锈钢中的作用 时间:2011-01-27 13:56来源:未知作者:admin 点击:192次 对不锈钢钢的显微组织及热处理的作用 1.镍和铁能无限固溶,镍扩大铁的奥氏体区,即升高A 4 点,降低A 3 点,是形成和稳定奥氏体的主要合金元素2.镍和碳不形成碳化物3.降低临界转 对不锈钢钢的显微组织及热处理的作用 1.镍和铁能无限固溶,镍扩大铁的奥氏体区,即升高A4点,降低A3点,是形成和稳定奥氏体的主要合金元素 2.镍和碳不形成碳化物 3.降低临界转变温度,降低钢中各元素的扩散速率,提高淬透性 4.降低共析珠光体的碳含量,其作用仅次于氮而强于锰。在降低马氏体转变温度方面的作用为锰的一半 对不锈钢的力学性能的作用 1.强化铁素体并细化和增多珠光体,提高钢的强度,不显著影响钢的塑性 2.含镍钢的碳含量可适当降低,因而可使韧性和塑性有所改善 3.提高钢的疲劳抗力,减小钢对缺口的敏感性 4.由于对提高钢的淬透性和回火稳定性的作用并不十分强,镍对调质钢的意义不大 5.降低钢的低温脆化转变温度,含Ni3.5%的钢可在-100℃时使用,含Ni9%的钢可在-196℃时使用 对不锈钢的物理化学及工艺性能的作用 1.强烈降低钢的热导率和电导率 2.Ni<30%的奥氏体钢呈现顺磁性,即无磁钢。Ni>30%的Fe-Ni合金是重要的精密软磁材料 3.含镍超过15%-20%的钢对硫酸和盐酸有很高的抗蚀性能,但不能抗硝酸的腐蚀。总的来说,含镍钢对酸、碱以及大气都有一定的抗蚀能力。含镍的低合金钢还有较高的腐蚀疲劳抗力。含镍钢在含硫和一氧化的气氛中加热时易发生热脆和侵蚀性气孔 4.含镍较高的钢在焊接时应采用奥氏体焊条,以防止裂缝 5.含镍钢中易出现带状组织和白点缺陷,应在生产工艺中加以防止 在不锈钢中的应用 1.单纯的镍钢只在要求有特别高的冲击韧性或很低的工作温度时才使用 2. 机械制造中使用的镍铬或镍铬钼钢,在热处理后能获得强度和韧性配合良好的综合力学性能。含镍钢特别适用于需要表面渗碳的部件 3.在高合金奥氏体不锈耐热钢中镍是奥氏体化元素,能提供良好的综合性能,主要为NiCr 系钢。CrMnN、CrAlSi、FeAlMn钢,在一些用途上可取代CrNi系钢 4.由于镍的稀缺,又是重要的战略物资。非在用其他合金元素不可能达到性能要求时,应尽量少用和不用镍作为钢的合金元素

企业管理案例分析课程心得体会

学习企业管理案例分析课程心得体会 商学院人力资源管理于相龙2012206190 对管理案例分析的系统学习,才是对管理学理论进一步运用到实践中去有所理解。学习企业管理案例分析提高了诸多能力,比如,帮助我们建立起了系统的知识体系;增强了对专业知识的感性认识,灵活的运用所掌握的管理知识;培养分析和解决问题的能力,提高决策水平等等。我明白了管理的本质就是协调,而协调的过程中,需要我们具有丰富的知识和良好的能力。 在学习这门课之前,也曾经学习过管理学的内容,管理学包括一般的原理、理论、方法和技术等,但通过这学期对管理案例分析的系统学习,才是对管理学理论进一步运用到实践中去有所理解,更能深刻的理解理论知识并在实践过程中指导操作。 初次接触这门课程时,感觉耳目一新。首先,教材的内容模板与以往不同,教材包含了五十多个案例,案例内容涉及管理学案例、生产运作管理、人力资源管理案例、市场营销案例和财务管理案例等,使学生进一步加深了实际工作中现代管理会计的理性和感性认识,为亲临实践而“尝试身手”。其次,课堂采用讨论式教学,讲课方式很灵活。大家进行讨论各抒己见,很能激发发散性思维。再次,这门课对学生的自主学习能力要求很高,每讲一个案例都需要课前查找很多相关辅助资料,这样才能更便于掌握课上内容。 通过对这门课的学习,我觉得我的几个方面的能力有所提高,正是这些能力的提高,才能让我在之后的工作中更自如、理性,更能全面的做好每一件事。我觉得受益匪浅。 一、帮助我们建立起了系统的知识体系。因为要想比较准确的分析一个管理案例,就必须将分散的知识实现有机的结合,形成知识的总体,在发现问题的同时,能够系统的分析和解决问题,锻炼自己发现、分析、解决问题的能力,提高自身实践操作水平。 二、增强了对专业知识的感性认识,灵活的运用所掌握的管理知识。通过对

、铬(Cr) 铬能增加钢的淬透性并有二次硬化作用。可提高高碳钢的硬度和耐磨性而不使钢变脆;含量超过12%时。使钢有良好的高温抗氧化性和耐氧化性介质腐蚀的作用。还增加钢的热强性,铬为不锈耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度。降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构钢中的主要作用是提高淬透性。使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性。有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (1) 对钢的显做组织及热处理的作用 A、铬与铁形成连续固溶体,缩小奥氏体相区城。铬与碳形成多种碳化物,与碳的亲和力大于铁和锰而低于钨、钼等.铬与铁可形成金属间化合物σ相(FeCr) B、铬使珠光体中碳的浓度及奥氏体中碳的极限溶解度减少 C、减缓奥氏体的分解速度,显著提高钢的淬透性.但亦增加钢的回火脆性倾向 (2)对钢的力学性能的作用 A、提高钢的强度和硬度.时加入其他合金元素时,效果较显著 B、显著提高钢的脆性转变温度 C、在含铬量高的Fe-Cr合金中,若有σ相析出,冲击韧性急剧下降 (3)对钢的物理、化学及工艺性能的作用 A、提高钢的耐磨性,经研磨,易获得较高的表面光洁度 B、降低钢的电导率,降低电阻温度系数 C、提高钢的矫顽力和剩余磁感.广泛用于制造永磁钢 D、铬促使钢的表面形成钝化膜,当有一定含量的铭时,显著提高钢的耐腐蚀性能(特别是硝酸)。若有铬的碳化物析出时,使钢的耐腐蚀性能下降 E、提高钢的抗氧化性能 F、铬钢中易形成树枝状偏析,降低钢的塑性 G、由于铬使钢的热导率下降,热加工时要缓慢升温,锻、轧后要缓冷 (4)在钢中的应用 A、合金结构钢中主要利用铬提高淬透性,并可在渗碳表面形成含铬碳化物以提高耐磨性 B、弹簧钢中利用铬和共他合金元素一起提供的综合性能 C、轴承钢中主要利用铬的特殊碳化物对耐磨性的贡献及研磨后表面光沽度高的优点 D、工具钢和高速钢中主要利用铬提高耐磨性的作用,并具有一定的回火稳定性和韧性 E、不锈钢、耐热钢中铬常与锰、氮、镍等联合便用,当需形成奥氏体钢时,稳定铁素体的铬与稳定奥氏体的锰、镍之间须有一定比例,如Cr18Ni9等 F、我国铬资源较少.应尽量节省铬的使用 2、钼(Mo)

镍、锰、氮、碳在不锈钢中的作用

镍、锰、碳、硅在不锈钢中的作用 镍是优良的耐腐蚀材料,也是合金钢的重要合金化元素。镍在钢中是形成奥氏体的元素,但低碳镍钢要获得纯奥氏体组织,含镍量要达到24%;而只有含镍27%时才使钢在某些介质中的耐腐蚀性能显著改变。所以镍不能单独构成不锈钢。但是镍与铬同时存在于不锈钢中时,含镍的不锈钢却具有许多可贵的性能。 基于上面的情况可知,镍作为合金元素在不锈钢中的作用,在于它使高铬钢的组织发生变化,从而使不锈钢的耐腐蚀性能及工艺性能获得某些改善。 铬镍奥氏体钢的优点虽然很多,但近几十年来由于镍基耐热合金与含镍20%以下的热强钢的大量发展与应用,以及化学工业日益发展对不锈钢的需要量越来越大,而镍的矿藏量较少且又集中分布在少数地区,因此在世界范围内出现了镍在供和需方面的矛盾。所以在不锈钢与许多其他合金领域(如大型铸锻件用钢、工具钢、热强钢等)中,特别是镍的资源比较缺乏的国家,广泛地开展了节镍和以其他元素代镍的科学研究与生产实践,在这方面研究和应用比较多的是以锰和氮来代替不锈钢与耐热钢中的镍。 锰对于奥氏体的作用与镍相似。但说得确切一些,锰的作用不在于形成奥氏体,而是在于它降低钢的临界淬火速度,在冷却时增加奥氏体的稳定性,抑制奥氏体的分解,使高温下形成的奥氏体得以保持到常温。在提高钢的耐腐蚀性能方面,锰的作用不大,如钢中的含锰量从0到10.4%变化,也不使钢在空气与酸中的耐腐蚀性能发生明显的改变。这是因为锰对提高铁基固溶体的电极电位的作用不大,形成的氧化膜的防护作用也很低,所以工业上虽有以锰合金化的奥氏体钢(如40Mn18Cr4,50Mn18Cr4WN、ZGMn13钢等),但它们不能作为不锈钢使用。锰在钢中稳定奥氏体的作用约为镍的二分之一,即2%的氮在钢中的作用也是稳定奥氏体,并且作用的程度比镍还要大。例如,欲使含18%铬的钢在常温下获得奥氏体组织,以锰和氮代镍的低镍不锈钢与元镍的铬锰氮不诱钢,目前已在工业中获得应用,有的已成功地代替了经典的18-8铬镍不锈钢。

不锈钢中各元素的作用

1、镍Ni:镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC结构,加入镍,促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。 目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5 Mn %+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔 性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少 和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的 氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是 用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数 量就越高。例如在201型不锈钢中,只含有 4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也 是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体 形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥 氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅 添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。 400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。 300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400 系列不锈钢具有更好的可锻特性。由于300系列不锈钢的奥氏体结构,因此它在许多环境中 具有很强的抗腐蚀性能,具有很好的抗金属超应力引起的腐蚀所造成的断裂的性能,而且其材料特性不受热处理的影响。是主要奥氏体形成元素,能减缓钢的腐蚀现象及在加热时晶粒的长大镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要 原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC结构,加入镍,促使晶体结构从体心立方(BCC)结构转变为面心立方(FCC结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式:奥氏体形成能力=Ni%+30C%+30N%+0.5 Mn %+0.25Cu%

不锈钢行业全面分析

不锈钢行业全面分析 一、世界不锈钢行业分析 (一)全球不锈钢行业发展现状 2002-2008年世界不锈钢产量整体呈现上升趋势,2002-2008年世界不锈钢产量由2069万吨攀升至2590万吨,增幅521万吨。 2005年,世界不锈钢产量首次出现负增长,同比下降1.00%。其主要原因是西方国家各主要不锈钢2005年产量均出现了大幅减少,尤其是2005年下半年,由于不锈钢库存过量的出现,钢厂纷纷采取了缩减产量的措施导致世界不锈钢产量转入下行态势。据国际不锈钢论坛(ISSF)的一项调查显示:2005年7月至9月,世界不锈钢粗钢产量为540万吨,较4月至6月产量减少了8.20%,由于2005年上半年产量的增加,2005年1月至9月世界不锈钢产量仍较2004年同期增加了1.10%。 得益于美国以及中国产能释放加速,2006年世界不锈钢产量达到峰值,增长至2840万吨,同比增长16.87%。2006年美国不锈钢产量增长率超过15.00%,这主要由于美国新增产能的推动所引起。由于中国的不锈钢粗钢产能大量释放,2006年亚洲地区的不锈钢增长速度位居全球首位。亚洲不锈钢粗钢同比增长了20.6%,达到1507万吨,超过了全世界不锈钢总产量的一半。强劲的动力主要来自于中国。2006年,中国的不锈钢产量达到529.23万吨,比2005年增

长43.03%;美洲不锈钢增长了9.80%,产量接近300万吨;中欧/东欧地区不锈钢产量增长17.1%,达到36.3万吨。 图表 1 2006年世界主要不锈钢产区产量以及增长情况 从2006年各季度世界不锈钢产量增长情况来看,表现为先稳后升,势头强劲。在第一季度,世界不锈钢产量增长并不明显,增长率仅0.50%。之后,在第二季度和第三季度,增长率逐季飚升,分别达到12.60%和30.40%。在第四季度,虽然产量增长比第三季度稍微减速,但其上升势头依然强劲,增长率仍然达到28.50%。 图表 2 2006年各季度不锈钢产量同比增长情况

不锈钢标准简易对照表

各国不锈钢标准 世界各国不锈钢标准钢号对照表

不锈钢含义: 不锈钢一般是不锈钢和耐酸钢的总称。不锈钢是指耐大气、蒸汽和水等弱介质腐蚀的钢,而耐酸钢则是指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢自本世纪初问世,到现在已有90多年的历史。不锈钢的发明是世界冶金史上的重大成就,不锈钢的发展为现代工业的发展和科技进步奠定了重要的物质技术基础。不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈钢和奥氏体加铁素体双相不锈钢等四大类;按钢中的主要化学成分或钢中的一些特征元素来分类,分为铬不锈钢、铬镍不锈钢、铬镍钼不锈钢以及低碳不锈钢、高钼不锈钢、高纯不锈钢等;按钢的性能特点和用途分类,分为耐硝酸不锈钢、耐硫酸不锈钢、耐点蚀不锈钢、耐应力腐蚀不锈钢、高强不锈钢等;按钢的功能特点分类,分为低温不锈钢、无磁不锈钢、易切削不锈钢、超塑性不锈钢等。目前常用的分类方法是按钢的组织结构特点和钢的化学成分特点以及两者相结合的方法分类。一般分为马氏体不锈钢、铁素体不锈钢、奥氏体不锈钢、双相不锈钢和沉淀硬化型不锈钢等,或分为铬不锈钢和镍不锈钢两大类。不锈钢一般用于防腐蚀性的环境,以及医疗器械和生活用品. 按主要化学组成分为铬不锈钢、铬镍不锈钢和铬锰氮不锈钢等;也可以以性能特点分成耐酸不锈钢和耐热不锈钢等;通常以金相组织进行分类。按金相组织分类为:铁素体(F)型不锈钢、马氏体(M)型不锈钢、奥氏体(A)型不锈钢、奥氏体-铁素体(A-F)型双相不锈钢、奥氏体-马氏体(A-M)型双相不锈钢和沉淀硬化(PH)型不锈钢。 铁素体型不锈钢 它的内部显微组织为铁素体,其铬的质量分数在11.5%~32.0%范围内。随着铬含量的提高,其耐酸性能也提高,加入钼(Mo)后,则可提高耐酸腐蚀性和抗应力腐蚀的能力。这类不锈钢的国家标准牌号有00Cr12、1Cr17、00Cr17Mo、00Cr30Mo2等。 马氏体型不锈钢 它的显微组织为马氏体。这类钢中铬的质量分数为11.5%~18.0%,但碳的质量分数最高可达0.6%。碳含量的增高,提高了钢的强度和硬度。在这类钢中加入的少量镍可以促使生成马氏体,同时又能提高其耐蚀性。这类钢的焊接性较差。列入国家标准牌号的钢板有1Cr13、2 Cr13、3 Cr13、1 Cr17Ni2等。 奥氏体型不锈钢 其显微组织为奥氏体。它是在高铬不锈钢中添加适当的镍(镍的质量分数为8%~25%)而形成的,具在奥氏体组织的不锈钢。奥氏体型不锈钢以Cr18Ni19铁基合金为基础,在此基础上随着不同的用途,发展成图1-2所示的铬镍奥氏体不锈钢系列。 奥氏体型不锈钢一般属于耐蚀钢,是应用最广泛的一类钢,其中以18-8型不锈钢最有代表性,它是有较好的力学性能,便于进行机械加工、冲压和焊接。在氧化性环境中具有优良的耐腐蚀性能和良好的耐热性能。但对溶液中含有氯离子(CL-)的介质特别敏感,易于发生应力腐蚀。18-8型不锈钢按其化学成分中碳含量的不同又分为三个等级:一般含碳量(Wc≤0.15%)低碳级 (Wc≤0.08%)和超低碳级(Wc≤0.03%)。例如我国国家标准中的1Cr18Ni9Ti、0Cr18Ni9、00Cr17Ni14M02三种钢板分属上面三个等级。世界许多国家都感到镍储量的紧缺。为了节省镍,早在四、五十年代世界上就开始用锰和氮取代18-8 型不锈钢中的部分镍。研制并列入国家标准的钢板牌号有1Cr17Mn6Ni5N和0Cr19Ni9N等。

相关主题
文本预览
相关文档 最新文档