当前位置:文档之家› 第六章 细胞内膜系统与蛋白质分选

第六章 细胞内膜系统与蛋白质分选

第六章 细胞内膜系统与蛋白质分选
第六章 细胞内膜系统与蛋白质分选

第六章细胞内膜系统与蛋白质分选

第五节膜泡运输

细胞内部内膜系统各个部分之间的物质传递常常通过膜泡运输方式进行。如从内质网到高尔基体;高尔基体到溶酶体;细胞分泌物的外排,都要通过过渡性小泡进行转运。膜泡运输是一种高度有组织的定向运输,各类运输泡之所能够被准确地运到靶细胞器,主要是因为细胞器的胞质面具有特殊的膜标志蛋白。许多膜标志蛋白存在于不止一种细胞器,可见不同的膜标志蛋白组合,决定膜的表面识别特征。

大多数运输小泡是在膜的特定区域以出芽的方式产生的。其表面具有一个笼子状的由蛋白质构成的衣被(coat)。这种衣被在运输小泡与靶细胞器的膜融合之前解体。衣被具有两个主要作用:①选择性的将特定蛋白聚集在一起,形成运输小泡;②如同模具一样决定运输小泡的外部特征,相同性质的运输小泡之所以具有相同的形状和体积,与衣被蛋白的组成有关。

胞内膜泡运输沿微管或微丝运行,动力来自马达蛋白(motor proteins)。与膜泡运输有关的马达蛋白有3类:一类是动力蛋白(dynein),可向微管负端移动;另一类为驱动蛋白(kinesin),可牵引物质向微管的正端移动;第三类是肌球蛋白(myosin),可向微丝的正极运动。在马达蛋白的作用下,可将膜泡转运到特定的区域,

一、衣被类型

已知三类具有代表性的衣被蛋白,即:笼形蛋白(clathrin)、COPI和COPII,个介导不同的运输途径(表2)。

表2 衣被小泡的类型与功能

(一)笼形蛋白衣被小泡

笼形蛋白衣被小泡是最早发现的衣被小泡,介导高尔基体到内体、溶酶体、植物液泡的运输,以及质膜到内膜区隔的膜泡运输。

笼形蛋白分子由3个重链和3个轻链组成(图6-2),形成一个具有3个曲臂的形状(triskelion)。许多笼形蛋白的曲臂部分交织在一起,形成一个具有5边形网孔的笼子(图6-3)。

图6-2 笼形蛋白的结构,A电镜照片,B分子模型,C衣被模型引自Molecular Biology of the Cell. 4th ed. 2002

图6-3 笼形蛋白衣被小泡的形态

笼形蛋白形成的衣被中还有衔接蛋白(adaptin)。它介于笼形蛋白与配体受体复合物之间,起连接作用(图6-4)。目前至少发现4种不同类型的衔接蛋白,可分别结合不同类型的受体,形成不同性质的转运小泡,如AP1参与高尔基体→内体的运输、AP2参与质膜→内体的运输、AP3参与高尔基体→溶酶体的运输。

图6-4 笼形衣被小泡的组成

当笼形蛋白衣被小泡形成时,可溶性蛋白动力素(dynamin)聚集成一圈围绕在芽的颈部(图6-5),将小泡柄部的膜尽可能地拉近(小于1.5nm),从而导致膜融合,掐断(pinch off)衣被小泡。动力素是一种GTP酶,调节小泡以出芽形式脱离膜的速率。动力素可以召集其它可溶性蛋白在小泡的颈部聚集,通过改变膜的形状和膜脂的组成,促使小跑颈部的膜融合,形成衣被小泡。

图6-5 Clathrin衣被小泡的掐断过程引自Molecular Biology of the Cell. 4th ed. 2002

当衣被小泡从膜上释放后,衣被很快就解体,属于hsp70家族的一种分子伴侣(molecular chaperone)充当衣被解体的ATP酶,一种辅蛋白(auxillin)可以激活这种ATP酶。

(二)COP I衣被小泡

负责回收、转运内质网逃逸蛋白(escaped proteins)返回内质网(图6-6、7)。起初发现于高尔基体碎片,在含有ATP的溶液中温育时,能形成非笼形蛋白包被的小泡。进一步的研究发现这种衣被蛋白复合体包含多达7种肽链。

内质网向高尔基体输送运输小泡时,一部分自身的蛋白质也不可避免的被运送到了高尔基体,如不进行回收则内质网因为磷脂和某些蛋白质的匮乏而停止工作。内质网通过两种机制维持蛋白质的平衡:一是转运泡将应被保留的驻留蛋白排斥在外,例如有些驻留蛋白参与形成大的复合物,因而不能被包装在出芽形成的转运泡中,结果被保留下来;二是通过对逃逸蛋白的回收机制,使之返回它们正常驻留的部位。

内质网的正常驻留蛋白,不管在腔中还是在膜上,它们在C端含有一段回收信号序列(retrieval signals),如果它们被意外地逃逸进入转运泡从内质网运至高尔基体cis面,则cis面的膜结合受体蛋白将识别并结合逃逸蛋白的回收信号,形成COPI衣被小泡将它们返回内质网。内质网腔中的蛋白,如蛋白二硫键异构酶和协助折叠的分子伴侣,均具有典型的回收信号

Lys-Asp-Glu-Leu(KDEL,图6-8)。内质网的膜蛋白(如SRP受体)在C端有一个不同的回收信号,通常是Lys-Lys-X-X(KKXX,X:任意氨基酸),同样可保证它们的回收。

COP I衣被小泡还可以介导高尔基体不同区域间的蛋白质运输。

图6-6 COP I衣被小泡的形态

图6-7 COPI和COPII衣被小泡引自Molecular Biology of the Cell. 4th ed. 2002

图6-8 KDEL序列引自Molecular Biology of the Cell. 4th ed. 2002

(三)COPⅡ衣被小泡

介导从内质网到高尔基体的物质运输。最早发现于酵母ER在ATP存在的细胞质液中温育时,ER膜上能形成类似于COP I的衣被小泡,某些温度敏感型的酵母,由于COP II衣被蛋白发生变异,在特定温度下会在内质网中积累蛋白质。

COP II衣被由多种蛋白质构成(参见表2),其中Sar1GTP酶与Sec23/Sec24复合体结合在一起,形成紧紧包围着膜的一层衣被,Sec13/Sec31复合体形成覆盖在外围的一层衣被,Sec16推测可能是一种骨架蛋白,Sec12是Sar1的鸟苷酸交换因子。真核生物的COP II衣被蛋白亚单位具有一些横向同源物(Paralog)[1],这些同源物可能介导不同的蛋白质转运,具有不同的调节机制。在实验条件下,纯化的Sar1、Sec23/Sec24、Sec13/Sec31等5种成分足以在人工脂质体上形成小泡,说明这些成分具有改变膜的形状和掐断运输小泡的功能。

COP II衣被小泡形成与内质网的特殊部位,称为内质网出口(exit sites),这些部位没有核糖体,由交织在一起的管道和囊泡组成网络结构。

由内质网到高尔基体的蛋白转运中,大多数跨膜蛋白是直接结合在COP II衣被上,但是少数跨膜蛋白和多数可溶性蛋白通过受体与COP II衣被结合,这些受体在完成转运后,通过COP I 衣被小泡返回内质网。

COP II衣被所识别的分选信号位于跨膜蛋白胞质面的结构域,形式多样,有些包含双酸性基序[DE]X[DE](D为Asp,E为Glu,X为任何一种氨基酸),如Asp-X-Glu序列,其他一些具有短的疏水基序,如FF,YYM,FY,LL,IL等等(其中F为Phe,Y为Tyr,M为Met,L 为Leu,I为Ile)。

二、衣被的形成

衣被是在一类叫作衣被召集GTP酶(coat-recruitment GTPase)作用下形成的。衣被召集GTP酶通常为单体GTP酶(monomeric GTPase),也叫G蛋白,起分子开关的作用,结合GDP 的形式没有活性,位于细胞质中,结合GTP而活化,转位至膜上,能与衣被蛋白结合,促进核化和组装。

G蛋白具有两类重要的调节蛋白,即:鸟苷酸交换因子(guanine-nucleotide exchange factor, GEF)和GTP酶激活蛋白(GTPase activating protein, GAP)。GEF的作用是使G蛋白释放GDP,结合GTP而激活。GAP的作用是激活G蛋白的酶活性,使GTP水解,G蛋白失活,G蛋白本身的GTP酶活性不高。除单体G蛋白以外,三聚体G蛋白也起分子开关的作用,控制衣被小泡的形成。

衣被召集GTP酶包括Arf蛋白和Sar 1蛋白(图6-9),Arf参与高尔基体上笼形蛋白衣被与COP I衣被的形成,Sar 1参与内质网上COP II衣被的形成,两者的作用方式大体相似。质膜上笼形蛋白衣被的形成也与GTP酶有关,但其成分尚不明确。

衣被召集GTP酶大量存在于细胞质中,但处于结合GDP的失活状态。当内质网上要形成COPII衣被小泡时,Sar 1释放GDP结合GTP而激活,激活的Sar 1暴露出一条脂肪酸的尾巴,插入内质网膜,然后开始召集衣被蛋白,以衣被蛋白为模型形成运输小泡。活化的衣被召集GTP 酶还可以激活磷脂酶D(phospholipase D),将一些磷脂水解,使形成衣被的蛋白质牢固地结合在膜上。

衣被召集GTP酶对衣被的形成其动态调节作用,当多数衣被召集GTP酶处于结合GTP的状态时,它催化衣被的形成;反之当多数衣被召集GTP酶处于结合GDP的状态时,它催化衣被的解体。因此衣被的形成过程是边形成便解体的动态过程,只有在组装速率大于解体速率时,才能形成衣被小泡。

图6-9 COP II衣被小泡的组装引自Juan S. Bonifacino等2004

三、膜泡运输的定向机制

衣被小泡沿着细胞内的微管被运输到靶细胞器,马达蛋白水解ATP提供运输的动力。各类运输小泡之所以能够被准确地和靶膜融合,是因为运输小泡表面的标志蛋白能被靶膜上的受体识别,其中涉及识别过程的两类关键性的蛋白质是SNAREs(soluble NSF attachment protein receptor)和Rabs(targeting GTPase)。其中SNARE介导运输小泡特异性停泊和融合,Rab的作用是使运输小泡靠近靶膜。

(一)SNAREs

SNAREs的作用是保证识别的特异性和介导运输小泡与目标膜的融合,动物细胞中已发现20多种SNAREs,分别分布于特定的膜上,位于运输小泡上的叫作v-SNAREs,位于靶膜上的叫作t-SNAREs(图6-10)。v-SNAREs和t-SNAREs都具有一个螺旋结构域,能相互缠绕形成跨SNAREs复合体(trans-SNAREs complexes,图6-11),并通过这个结构将运输小泡的膜与靶膜拉在一起,实现运输小泡特异性停泊和融合。实验证明包含了SNARE的脂质体和包含匹配SNARE的脂质体间可发生融合,尽管速度较慢。这说明除了SNARE之外,还有其他的蛋白参与运输泡与目的膜的融合。

图6-10 t-和v-SNARE引自Molecular Biology of the Cell. 4th ed. 2002

图6-11 SNARE复合体引自Molecular Biology of the Cell. 4th ed. 2002 在SNAREs接到新一轮的运输小泡停泊之前,SNAREs必须以分离的状态存在,NSF

(N-ethylmaleimide-sensitive fusion protein, NSF)催化SNAREs的分离,它是一种类似分子伴娘的ATP酶,能够利用ATP作为能量通过插入几个适配蛋白(adaptor protein)将SNAREs复合体的螺旋缠绕分开(图6-12)。

图6-12 SNARE复合体的解离引自Molecular Biology of the Cell. 4th ed. 2002 在神经细胞中SNAREs负责突触小泡的停泊和融合,破伤风毒素和肉毒素等细菌分泌的神经性毒素实际上是一类特殊的蛋白酶,能够选择性地降解SNAREs,从而阻断神经传导。

精卵的融合、成肌细胞的融合均涉及SNAREs,另外病毒融合蛋白的工作原理与SNAREs 相似,介导病毒与宿主质膜的融合(图6-13)。

图6-13 病毒融合蛋白的工作原理引自Molecular Biology of the Cell. 4th ed. 2002

(二)Rabs

Rab也叫targeting GTPase,属于单体GTP酶,结构类似于Ras,已知30余种。不同膜上具有不同的Rab,每一种细胞器至少含有一种以上的Rab。Rabs的作用是促进和调节运输小泡的停泊和融合。与衣被召集GTP酶相似的是,起分子开关作用,结合GDP失活,位于细胞质中,结合GTP激活,位于细胞膜、内膜和运输小泡膜上,调节SNAREs复合体的形成。Rabs的调节蛋白与其它G蛋白的相似。Rabs还有许多效应因子(effector),其作用是帮助运输小泡聚集和靠近靶膜,触发SNAREs释放它的抑制因子(图6-14)。许多运输小泡只有在包含了特定的Rabs 和SNAREs之后才能形成。

图6-14 Rab的作用引自Molecular Biology of the Cell. 4th ed. 2002

四、细胞的内吞与外排

(一)受体介导的内吞

细胞的内吞可分为两类,批量内吞(Bulk-phase endocytosis)和受体介导的内吞(Receptor mediated endocytosis, RME),批量内吞是非特异性的摄入细胞外物质,如培养细胞摄入辣根过氧化物酶。细胞表面的内陷(caveolae)是发生非特异性内吞的部位。

受体介导的内吞作用是一种选择浓缩机制,既可保证细胞大量地摄入特定的大分子,同时又避免了吸入细胞外大量的液体。低密脂蛋白、运铁蛋白、生长因子、胰岛素等蛋白类激素、糖蛋白等,都是通过受体介导的内吞作用进行的。

衣被小窝(coated pits)是质膜向内凹陷的部位,约占肝细胞和成纤维细胞膜表面积的2%。受体大量集中于此处,凹陷的胞质侧具有大量的笼形蛋白和衔接蛋白,类似的结构也存在于高尔基体的TGN区。受体在衣被小窝处的集中与是否结合配体无关。衣被小窝就相当一个分子过滤器(molecular filter),帮助细胞获取所需要的大分子物质。

运输小泡的衣被中,除笼形蛋白外,还有衔接蛋白(adaptin)。它介于笼形蛋白与配体受体复合物之间,起连接作用。衔接蛋白存在有不同的种类,可分别结合不同类型的受体。

跨膜受体蛋白的胞质端有一个由4个氨基酸残基组成的序列(Tyr-X-X-Φ),此序列是发生内吞作用的信号,X表示任何一种氨基酸,Φ为分子较大的疏水氨基酸,如Phe、Leu、Met等,衔接蛋白对此序列有识别能力。

受体同配体结合后启动内化作用,笼形蛋白开始组装。在dynamin的作用下掐断后形成衣被小泡(coated vesicles)。衣被小泡进入胞质后,衣被蛋白随即脱去,分子返回到质膜下方,重又参与形成新的衣被小泡。其过程和高尔基体的TGN区形成溶酶体小泡的过程相似。

胆固醇主要在肝细胞中合成,随后与磷脂和蛋白质形成低密脂蛋白(low-density lipoproteins,LDL),释放到血液中。LDL颗粒的质量为3X106Da,直径20~30nm,芯部含有大约1500个胆固醇分子,这些胆固醇分子被酯化成长链脂肪酸。芯部周围由一脂单层包围,脂单层包含磷脂分子和未酯化的胆固醇以及一个非常大的单链糖蛋白质(apolipoprotein B-100),这个蛋白质分子可以和靶膜上的受体结合(图6-15)。

图6-15 LDL的结构

当细胞进行膜合成需要胆固醇时,细胞即合成LDL跨膜受体蛋白,并将其嵌插到质膜中。受体与LDL颗粒结合后,形成衣被小泡;进入细胞质的衣被小泡随即脱掉笼形蛋白衣被,成为平滑小泡,同早期内体融合,内体中PH值低,使受体与LDL颗粒分离;再经晚期内体将LDL 送人溶酶体。在溶酶体中,LDL颗粒中的胆固醇酯被水解成游离的胆固醇而被利用(图6-16、17A、18)。细胞对胆固醇的利用具有调节能力,当细胞中的胆固醇积累过多时,细胞即停止合

成自身的胆固醇,同时也关闭了LDL受体蛋白的合成途径,暂停吸收外来的胆固醇。有的人因为LDL受体蛋白编码的基因有遗传缺陷,造成血液中胆固醇含量过高(图6-17B),因而会过早地患动脉粥样硬化症(atherosclerosis),这种人往往因易患冠心病而英年早逝。

图6-16 LDL的内吞

?

图6-17 clathrin 衣被的组装,异常的受体不能形成包含货物的运输小泡引自Molecular Biology of the Cell.

4th ed. 2002

图6-18 受体介导的内吞引自Molecular Biology of the Cell. 4th ed. 2002 在受体介导的内吞作用过程中,不同类型的受体具有不同的胞内体分选途径:①大部分受体返回它们原来的质膜结构域,如LDL受体又循环到质膜再利用;②有些受体不能再循环而是

最后进入溶酶体,在那里被消化,如与表皮生长因子(epidermal growth factor,EGF)结合的细胞表面受体,大部分在溶酶体被降解,从而导致细胞表面EGF受体浓度降低,称为受体下行调节(receptor down-regulation);③有些受体被运至质膜不同的结构域,该过程称作穿胞运输(transcytosis,图6-19)。在具有极性的上皮细胞,这是一种将内吞作用与外排作用相结合的物质跨膜转运方式,即转运的物质通过内吞作用从上皮细胞的一侧被摄人细胞,再通过外排作用从细胞的另一侧输出。如母鼠的抗体从血液通过上皮细胞进入母乳中,乳鼠肠上皮细胞将抗体摄人体内,都是通过跨细胞的转运完成的。

图6-19 穿胞运输引自Molecular Biology of the Cell. 4th ed. 2002

(二)外排作用

与细胞的内吞作用相反,外排作用是将细胞内的分泌泡或其他某些膜泡中的物质通过细胞质膜运出细胞的过程。

组成型的外排途径(constitutive exocytosis pathway):所有真核细胞都有从高尔基体TGN 区分泌囊泡向质膜运输的过程,其作用在于更新膜蛋白和膜脂、形成质膜外周蛋白、细胞外基质、或作为营养成分和信号分子。

调节型外排途径(regulated exocytosis pathway):分泌细胞产生的分泌物(如激素、粘液或消化酶)储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物释放出去。调节型的外排途径存在于特化的分泌细胞。其蛋白分选信号存在于蛋白本身,由高尔基体TGN上特殊的受体选择性地包装为运输小泡。

组成型的外排途径通过default pathway完成蛋白质的转运过程。在粗面内质网中合成的蛋白质除了某些有特殊标志的蛋白驻留在ER或高尔基体中或选择性地进入溶酶体和调节性分泌泡外,其余的蛋白均沿着粗面内质网→高尔基体→分泌泡→细胞表面这一途径完成其转运过程。

[1]起源于同一祖先,在不同生物体中行使同一功能的基因,称为“直向同源物(Ortholog),同一生物体中同一基因复制而产生的多个蛋白质称为旁系同源物或横向同源物(Paralog)。

细胞的内膜系统

细胞的内膜系统 ◆内膜系统是指细胞质内结构、功能、发生上相关的膜性细胞器,包括内质网、高尔基体、溶酶体、过氧化物酶体、各种有膜的转运小泡及核膜等。内膜系统的各细胞器形成相互分隔的封闭性区室,执行专一功能,使各细胞器之间既相互依存,又高度协调,大大提高了细胞的代谢效率。内膜系统中内质网和高尔基体参与蛋白质脂质的合成,加工分选和运输,一方面用于装配细胞自身结构,一方面分泌活性物质到细胞外完成功能活动。溶酶体主要负责细胞内外物质消化。 ◆内质网内质网是由封闭的膜系统围成的腔相互沟通形成的网状结构。 内质网膜与核膜外层相连,与向内折叠的细胞质膜相连,在细胞内形成一个相互沟通的片层网状结构,将细胞基质分隔成许多区域,使不同的代谢反应在特定环境中进行。内质网不仅在蛋白质和脂质合成上起重要作用,也是其他膜性细胞器如高尔基复合体和溶酶体的来源。 高尔基体高尔基体在哺乳动物细胞核附近,紧靠中心粒。高尔基复合体 是蛋白质修饰、分选和水解、加工场所,又是分泌物质的转运站,同时还参与膜的转化过程 溶酶体溶酶体是单层膜包裹多种酸性水解酶的囊泡状细胞器主要功 能是进行细胞内的消化作用。溶酶体的异噬作用参与机体营养、防御等功能活动,自噬作用是细胞代谢的重要方式。初级溶酶体是在高尔基体的反侧以出牙的形式出现,组成溶酶体的各类水解酶都是先由粗面内质网附着核糖体合成,并在内质网腔中经过N-连接糖基化修饰,然后转到高尔基复合体等的一系列过程中形成的。 过氧化物酶体过氧化物酶体是由一层单位膜包裹的含有多种氧化酶、过 氧化物酶及过氧化氢酶,一般认为其主要功能是氧化和解毒作用。过氧化物酶体来自粗面内质网、原有过氧化物酶体或游离核糖体。 ◆内膜系统各系胞器之间不是相互孤立的,而是结构、功能、发生上紧密相关,表现出整体性和相关性。 在化学组成上,内质网膜、高尔基体膜、细胞质膜逐渐加厚。三者包含一 些共同蛋白质,但内质网含的蛋白质种类多而复杂,细胞膜蛋白种类最少,高尔基复合体的蛋白质种类介于前两者之间。同样,对于膜脂类也存在这样的过渡关系。 在结构发生上,它们紧密相关,内质网处于核心地位,是内膜系统发生的 主要场所。内质网形成许多小泡后融合、局部膨大逐渐演变为高尔基体液泡。 溶酶体膜蛋白及所含酶均来自内质网,再经高尔基体出牙形成的运输小泡和内体合并而成。粗面内质网与核膜相连,内质网的腔与内外核膜间的核间隙相通。外核膜附大量核糖体且与内质网膜厚度一致,被认为是内质网的一部分,也具备合成蛋白质的能力。过氧化物酶体的蛋白质可能是由粗面内质网

第七章 真核细胞内膜系统、蛋白质分选与膜泡运输 - 测试题(满分:70)

第七章真核细胞内膜系统、蛋白质分选与膜泡运输- 测试题(满分:70) 一、选择题(共25小题,1~20题每题1分,21~25题每题2分) 1、下列关于信号肽,最正确的一项是() A. 是C端的一段氨基酸序列 C. 具有信号作用,但不被切除 B. 是N端的一段氨基酸序列 D. 跨膜运输后要被切除 2、细胞质基质中合成,到内质网上继续合成的蛋白的定位序列为() A. 信号肽 C. 转运肽 B. 导肽 D. 信号斑 3、参与蛋白质合成与运输的一组细胞器是() A. 核糖体、内质网、高尔基体 C. 细胞核、微管、内质网 B. 线粒体、内质网、溶酶体 D. 细胞核、内质网、溶酶体 4、台-萨氏病是一种与溶酶体有关的遗传缺陷病,主要是()缺乏而不能水解神经节苷脂GM2。 A. 磷酸二酯酶 C. β-氨基己糖酯酶A B. N-乙酰氨基转移酶 D. 腺苷酸环化酶 5、指导蛋白质转运到线粒体上的氨基酸序列被称为() A. 导肽 C. 转运肽 B. 信号肽 D. 新生肽 6、溶酶体的H+ 浓度比细胞质基质中高() A. 5倍 C. 50倍 B. 10倍 D. 100倍以上 7、下面()不是在粗面内质网上合成的 A. 抗体 C. 胶原蛋白 B. 溶酶体膜蛋白 D. 核糖体蛋白 8、下列细胞器中的膜蛋白在粗面内质网上合成的为() A. 叶绿体 C. 过氧化物酶体 B. 线粒体 D. 溶酶体 9、具运输和分拣内吞物质的细胞器是() A. 有被小体 C. 胞内体 B. 滑面内质网 D. 溶酶体 10、下列()是特化的内质网 A. 肌质网 C. 乙醛酸循环体 B. 脂质体 D. 残余小体 11、真核细胞中下列()细胞器或细胞结构上不可能有核糖体存在 A. 内质网 C. 细胞核膜 B. 细胞质基质 D. 细胞质膜 12、下列细胞器中,有极性的是() A. 溶酶体 C. 线粒体 B. 微体 D. 高尔基体 13、蛋白质的糖基化及其加工、修饰和寡糖链的合成是发生在高尔基体的() A. 顺面管网状结构 C. 反面管网状结构 B. 中间膜囊 D. 反面囊泡 14、合成后的磷脂被()转运至过氧化物酶体的膜上 A. 磷脂转位因子 C. 膜泡

第九章 内膜系统与蛋白质分选和膜运输

第九章内膜系统与蛋白质分选和膜运输 2009-07-24 18:10 1. 如何理解膜结合细胞器在细胞内是按功能、分层次分布的? 答: 从功能上看, 细胞内膜结合细胞器的分布是功能越重要越靠近中央; 从层次看, 上游的靠内, 下游的靠外。如细胞核位于细胞的中央,它是细胞中最重要的细胞器,有两层膜结构。细胞核的外膜与内质网的膜是联系在一起的, 细胞核的外膜是粗面内质网的一部分。粗面内质网的功能是参与蛋白质合成, 其作用仅次于细胞核, 所以内质网位于细胞核的外侧。高尔基体在内质网的外侧,接受来自内质网的蛋白质和脂肪,然后对它们进行修饰和分选,它所完成的是内质网的下游工作。溶酶体是含有水解酶的囊泡,它是由高尔基体分泌而来。内体是由内吞作用产生的具有分选作用的细胞器,它能向溶酶体传递从细胞外摄取的物质, 这种细胞器一般位于细胞质的外侧。另外还有线粒体、过氧化物酶体等分布在细胞的不同部位。如果是植物细胞还有叶绿体和中央大液泡, 它们是按功能定位。 2. 内膜系统的动态特性是如何形成的? 答: 造成内膜系统的动态特性主要是由细胞中三种不同的生化活动引起的: ①蛋白质和脂的合成活动: 在动物细胞中主要涉及分泌性蛋白的合成和脂的合成和加工。脂的合成在光面内质网,而分泌蛋白的合成起始于粗面内质网,完成于高尔基体。②分泌活动: ③内吞活动(endocytosis pathway),是分泌的相反过程, 细胞将细胞外的物质吞进内体和溶酶体。 3. 请说明内膜系统的形成对于细胞的生命活动具有哪些重要的意义? 答: 至少有六方面的意义: ①首先是内膜系统中各细胞器膜结构的合成和装配是统一进行的,这不仅提高了合成的效率,更重要的是保证了膜结构的一致性,特别是保证了膜蛋白在这些膜结构中方向的一致性。②内膜系统在细胞内形成了一些特定的功能区域和微环境,如酶系统的隔离与衔接, 细胞内不同区域形成pH值差异, 离子浓度的维持, 扩散屏障和膜电位的建立等等,以便在蛋白质、脂类、糖类的合成代谢、加工修饰、浓缩过程中完成其特定的功能。③内膜系统通过小泡分泌的方式完成膜的流动和特定功能蛋白的定向运输,这不仅保证了内膜系统中各细胞器的膜结构的更新,更重要的是保证了一些具有杀伤性的酶类在运输过程中的安全,并能准确迅速到达作用部位。④细胞内的许多酶反应是在膜上进行的,内膜系统的形成,使这些酶反应互不干扰。⑤扩大了表面积,提高了表面积与体积的比值。⑥区室的形成,相对提高了重要分子的浓度,提高了反应效率。 4. 为什么说蛋白质的合成和分选运输是细胞中最重要的生命活动之一? 答: 这是因为在细胞生命周期的各个阶段都需要不断补充和更新蛋白质(或酶); 细胞中的线粒体、叶绿体和过氧化物酶体等细胞器都是通过已存在细胞器的分裂增殖的,新形成的细胞器的生长需要大量的蛋白质。细胞本身也是通过分裂增殖的,新形成的细胞为了增大体积,需要不断地补充蛋白。即使是不进行分裂的细胞,由于细胞内蛋白质的寿命限制和降解,也需要不断地补充蛋白质,取代细胞器中丧失功能的蛋白,所以蛋白质的合成和分选运输是细胞中最重要的生命活动之一。 5. 在蛋白质的合成与分泌的研究中分别使用了同位素示踪技术、分离技术和突变体研究技术, 说明这些技术的研究结果各说明了什么问题? 答: 同位素示踪技术确定了分泌的路线, 从内质网开始经高尔基体运向细胞外;分离技术确定了参与合成和分泌的主要细胞器的作用:内质网是参与蛋白质合成

第七章 内膜系统与蛋白质分选

第七章内膜系统与蛋白质分选 名词: 膜结合细胞器:指细胞质中所有具有膜结构的细胞器。包括细胞核、内质网、高尔基体、溶酶体、分泌泡、线粒体、叶绿体和过氧化物酶体等。由于它们都是封闭的膜结构,内部都有一定的空间,所以又称为膜结合区室。通过形成膜结合细胞器,使细胞的功能定位在一定的细胞结构并组成相互协作的系统。 内膜系统: 内膜系统是指内质网、高尔基体、溶酶体和液泡(包括内体和分泌泡)等四类膜结合细胞器, 因为它们的膜是相互流动的,处于动态平衡,在功能上也是相互协同的。广义上的内膜系统概念也包括线粒体、叶绿体、过氧化物酶体、细胞核等细胞内所有膜结合的细胞器。 小泡运输(膜泡运输):细胞内部内膜系统各个部分之间的物质传递常常通过膜泡运输方式进行。膜泡运输是一种高度有组织的定向运输,各类运输泡之所能够被准确地运到靶细胞器,主要是因为细胞器的胞质面具有特殊的膜标志蛋白。许多膜标志蛋白存在于不止一种细胞器,可见不同的膜标志蛋白组合,决定膜的表面识别特征。胞内膜泡运输沿微管或微丝运行,动力来自马达蛋白 内质网:内质网是细胞内的一个精细的膜系统。是交织分布于细胞质中的膜的管道系统。两膜间是扁平的腔、囊或池。内质网分两类,一类是膜上附着核糖体颗粒的叫粗糙型内质网,另一类是膜上光滑的,没有核糖体附在上面,叫光滑型内质网。粗糙型内质网的功能是合成蛋白质大分子,并把它从细胞输送出去或在细胞内转运到其他部位。光滑型内质网的功能与糖类和脂类的合成、解毒、同化作用有关,并且还具有运输蛋白质的功能。 溶酶体:溶酶体(lysosomes)真核细胞中的一种细胞器;为单层膜包被的囊状结构,直径约0.025~0.8微米;内含多种水解酶,专司分解各种外源和内源的大分子物质。 高尔基体:是真核细胞中内膜系统的组成之一,它由扁平膜囊(saccules)、大囊泡(vacuoles)、小囊泡(vesicles)三个基本成分组成。 信号斑:信号斑是由几段信号肽形成的一个三维结构的表面, 这几段信号肽聚集在一起形成一个斑点被磷酸转移酶识别。信号斑是溶酶体酶的特征性信号。 信号识别颗粒:在真核生物细胞质中一种小分子RNA和六种蛋白的复合体,此复合体能识别核糖体上新生肽末端的信号,顺序并与之结合,使肽合成停止,同时它又可和ER膜上的停泊蛋白识别和结合,从而将mRNA上的核糖体,带到膜上。SRP上有三个结合位点:信号肽识别结合位点,SRP受体蛋白结合位点,翻译暂停结构域。 细胞分泌:动物细胞和植物细胞将在粗面内质网上合成而又非内质网组成部分的蛋白和脂通过小泡运输的方式经过高尔基体的进一步加工和分选运送到细胞内相应结构、细胞质膜以及细胞外的过程称为细胞的分泌。 调节型分泌途径:调节型分泌(regulated secretory pathway)小泡形成的方式可能与溶酶体相似, 分泌蛋白在高尔基体反面网络中通过分选信号与相应的受体结合,

细胞生物学(翟中和)细胞质基质与内膜系统教案

第七章细胞质基质与内膜系统 细胞内区室化(compartmentalization)是真核细胞结构和功能的基本特征之一。 与原核细胞物不同,真核细胞具有复杂的内膜系统,把细胞质区分成不同的功能区隔。 细胞内被膜区分为3类结构: 细胞质基质 内膜系统(主要包括内质网、高尔基体、溶酶体、胞内体和分泌泡等) 其它膜相细胞器(如线粒体,叶绿体,过氧化物酶体,细胞核) 第一节细胞质基质及其功能 细胞质基质:真核细胞的细胞质中,除去可分辨的细胞器以外的胶状物质,占据着细胞膜内、细胞核外的细胞内空间,称细胞质基质。 一、细胞质基质的含义 细胞质基质是一种高度有序的、有精细区域化的、动态的凝胶结构体系。(不是简单、均一的溶液) 二、细胞质基质的功能 1. 进行各种生化代谢活动(糖酵解、磷酸戊糖途径、糖醛酸途径等) 2. 为部分蛋白质合成和脂肪酸合成提供场所 3.和细胞骨架一起,辅助完成物质的运输、细胞的运动、维持细胞形态 4. 维持细胞器的实体完整性,供给细胞器行使功能所需要的底物,提供细胞生命活动所需要的 离子环境 5.修饰或降解蛋白质 (1)蛋白质的修饰 与辅酶或辅基的结合、磷酸化和去磷酸化、糖基化、甲基化、酰基化等 (2)控制蛋白质的寿命 真核细胞的细胞质基质中,有一种识别并降解错误折叠或不稳定蛋白质的机制:泛素化和蛋白酶体介导的蛋白质降解途径。 共价结合泛素的蛋白质能被蛋白酶体识别和降解,这是细胞内短寿命蛋白和错误折叠或异常蛋白降解的普遍途径,泛素相当于蛋白质被摧毁的标签。 (3)降解变性和错误折叠的蛋白质 变性和错误折叠的蛋白质的降解作用,可能涉及对畸形蛋白质所暴露出的氨基酸疏水基团的识别,并由此启动对蛋白质N端第1个氨基酸残基的作用,结果形成了N端不稳定信号,被依赖于泛素的蛋白酶体途径彻底降解。 (NOTE:另一条途径是溶酶体消化清除。) (4)帮助变性或错误折叠的蛋白质重新折叠,形成正确的分子构象 主要靠热休克蛋白(heat shock protein, HSP)来完成。 在正常细胞中,HSP选择性地与畸形蛋白质结合形成聚合物,利用水解ATP释放的能量使聚集的蛋白质溶解,并进一步折叠成正确构象的蛋白质。

(推荐)蛋白质合成分选定位

细胞中蛋白质合成分选、定位的机制 一.蛋白质合成 定义:在核糖体的作用下,mRNA携带的遗传信息翻译成蛋白质。 蛋白质合成(多肽链合成)的基本过程: 1.氨基酸激活。a.将氨基酸的羧基激活成易于形成肽键的形式。b.每一个新氨基酸与 mRNA编码信息之间建立联系。从而使氨基酸与特定tRNA结合。 2.起始。 mRNA+核糖体小亚基+起始氨酰基-tRNA +核糖体大亚单位=起始 复合物 3.肽链延长。 tRNA与mRNA对应的密码子配对携带有一个氨基酸的 tRNA被安放到核糖体上此氨基酸和前一个氨基酸共价键合,肽链延长。该阶段的核心是形成肽键,将单个氨基酸连接成多肽链。 4.合成终止,肽链释放。 mRNA上的终止密码子即是终止信号,当携带新生肽链的 核糖体抵达终止密码子,多肽链合成终止,核糖体大小亚基分离,多肽链从核糖体上释放出来。 5.折叠和翻译后加工。包括多肽链的折叠剪接、化学修饰、空间组装。 二.蛋白质分选定位 定义:蛋白质从起始合成部位转运到其发挥功能发挥部位的过程。绝大多数蛋白质都是由核基因编码,或在游离核糖体上合成,或在糙面内质网膜结合核糖体上合成。但是蛋白质发挥结构或功能作用的部位几乎遍布细胞的各个区间或组分,所以需要不同的机制以确保蛋白质分选,转运至细胞的特定部位。 1.核基因编码的蛋白质的分选途径: ①.后翻译转运途径 在细胞质基质游离核糖体上完成多肽链合成,然后转运至膜围绕的细胞器,如线粒体、叶绿体、过氧化物酶体及细胞核,或者成为细胞质的可溶性驻留蛋白和骨架蛋白。 ②.共翻译转运途径 蛋白质合成在游离核糖体上起始之后,由信号肽及其与之结合的SRP引导转移至糙面内质网,然后新生肽链边合成边转入糙面内质网腔或定位在ER膜上,经转运膜泡运至高尔基加工包装再分选至溶酶体、细胞质膜或分泌到细胞外,内质网与高尔基体本身的蛋白质分选也是通过这一途径完成的。 指导分泌性蛋白质在糙面内质网上合成的决定因素是蛋白质N端的信号肽、信号识别颗粒SRP、内质网膜上信号识别颗粒的受体等因子协助完成的。 蛋白质合成暂停

第九章 内膜系统与蛋白质分选和膜运输

第九章内膜系统与蛋白质分选和膜运输 教学目的 1、掌握信号肽假说和蛋白质转运的机制。 2、掌握高尔基体参与细胞分泌活动的作用。 3、掌握细胞内蛋白质的分选。 教学内容 本章从以下6个方面讨论了细胞质质基质与内膜系统: 1.细胞质膜系统及其研究方法 2.内质网 3.高尔基复合体 4.溶酶体 5.细胞的分泌与内吞作用 6.小泡运输的分子机理 计划学时及安排 本章计划6学时。 教学重点和难点 真核细胞在进化上一个显著特点就是形成了发达的细胞质膜系统,将细胞内环境分割成许多功能不同的区室。内膜系统是指内质网、高尔基体、溶酶体和液泡(包括内体和分泌泡)等四类膜结合细胞器,因为它们的膜是相互流动的,处于动态平衡,在功能上也是相互协同的,其中包括膜运输系统。 本章是细胞生物学的重点章,包括六个方面的内容,其中内质网及信号肽假说、小泡运输的分子机理是本章的关键内容。 1.内质网是内膜系统中的重要膜结合细胞器,主要分清光面内质网和粗面内质网在功能上的差异。对于粗面内质网,重点是信号肽假说和蛋白质转运的机制。 2.高尔基复合体是内膜系统中参与蛋白质加工与分选的细胞器,要求了解和掌握高尔基体参与细胞分泌活动的作用,即将内质网合成的多种蛋白质进行加工、分类与包装,然后分门别类地运送到细胞的特定部位或分泌到细胞外。理解高尔基体在细胞内物质运输中所起的交通枢纽作用。 3.关于溶酶体,要求掌握溶酶体膜的稳定性、溶酶体的类型及特点、溶酶体的功能、溶酶体的生物发生。 4.细胞内蛋白质的分选是本章的核心内容之一,重点学习和掌握运输小泡的类型和分选信号、披网格蛋白小泡形成的机理、COP-被膜小泡形成的机理、小泡的定向运输、停靠和融合机理。 通过本章的学习要充分了解细胞内部结构的动态关系,蛋白质合成和分选的机制和“流水”作业的模式,从中获得启发。

第六章 细胞质基质与细胞内膜系统作业

第六章细胞质基质与细胞内膜系统 一、名词解释 1、网格蛋白小泡 2、停泊蛋白 3、内膜系统 4、分子伴侣 5、信号肽 6、信号识别颗粒 7、膜泡运输 8、共转运 二、填空题 1、内质网可分为和两类,具有合成蛋白功能的 是。 2、溶酶体的标志酶为,溶酶体酶大多在合成,加工后,具有 标志。 3、微体中酶大多在合成,标志酶为。 4、高尔基体的超微结构由、和三部分组成,其中 部分具有蛋白质包装的功能。 三、判断题 1、在细胞质基质中发生的蛋白质修饰包括N-端甲基化,糖基化,酰基化和磷酸化等 2、蛋白质C端的氨基酸种类与其寿命的长短密切相关 3、内质网的膜面积占整个生物膜面积的一半左右。 4、滑面内质网和糙面内质网是相互连通的 5、二硫键异构酶在内质网中可以帮助蛋白质正确折叠包装 6、结合蛋白BIP遍布内质网中,帮助蛋白质正确折叠 7、具有停止转移序列的蛋白质,将成为内质网上的跨膜蛋白 8、信号肽一半位于多肽的N端,引导蛋白质进入内质网后被切除。 9、内质网可以合成脂类,然后以膜泡运输或与水溶性载体结合运输的方式运送到目的地 10、光面内质网具有解毒的功能 11、高尔基体是一种极性的细胞器 12、高尔基体的CGN对着内质网,主要接收内质网中合成的蛋白质,并对蛋白质加以分选。 13、高尔基体的TGN可以将不同类型的蛋白质分送到目的地 14、M6P受体主要存在于高尔基体的TGN,主要对溶酶体酶起分选作用。 15、溶酶体的膜蛋白具有高度糖基化的特点 16、溶酶体的膜上具有质子泵,以维持溶酶体腔内的酸性环境 17、酸性水解酶是溶酶体内特有的酶 18、初级溶酶体的酶不具有水解活性 19、COPII小泡负责内质网到高尔基体的物质运输 20、COPI小泡负责高尔基体到内质网的物质运输 21、蛋白质的起始合成都在细胞质基质中。 22、细胞质基质中具有蛋白质加工的各种酶 23、细胞质基质中具有控制蛋白质寿命的机制 24、溶酶体和过氧化物酶体都是异质性的细胞器。

第六章 真核细胞内膜系统

第六章真核细胞内膜系统、蛋白质分选与膜泡运输 第一节细胞质基质的涵义与功能 第二节细胞内膜系统 2.1 内质网 2.2 高尔基体 2.3 溶酶体与过氧化物酶体 第三节细胞内蛋白质的分选与膜泡运输 第六章真核细胞内膜系统、蛋白质分选与膜泡运输 第三节细胞内蛋白质的分选与膜泡运输 3.1 蛋白质分选概念和类型 3.2 分泌蛋白合成的模型---信号假说 3.3 蛋白质分选信号 3.4 膜泡运输 蛋白质分选的基本概念 蛋白质是由核糖体合成的,合成之后必须准确无误地运送到细胞的各个部位。在进化过程中每种蛋白形成了一个明确的地址签(address target), 细胞通过对蛋白质地址签的识别进行运送, 这就是蛋白质的分选(protein sorting)。 蛋白质分选定位的时空概念 所谓蛋白质分选定位的时空概念包括两种含义: ①合成的蛋白质何时转运? ②合成蛋白质在细胞中定位空间及转运中所要逾越的空间障碍是什么? 从时间上考虑,蛋白质的合成分选有两种情况: 先合成,再分选(翻译后转运) 一边合成一边分选(翻译同步转运) 为了适于蛋白质分选的时间上的需要,核糖体在合成蛋白质时就有两种存在状态:游离的或与内质网结合的。 蛋白质转运的两种机制 翻译后转运:游离核糖体上合成的蛋白质释放到胞质溶胶后被运送到不同的部位,即先合

成,后运输。由于在游离核糖体上合成的蛋白质在合成释放之后需要自己寻找目的地,因此又称为蛋白质寻靶 翻译转运同步机制:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网,由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运 从蛋白质定位的空间看,包括了细胞内各个部分,即使是具有蛋白质合成机器的线粒体和叶绿体也需要从细胞质中获取所需蛋白质 细胞质中蛋白质合成和空间定位路线 蛋白质分选定位的空间障碍及运输方式 从蛋白质定位的细胞内空间部位结构来看,可分为三种类型:①没有膜障碍的,如胞质溶胶,包括胞质溶胶中的细胞骨架蛋白和各种酶及蛋白分子;②有完全封闭的膜障碍,如线粒体、叶绿体、内质网、高尔基体等;③有膜障碍,但是膜上有孔,如细胞核。 根据三种不同的空间障碍, 合成的蛋白质通过四种不同方式进行运输定位 1、门控运输(gated transport):如通过核孔复合体的运输。 2、跨膜运输(transmembrane transport):蛋白质通过跨膜通道进入目的细胞器。 3、膜泡运输(vesicular transport):蛋白质在内质网或高尔基体中被包装成衣被小泡,选择性地运输到靶细胞器。 4、细胞质基质中的蛋白质转运: 1、门控运输(gated transport):即是核孔运输,胞质溶胶中合成的蛋白质穿过细胞核内外膜形成的核孔进入细胞核,被运输的蛋白需要有核定位信号。 2、跨膜运输(transmembrane transport):蛋白质通过跨膜通道进入目的细胞器。胞质溶胶中合成的蛋白质进入到内质网、线粒体、叶绿体和过氧化物酶体等则是通过跨膜机制进行运输的,需要膜上运输蛋白(protein translocators)的帮助,被运输的蛋白要有信号肽或导肽。 3、膜泡运输(vesicular transport):蛋白质从内质网转运到高尔基体以及从高尔基体转运到溶酶体、分泌泡、细胞质膜、细胞外等则是由小泡介导的,这种小泡称为运输小泡 蛋白质分选的基本原理 细胞内合成的蛋白质、脂类等物质之所以能够定向的转运到特定的细胞器取决于两个方面:其一是蛋白质中包含特殊的信号序列(signal sequence)。 其二是细胞器上具特定的信号识别装置(分选受体,sorting receptor)。 蛋白质分选信号

细胞蛋白分选机制整理

题目:1.用自己的语言复述课堂列出的四组关于信号肽的实验,分析其产物为何有所不同;根据这些实验结果构建的信号肽学说要点有哪些? 2.请整理线粒体、质体、内膜系统、膜泡系统、细胞核等章节有关蛋白分选内容,详细描述细胞内蛋白分选机制。 1. 共四组实验,在第一组(对照组)中加入含编码信号序列的mRNA,第二组中加入含编码信号序列的mRNA和SRP,第三组中加入含编码信号序列的mRNA和SRP,DP,第四组中加入含编码信号序列的mRNA和SRP,DP,微粒体。 实验结果:第一组产生含信号肽的完整多肽,第二组合成70~100氨基酸残基后,肽链停止延伸,第三组产生含信号肽的完整多肽,第四组信号肽切除,多肽链进入微粒体中。 产物不同的原因: 组2:SRP 有Alu和S 两个结构域,它们同RNA 相互连接。其中Alu结构域由SRP9 和SRP14 组成,结合到7S RNA的5'端和3'端序列。SRP 能识别并结合在游离核糖体上新合成蛋白质的信号肽。当它与信号肽结合后,多肽合成就暂时中止,所以会只形成70~100氨基酸残基。 组3:DP与SRP结合后,解除了SRP 对核糖体肽链合成的抑制,新生链继续合成延长。 组3:微粒体中含有内质网和核糖体,加入之后,多肽链会进入其中被加工,信号肽则被信号肽酶水解。

信号肽学说要点: 分泌蛋白先在游离核糖体上开始合成-----当其N端的信号肽延伸出核糖体后,被胞质中的SRP识别并结合-----rER膜上的SR识别并结合SRP----信号肽的疏水核心与膜结合-----新形成的多肽链进入内质网----信号肽被信号肽酶水解-------新生肽链通过蛋白转运子进入内质网腔中--------核糖体移到mRNA的终止密码子,蛋白质合成结束,核糖体重新处于游离状态。 2. 线粒体: 线粒体中有1000 多种蛋白质,它本身的DNA 及核糖体只能合成其中少数蛋白质,其余的线粒体蛋白质都是由核DNA编码的,在胞质游离核糖体上合成后运输到线粒体中 由线粒体的核糖体合成的蛋白,以共翻译运输(co-translational transport)的方式插入到线粒体内膜, 在细胞质核糖体上合成的蛋白,以翻译后运输(post-translational transport)的方式转运到线粒体中。 (1)在胞质核糖体上合成的蛋白质,大都以前体形式存在。多由N端的一段导肽和成熟形式的蛋白质组成。(2)蛋白质通过膜时,在外膜上有专一性不很强的受体参与作用。(3)蛋白质通过膜需要水解ATP和利用质子动势的能量过程。(4)导肽引导蛋白质前体,在受体及转运子的作用下,通过内、外膜的接触点,运输到线粒体的基质中。(5)导肽对所牵引的蛋白质无特异性。(6)蛋白质运送时需要一些分子伴侣使蛋白进行折叠状态与解折叠状态的转变。(7)前体蛋白运入线粒体后,需要蛋白酶切除导肽,再折叠成成熟蛋白。 线粒体膜上存在前体蛋白转运子,外膜上的TOM、SAM,内膜上TIM23、TIM22、

细胞内蛋白质的分选和运输

细胞内蛋白质的分选和运输 蛋白质在细胞质基质中合成后,按其氨基酸序列中分选信号(sorting signal)的有无以 及分选信号的性质被选择性地送到细胞的不同部位,这一过程称为蛋白质分选(protein sorting)和蛋白质靶向运输(protein targeting)。另外,细胞外的蛋白质经胞吞作用进入 细胞内部,也经历分选和靶向运输过程。细胞中每一种蛋白质只有到达正确的位置才能行使 其功能,如 RNA和DNA聚合酶必须送到细胞核中才能参与核酸的合成;酸性水解酶必须送 到溶酶体才能进行大分子的降解作用。因此,细胞内蛋白质的分选和运输对于维持细胞的结 构与功能、完成各种细胞生命活动都是非常重要的。 细胞内蛋白质的分选信号以及运输途径和方式 号肽通常引导蛋白质从细胞质基质进入内质网、线粒体和细胞核,同时也引导蛋白质从 细胞核送回到细胞质基质以及从高尔基体送回到内质网;信号斑则引导一些其他分选过程, 如在内质网合成的溶酶体酶蛋白上存在一种信号斑,在高尔基体的CGN中可被N-乙酰氨基 葡萄糖磷酸转移酶所识别,从而使溶酶体酶蛋白上形成新的分选信号M-6-P,进一步在TGN 中被M-6-P受体识别,并分选进入运输小泡最终送到溶酶体(详见第十章)。 每一种信号序列引导蛋白质到达细胞内一个特定的目的地(表10-1)。要运送到内质网 的蛋白质,在其N-末端有一段信号肽,其中间部分有5-10个疏水氨基酸。带有这种信号肽 的蛋白质,都会被运送到内质网,并进一步被运送到高尔基体,其中一部分蛋白质在C-末 端还带有一个由4个氨基酸组成的信号肽,它们在高尔基体的CGN部位被识别并被送回内质 网,是内质网驻留蛋白质;要运送到线粒体的蛋白质,在其N-末端带有一种信号肽,其信 号序列中带阳电荷的氨基酸和疏水氨基酸呈交替排列;要运送到过氧化物酶体的蛋白质,在 其C-末端有一种由三个特征性氨基酸组成的信号肽;要运送到细胞核的蛋白质,其信号肽 中有一串带阳电荷的氨基酸,这一信号序列可位于蛋白质的任何部位。 表10-1 几种典型的信号序列 (引自Alberts等,2002) ________________________________________________________________________ 信号序列的功能信号序列 _________________________________________________________________________ 输入到细胞核 -Pro-Pro-Lys-Lys-Lys-Arg-Lys-Val- 从细胞核输出 -Leu-Ala-Leu-Lys-Leu-Ala-Gly-Leu-Asp-Ile- N-Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-Phe-Lys- 输入到线粒体+H 3 Pro-Ala-Thr-Arg-Thr-Leu-Cys-Ser-Ser-Arg-Tyr-Leu-Leu- 输入到过氧化物酶体 -Ser-Lys-Leu-COO- N-Met-Met-Ser-Phe-Val-Ser-Leu-Leu-Leu-Val-Gly-Ile- 输入到内质网+H 3 Leu-Phe-Trp-Ala-Thr-Glu-Ala-Glu-Gln-Leu-Thr-Lys-Cys- Glu-Val-Phe-Gln- 回输到内质网 -Lys-Asp-Glu-Leu-COO- _________________________________________________________________________ 一、细胞内蛋白质运输的途径

细胞第章习题及答案

细胞第章习题及答案

————————————————————————————————作者:————————————————————————————————日期:

第六章细胞的能量转换——线粒体和叶绿体 本章要点:本章重点阐述了线粒体和叶绿体的结构和功能,要求重点掌握掌握线粒体与氧化磷酸化,线粒体和叶绿体都是半自主性细胞器,了解线粒体和叶绿体的起源与增殖。 一、名词解释 1、氧化磷酸化 2、电子传递链(呼吸链) 3、ATP合成酶 4、半自主性细胞器 5、光合磷酸化 二、填空题 1、能对线粒体进行专一染色的活性染料是。 2、线粒体在超微结构上可分为、、、。 3、线粒体各部位都有其特异的标志酶,内膜是、外膜是、膜间隙是、基质是。 4、线粒体中,氧化和磷酸化密切偶联在一起,但却由两个不同的系统实现的,氧化过程主要由实现,磷酸化主要由完成。 5、细胞内膜上的呼吸链主要可以分为两类,既和。 6、由线粒体异常病变而产生的疾病称为线粒体病,其中典型的是一种心肌线粒体病。 7、植物细胞中具有特异的质体细胞器主要分为、、。 8、叶绿体在显微结构上主要分为、、。 9、在自然界中含量最丰富,并且在光合作用中起重要作用的酶是。 10、光合作用的过程主要可分为三步:、和、。 11、光合作用根据是否需要光可分为和。 12、真核细胞中由双层膜包裹形成的细胞器是。 13、引导蛋白到线粒体中去的具有定向信息的特异氨基酸序列被称为。 14、叶绿体中每个H+穿过叶绿体ATP合成酶,生成1个ATP分子,线粒体中每个H+穿过ATP合成酶,生成1个ATP分子。 15、氧是在植物细胞中部位上所进行的的过程中产生的。 三、选择题 1. 线粒体各部位都有其特异的标志酶,线粒体中内膜的标志酶是()。 A、细胞色素氧化酶 B、单胺氧酸化酶 C、腺苷酸激酶 D、柠檬合成酶 2.下列哪些可称为细胞器() A、核 B、线粒体 C、微管 D、内吞小泡 3.下列那些组分与线粒体与叶绿体的半自主性相关()。 A、环状DNA B、自身转录RNA C、翻译蛋白质的体系 D、以上全是。 4.内共生假说认为叶绿体的祖先为一种()。 A、革兰氏阴性菌 B、革兰氏阳性菌 C、蓝藻 D、内吞小泡 四、判断题 1、在真核细胞中ATP的形成是在线粒体和叶绿体细胞器中。() 2、线粒体和叶绿体都具有环状DNA及自身转录RNA与转译蛋白质的体系。() 3、线粒体是细胞的“能量工厂”,叶绿体是细胞的“动力工厂”。() 4、ATP合成酶只存在于线粒体、叶绿体中。() 5、线粒体和叶绿体的DNA均以半保留的方式进行自我复制。() 五、简答题 1、为什么说线粒体和叶绿体是半自主性细胞器? 2、简述光合磷酸化的两种类型及其异同。 六、论述题

细胞生物学 内膜系统练习题答案

细胞生物学第五章练习题答案 一、名词解释 1、内膜系统:指细胞内在结构、功能或发生上有一定联系的具膜结构。 2、内质网:由封闭的膜系统及其形成的腔所构成的相互沟通的网状结构。 或者由膜所形成的一些形状大小不同的小管、小囊和扁囊构成的。 4、信号肽:在蛋白质合成过程中,由mRNA上位于起始密码后的信号密码编码翻译出的肽链。 或者存在于分泌性蛋白N端的一段序列,指导分泌性蛋白质在内质网上合成,在蛋白质合成结束之前被切除。 5、高尔基体:是由数个扁平囊泡堆在一起形成的高度有极性的细胞器。 或者有一些单层膜包被的囊、泡状结构构成的,包括扁平囊、小泡和大泡三种结构联合成网状结构。 二、单项选择 1A 2D 3C 4B 5C 6A 7D 8D 9C 10D 11A 12B 14A 17C 19D 21B 23D 26D 三、填空题 1、核膜、内质网、高尔基体、溶酶体、微体 2、小囊、小管、扁囊 3、粗面内质网、光面内质网 4、顺面高尔基网状结构、中间面、反面高尔基网状结构 12、附着核糖体、游离核糖体、分泌、结构、 四、是非题(-表示错,+表示对) 1、– 2、+ 3、– 4、– 5、+ 6、– 7、+ 8、+ 9、+ 11、–12、- 13、– 15、+ 16、 + 17、+ 18、– 19、– 五、简答题 1、内质网分为几类?在形态和功能上各有何特点? 内质网分粗面内质网和光面内质网两类。粗面内质 网由附着核糖体附着在内质网膜表面而形成,表面粗糙,常由板层状排列的扁囊构成,腔内为蛋白质样物质,其功能(1)蛋白质的合成和转移:在信号序列作用下完成;(2)转移的蛋白质整合到ER膜:通过新生肽链协同翻译的插入;(3)转移多肽链到ER腔内进行加工修饰;包括进行糖基化、羟基化和酰基化等的加工. 光面内质网表面无附着核糖体,表面光滑,很少有扁囊,常由分支小管或圆形小泡构成,其主要功能(1)合成脂类:ER合成细胞所需绝大多数膜脂(包括磷脂和胆固醇;(2)糖类代谢:参与糖原分解和游离葡萄糖的释放;(3)解毒作用:sER 中的P450酶系属于单加氧酶,(又称为多功能氧化酶或羟化酶),因其还原态的吸收峰在450nm处得名。主要分布在SER中,但也存在于质膜、线粒体、高尔基体、过氧化物酶体、核膜等细胞器的膜中,具有解毒作用,通常可将脂溶性有毒物质,代谢为水溶性物质,使有毒物质排出体外。有时也会将致癌物代谢为活性致癌物;(4)Ca2+离子浓度的调节作用:是Ca2+储存库,参与信号传导。 2、高尔基复合体由哪些结构组成?各有何特点?

第六章 细胞质基质与细胞内膜系统

第六章细胞质基质与细胞内膜系统 教学目的: 1 了解细胞质基质的内 2 掌握内膜系统包括的结构及功能 教学重点: 1内质网、高尔基体的结构特点 2 溶酶体的发生及功能 教学难点:内膜系统各结构之间的关系 讲授法 第一节细胞质基质(Cytoplasmicmatrix) 概念:此概念在不同阶段从不同角度有不同叫法,概念包括的内容也随观察工具的发展有所变化和完善。反映出对细胞质的认识不断深入。最早的概念称透明质(hyaloplasm),指细胞质中除线粒体、质体等在光镜下所能看到的所有细胞器以外的部分,又称细胞液(Cell sap)。 透明质(细胞液)—→ 胞质溶胶—→细胞质基质 光镜下可见结构以外的部分离心沉淀物以外部分可分辩结构以外的胶状物质 Cytoplasmicmatrix或grownd cytoplasm:指除去能分辩的细胞器和颗粒以外的细胞质部分,是一复杂的高度有组织的胶体系统。 一、化学组成 细胞质基质是细胞真正的内环境,其组成成分复杂。主要含有与中间代谢有关的数千种酶类。故认为它呈复杂的胶体性质,可随环境条件的改变由溶胶变为凝胶状态或者相反,这成为某些细胞运动方式的动力。 二、功能 1、参与各种生化活动(中间代谢过程) ○1蛋白质合成○2脂肪酸合成○3糖的酵解○4糖原代谢○5核苷酸代谢 2、提供离子环境以维持各细胞器的实体完整性。 3、提供底物(原料)以供细胞器行使功能(物质库)。 4、提供物质运输的通路细胞与环境、细胞质与细胞核、细胞器之间的物

质运输、能量交换、信息传递等都需通过细胞质基质来完成。 5、影响细胞分化如卵子细胞质对于分化起重要作用。 在细胞质中存有形形色色的细胞器,其中有一些膜围细胞器,它们在结构及功能上彼此相关,甚至连通,共同组成一个庞大而精密复杂的系统——内膜系统。 第二节内膜系统(eudomembrane system) 概念细胞质中由膜围成的、在结构、功能,乃至发生上有密切关系的小管、小泡和扁囊共同组成的膜系统。主要包括核膜、内质网、高尔基体三大结构以及它们的产物——各种小泡和液泡。 意义内膜系统的出现是真核细胞区别于原核细胞的显著特点之一,其意义在于:大大增加了细胞内膜的表面积,为多种酶特别是多酶体系提供了大面积的结合部位。○1酶系统的隔离与连接○2蛋白质、糖、脂肪的合成○3加工包装运输分泌物○4扩散屏障及膜电位建立○5离子梯度的维持等。 一、内质网(endoplasmic reticulum, ER) 概述 1945年,著名超微结构学家K.B.Porter,在电镜下观察组织培养的鸡胚成纤维细胞时,发现有各种大小的管道相连成网状,并多处在细胞质的内质部位,故定名为内质网。虽然以后发现这种细胞器不尽在内质部位,但仍延用至今。这种结构与细胞内物质合成有关,故有细胞的生物合成“工厂”之称。 (一)形态结构特点 ER是交织分布在细胞质中的由膜围成的扁囊或小管状管道系统。基本结构分为三部分: 内质网膜:结构与质膜相同,但比质膜薄(5-6nm),有些部位可与核膜和某些细胞器膜相连,少数能与质膜相连。 (二)类型及分布特点 根据内质网的细胞质面是否附有核糖体将ER分为二类。即: 1 粗面内质网(rough endoplasmic reticulum,RER)又称颗粒内质网(Granular e- r- GER),由于它似与细胞核一样能为碱性染料染色,在历史上曾有过所谓核外染色质的叫法。意指内质网膜及附在其上的核糖体。 2 光(滑)面内质网(smooth endoplasmic reticulum,SER)表面光滑,无核糖体附着,嗜酸性,在形态上常呈分枝状,小管或小泡的网状结构,很少象RER那样扩大成池,其膜也不如RER膜厚。另外,SER的一端常与

第六章 细胞内膜系统复习题

第六章细胞内膜系统基本概念题解 学习要求: 掌握细胞质基质和细胞内膜系统各部分的结构与功能。 掌握细胞内膜系统各个部分间的关系和细胞内蛋白分悬于细胞结构的装配及其相关知识。基本概念: 1.细胞质基质(cytoplasmic matrix):在真核细胞的细胞质中,除可分辨的细胞器以外的胶 状物质,成为细胞质基质。它是一种高度有序且不断变化的结构体系。在确保与协调各种代谢反应、胞内物质运输与信息传递等方面,起重要作用。 2.内膜系统(endomembrane system) :指真核细胞内在结构、功能乃至发生上相关的由膜围 绕的细胞器或细胞结构。或者说是由膜分隔而形成的具有连续功能的系统,主要指核膜、内质网、高尔基体以及细胞质的各种囊泡。而质膜、液泡膜以及溶酶体是这些内膜体系活动的最后产物,一般叶绿体、线粒体的膜也可直接或间接与内膜系统相联系但不包含在内膜系统内。 3.内质网(endoplasmic reticulum,ER):是分布于细胞质中由膜构成的网状管道系统,管道 以各种形状延伸和扩展,成为各类管、泡、腔交织的状态。内质网有两种:粗面内质网和滑面内质网。前者指膜上附有核糖体颗粒。后者膜外面不附有核糖体,表面光滑,主要是合成和运输类脂和多糖,它也可能是细胞之间通讯与传递系统。 细胞中内质网可以与细胞核的外膜相连,同时也可与细胞表面的质膜相连,而且还可能随同胞间连丝穿过细胞壁,与相邻细胞的内质网发生联系。因此有人认为内质网构成了一个从细胞核到质膜,甚至与相邻细胞相连而直接贯通的管道系统。 4.易位子(translocon):指内质网膜上的一种蛋白质复合体,8.5nm,2nm的通道,其功能与新合成的多肽进入内质网腔有关。 5.高尔基体(Golgi body): 是由一些堆叠的扁平囊所组成。主要功能是分泌活动、蛋白 质加工以及合成多糖参与新细胞壁的形成。 6.溶酶体(lysosome): 是由单层膜围绕、内含多种酸水解酶类的囊泡状细胞器,其主要 功能是进行细胞内的消化作用。根据其所处的完成生理功能的不同阶段,可分为初级溶酶体、次级溶酶体和残余体。 7.热休克蛋白(heat shock protein):在热作用或其他因素作用下而大量合成的一类蛋白质; 其功能可能是抵御外界的作用而保证细胞存活;在正常条件下,也有少量的热休克蛋白表达,已发现某些热休克蛋白如Hsp70和线粒体中Hsp60在多肽的折叠中起重要作用。 8.前导肽序列(leader sequence): 指核编码的线粒体蛋白质N-端带有20~80个氨基酸序 列,富含带正电荷的碱性氨基酸,分布在不具电荷的氨基酸序列之间,成为前导肽;它含有导向信息,引导前体蛋白跨膜,可被金属蛋白酶水解。 9.蛋白质分选(protein sorting):新生肽由其合成部位正确地运转到其行使功能部位的过 程。包括细胞质基质中合成多肽的分选途径和粗面内质网上合成多肽的分选途径。10.分子伴侣(chaperone):指一组细胞中普遍存在的蛋白质,它们在于细胞中靶蛋白短暂 结合的过程中改变蛋白质的空间构象从而调节它们的功能,这一过程通常需要A TP提供能量。经过活化的蛋白质随即与分子伴侣分离,使之能继续参与其他靶分子调节。目前已知的分子伴侣主要是热休克蛋白家族的成员,其中的HSP70、HSP60参与新合成肽的折叠和亚细胞结构间的转移,HSP90可能参与丝裂原激活通路中Raf-1活性的调节和糖皮质激素受体的活化。 11.膜泡运输(vesicular transport):细胞通过内吞作用和外派作用完成大分子与颗粒性物质 的跨膜运输方式和胞内蛋白质通过不同的转运小泡从内质网转运到高尔基体进而分选运至细胞的不同部位的运输方式,由于在转运过程中,物质包裹在脂双层膜围绕的囊泡

内膜系统与蛋白质分选和膜运输 试题

内膜系统与蛋白质分选和膜运输试题 1. 如何理解膜结合细胞器在细胞内是按功能、分层次分布的? 答: 从功能上看, 细胞内膜结合细胞器的分布是功能越重要越靠近中央; 从层次看, 上游的靠内, 下游的靠外。如细胞核位于细胞的中央,它是细胞中最重要的细胞器,有两层膜结构。细胞核的外膜与内质网的膜是联系在一起的, 细胞核的外膜是粗面内质网的一部分。粗面内质网的功能是参与蛋白质合成, 其作用仅次于细胞核, 所以内质网位于细胞核的外侧。高尔基体在内质网的外侧,接受来自内质网的蛋白质和脂肪,然后对它们进行修饰和分选,它所完成的是内质网的下游工作。溶酶体是含有水解酶的囊泡,它是由高尔基体分泌而来。内体是由内吞作用产生的具有分选作用的细胞器,它能向溶酶体传递从细胞外摄取的物质, 这种细胞器一般位于细胞质的外侧。另外还有线粒体、过氧化物酶体等分布在细胞的不同部位。如果是植物细胞还有叶绿体和中央大液泡, 它们是按功能定位。 2. 内膜系统的动态特性是如何形成的? 答: 造成内膜系统的动态特性主要是由细胞中三种不同的生化活动引起的: ①蛋白质和脂的合成活动: 在动物细胞中主要涉及分泌性蛋白的合成和脂的合成和加工。脂的合成在光面内质网,而分泌蛋白的合成起始于粗面内质网,完成于高尔基体。②分泌活动: ③内吞活动(endocytosis pathway),是分泌的相反过程, 细胞将细胞外的物质吞进内体和溶酶体。 3. 请说明内膜系统的形成对于细胞的生命活动具有哪些重要的意义?

答: 至少有六方面的意义: ①首先是内膜系统中各细胞器膜结构的合成和装配是统一进行的,这不仅提高了合成的效率,更重要的是保证了膜结构的一致性,特别是保证了膜蛋白在这些膜结构中方向的一致性。②内膜系统在细胞内形成了一些特定的功能区域和微环境,如酶系统的隔离与衔接, 细胞内不同区域形成pH值差异, 离子浓度的维持, 扩散屏障和膜电位的建立等等,以便在蛋白质、脂类、糖类的合成代谢、加工修饰、浓缩过程中完成其特定的功能。③内膜系统通过小泡分泌的方式完成膜的流动和特定功能蛋白的定向运输,这不仅保证了内膜系统中各细胞器的膜结构的更新,更重要的是保证了一些具有杀伤性的酶类在运输过程中的安全,并能准确迅速到达作用部位。 ④细胞内的许多酶反应是在膜上进行的,内膜系统的形成,使这些酶反应互不干扰。⑤扩大了表面积,提高了表面积与体积的比值。⑥区室的形成,相对提高了重要分子的浓度,提高了反应效率。 4. 为什么说蛋白质的合成和分选运输是细胞中最重要的生命活动之一? 答: 这是因为在细胞生命周期的各个阶段都需要不断补充和更新蛋白质(或酶); 细胞中的线粒体、叶绿体和过氧化物酶体等细胞器都是通过已存在细胞器的分裂增殖的,新形成的细胞器的生长需要大量的蛋白质。细胞本身也是通过分裂增殖的,新形成的细胞为了增大体积,需要不断地补充蛋白。即使是不进行分裂的细胞,由于细胞内蛋白质的寿命限制和降解,也需要不断地补充蛋白质,取代细胞器中丧失功能的蛋白,所以蛋白质的合成和分选运输是细胞中最重要的生命活动

相关主题
文本预览
相关文档 最新文档