当前位置:文档之家› 轧机板厚AGC控制系统及参数预测分析

轧机板厚AGC控制系统及参数预测分析

轧机板厚AGC控制系统及参数预测分析
轧机板厚AGC控制系统及参数预测分析

北方工业大学

硕士学位论文

轧机板厚AGC控制系统及参数预测分析

姓名:常瑶

申请学位级别:硕士

专业:检测技术与自动化装置

指导教师:李颖宏

20080528

热轧普通板带

学习情景1:热轧普通板带 任务说明书

1. 了解我国目前普通板带钢轧制的一些情况。 2. 掌握各种热轧带钢大致的生产流程 教学方法:讲授、讨论 1.1 概述 目前我国钢铁企业能生产的热轧带钢厚度范围为0.8~25.4mm,最大宽度 可达1900mm,最大轧制速度为25.1m/s,最大卷重为43.6t,热轧带钢车间年产量最高为400万t/a。 一般热轧带钢车间生产的钢种有普碳钢、优质钢、低合金钢等,代表我国常规工艺最先进水平、1997年投产的1580mm热连轧生产线主要产品钢种有:冷轧用热轧卷SPCC、SPCD、SPCE,镀锡板用热轧卷T1~T5,热轧卷SPHC、SPHD、SPHZ,一般结构用钢SS330、SS440、SS490、SS540,焊接用钢SM400A、SM520B,焊管用钢SPHT1、SPHT2,机械结构用钢S20C、S36C,汽车结构钢 SAPH310~SAPH440,耐大气钢NAW400~NAW490,冷轧取向硅钢Z8H~Z12,冷轧无取向硅钢S5~S60等;生产中执行的标准有JIS G3101、G3114、G3131、GB709-88、GB710-88、GB711-88、GB712-88、GB2517-81、GB4171-84等。 目前我国热连轧带钢生产线既有二代到五代的常规热连轧生产线,也有代表当今世界热轧带钢生产工艺最先进水平的的薄板坯连铸连轧生产线(短流程工

艺)。用薄板坯连铸连轧的一些先进适用的技术来改造常规热连轧带钢生产线已成为一种趋势。本章仅介绍常规工艺。 由于先进的计算机控制技术、CVC轧机、控制轧制、(精轧机组的)无头轧制、在线磨辊、热轧工艺润滑等一系列新技术应用于热轧带钢生产中,使可生产的热轧带钢厚度不断减小,厚度精度、表面质量和组织性能不断提高,生产成本不断降低,导致部分厚规格热轧带钢可以当中厚板用,部分薄规格热轧带钢可以当冷轧带钢用,目前已出现了热轧带钢生产企业争夺冷轧带钢生产企业、中厚板生产企业的市场份额的苗头,特别是具有连铸连轧工艺的热轧带钢生产企业竞争力更强。 1.2 生产流程及车间设备平面布置 常规热轧带钢生产工艺流程如图1-1所示,这种传统工艺具有以下特征:1)原料是厚度较大的连铸板坯,连铸机为厚板坯连铸机,铸速较慢;2)连铸与轧钢分属两个互相独立的车间,它们往往相距较远,没有统一的计划、调度和指挥;3)两个车间都有较大的板坯库用来堆放连铸坯;4)钢水经连铸机变成板坯后,往往要经过冷却、检查、人工离线表面缺陷清理、库内堆放、备料等多个环节;5)由于离开连铸机后,经过了长时间冷却,连铸坯入炉温度基本为室温,虽然有的企业采取了某些抢温保温等措施,实现了一定程度的热送热装,但连铸坯入炉温度一般在A1以下,因此,在轧制前需要在加热炉内进行长时间加热。 图1-1常规热轧带钢工艺的轧制工艺流程 常规热轧带钢工艺的轧制工序由粗轧和精轧组成。图1-1中各个工序的主要作用为: (1)原料准备为加热和热轧准备质量合格的连铸板坯。它一般包括连铸车间对连铸坯检查、表面缺陷清理、堆放,轧钢车间验收、按照轧制计划备料、堆放等环节。 (2)加热提高连铸坯温度,改善其塑性,降低其变形抗力,改善其内部组织和性能,以满足轧制的要求。

PLC的轧钢机控制系统设计

封面

作者:PanHongliang 仅供个人学习

江西理工大学 本科毕业设计(论文)任务书电气工程与自动化学院电气专业级(届)班学号学生 专题题目(若无专题则不填):PLC软件设计 原始依据(包括设计(论文)的工作基础、研究条件、应用环境、工作目的等): 工作基础: 目前,我国基于PLC轧钢机系统已经不同程度得到了推广应用。 PLC轧钢机控制技术的发展主要经历了三个阶段:继电器控制阶段,微机控制阶段,现场总线控制阶段。现阶段轧钢机控制系统设计使用可编程控制器(PLC),其功能特点是变化灵活,编程简单,故障少,噪音低,维修保养方便,节能省工,抗干扰能力强。除此之外PLC还有其他强大功能,它可以进行逻辑控制、运动控制、通信等操作;并具有稳定性高、可移植性强等优点,因此受到广大电气工程控制技术人员的青睐。 研究条件及应用环境: 本课题是基于PLC的控制系统的研究课题。工业自动化是国家经济发展的基础,用于实现自动化控制设备主要集中为单片机和PLC。单片机由于控制能力有限、编程复杂等缺点,现在正逐步退出控制舞台。PLC则因为其功能强大、编程简单等优点,得到迅速发展及运用。PLC的功能强大,可以进行逻辑控制、运动控制、通信等操作;并具有稳定性高、可移植性强等优点,因此,PLC是工业控制领域中不可或缺的一部分。 工作目的: 轧钢机如控制和使用得当,不仅能提高效率,节约成本,还可大大延

长使用寿命。对轧钢机控制系统的性能和要求进行分析研究设计了一套低成本高性能的控制方案,可最大限度发挥轧钢机加工潜力,提高可靠性,降低运行成本,对提高机械设备的自动化程度,缩短与国际同类产品的差距,都有着重要的意义。 主要内容和要求:(包括设计(研究)内容、主要指标与技术参数,并根据课题性质对学生提出具体要求): 1)当整个机器系统的电源打开时,电机M1和M2旋转,以待传送工 件。 2)工件通过轨道从右边输送进入轧制系统。 3)感应器S1感应到有工件输送来时,输出高电位,驱动上轧辊按预定 下压一定的距离,实现轧制厚度的调节,同时电机M3开始逆时针旋转,并带动复位挡板也逆时针转动,感应器S1复位。 4)随着轧制的进行,工件不断地向左移动。当感应器S2感应到有工件 移动过来时,说明工件的要求轧制长度已经完成,此时感应器S2输出高电位,驱动控制电机M3的电磁阀作用,使电机M3顺时针转动。 5)在电机M3顺时针转动下,挡板顺时针转动,推动工进向右移动。 当工件移动到感应器S1感应到时,S1有输出高电位,使电机M3逆时针转动,同时驱动上轧辊调节好第二个下压量,进入第二次压 制的过程。 6)再次重复上述的工作,直到上轧辊完成3次下压量的作用,工件才 加工完毕。 7)系统延时等待加工完毕的工件退出轨道,此时即可进入下一个工件 的加工过程。

轧机厚度自动控制系统设计

轧机厚度自动控制系统设计 摘要:随着社会经济的发展,对板带产品的质量和精度要求越来越高。厚度精度就是板带产品的重要质量指标之一。本文针对轧机AGC技术的现状,以及轧机厚差产生的原因进行了分析。在此基础上,对轧机AGC进行分析,以APC为主要研究对象,选用PLC作为系统的控制器,将位移传感器测得的位移量经A/D转换送给PLC来控制步进电机,从而控制阀,通过轧制力来改变辊缝厚度实现轧机厚度控制。 1 引言 轧机又称轧钢机,轧钢机就是在旋转的轧辊之间对钢件进行轧制的机械,轧钢机一般包括主要设备(主机)和辅助设备(辅机)两大部分。轧钢机按轧辊的数目分为二辊,三辊式,四辊式和多辊式,轧钢机通常简称为轧机。 板带厚度精度是板带材的两大质量指标之一,板带厚度控制是板带轧制领域里的两大关键技术之一。带钢纵向厚度不均是影响产品质量的一大障碍,因此,轧机的一项重要课题就是带钢厚度的自动控制。厚度自动控制系统是通过测厚仪或传感器对带材实际轧出厚度连续进行测量,并根据实测值与给定值比较后的偏差信号,借助于控制回路或计算机的功能程序,改变压下装置、张力或轧制速度,把带材出口厚度控制在允许的偏差范围内。实现厚度自动控制的系统称为“AGC"。 我国近年来从发达国家引进的一些大型的现代化的板带轧机,其关键技术是高精度的板带厚度控制和板形控制。板带厚度精度关系到

金属的节约、构件的重量以及强度等使用性能,为了获得高精度的产品厚度,AGC系统必须具有高精度的压下调节系统及控制系统的支持。 而对于轧机来说产生厚差的原因大致可分为三大类: (1)轧机方面的原因:轧辊热膨胀和磨损、轧辊弯曲、轧辊偏心和支撑辊轴承油膜厚度等都会产生厚度波动。它们都是在液压阀位置不变的情况下,使实际辊缝发生变化,从而导致轧出的带钢厚度产生波动。 (2)轧件方面的原因:厚度偏差会直接受到坯料尺寸变化的影响。它包括来料宽度不均和来料厚度不均的影响。 (3)轧制工艺方面的原因:轧制时前后张力的变化、轧制速度的变化等。 2 系统总体设计 厚度自动控制AGC (Automatic Gauge Control)是指钢板轧机在轧制过程中通过动态微调使钢板纵向厚度均匀的一种控制手段。厚度自动控制系统是通过测厚仪或传感器对带材实际轧出厚度连续进行测量,并根据实测值与给定值比较后的偏差信号,借助于控制回路或计算机的功能程序,改变压下装置、张力或轧制速度,把带材出口厚度控制在允许的偏差范围内。 AGC系统一般包括有: 1)压下位置闭环:为了轧出给定厚度的轧件,首先必须在轧件进入辊缝之前,准确地设定空载辊缝。其次,在轧制过程中,为了使轧后的轧件厚度均匀一致,还必须随着轧制条件的变化及时的调整空

热轧带钢质量控制标准

热轧带钢质量控制标准 1、范围 本标准规定了信钢公司碳素结构钢和低合金结构钢热轧钢带的质量控制标准。 本标准适用于厚度不大于8.0mm、宽度345mm~520mm的碳素结构钢和低合金结构钢热轧钢带。成分、尺寸、外形、力学性能、试验方法等规定 相关内容参考:GB/T 3524-2005 2、连铸坯化学成分范围及质量要求 2.1成分(依据国家标准:GB/T 700-2006、GB/T 1591—2008) Q195带钢一般均需要进一步冷轧,最高冷轧到0.35mm。炼钢工序要求脱氧彻底(小于60ppm),吹氩时间大于7分钟,中包满包浇注,严格控制夹杂物。 对连铸坯出现的凹陷、内裂、气泡、割痕等缺陷,要予挑出降级处理或切割回炉。 3、带钢尺寸、外形、重量及允许偏差

3.1 钢带厚度允许偏差:0~-0.15mm 注:不适用于卷带两端7m之内没有切头尾的钢带; 如果用户有具体要求,按用户要求执行。 3.2钢带宽度允许偏差:(不切边) 宽度<450 0~+3mm 宽度﹥450~520 0~+4mm 注:不适用于卷带两端7m之内没有切头尾的钢带; 特别注意:对于专门做管子的352mm、432mm等钢带,宽度允许偏差要求更严格,务必控制到位。 3.3钢带的厚度应均匀,在同一横截面的中间部分和两边部分测量三点厚度,其最大差值(三点差)要求:0~0.15mm。 3.4供冷轧用的钢带,沿轧制方向的厚度应均匀,在同一直线上任意测定三点厚度,其最大差值(同条差)不大于0.16mm。 3.5钢带应严格控制镰刀弯,每米不大于2mm。 钢带边部不允许有波浪弯出现。 3.6 钢带的一边塔形高度不得超过30mm。 4、力学性能

冷轧轧机TDC控制系统

目录 冷轧轧机TDC控制系统 一.硬件和组态 二.系统软件 1.处理器功能简介 https://www.doczj.com/doc/ea18875280.html,MON FUNCTIONS 通用功能 3.MASTER FUNCTIONS 主令功能: 4.STAND1-STAND5 机架控制系统1-5 冷轧轧机TDC控制系统 一.硬件和组态 TDC工业控制系统西门子公司SIMADYN D的升级换代产品,也是一种多处理器并行远行的控制系统。典型的TDC控制系统的配置是由电源框架、处理器摸板、I/O摸板和通讯摸板搭建构成。 电源框架含21个插槽,最多允许20个处理器同时运行。框架上方的电源可单独拆卸,模板不可带电插拔。 CPU551是TDC控制系统的中央处理器,带有一个4M记忆卡,程序存储在记忆卡内,电源启动时被读入CPU551中执行。可通过在线功能对处理器和存储卡中的程序作同步修改。 SM500是数字量/模拟量输入/输出模板,更换时注意跳线. CP50MO是MPI/PROFIBUS通讯摸板,更换时需要使用COM-PROFIBUS软件对其进行组态的软件下装。 CP5100是工业以态网的通讯摸板,更换时注意插槽跳线。 CP52A0是GDM通讯模板。GDM是不同框架的TDC之间进行数据交换的特有通讯方式,不同框架的TDC通过光缆汇总到GDM内,点对点之间的通讯更加直接,传输速度更快。 TDC控制系统的硬件需要在软件程序中进行组态和编译,然后下装到CPU中。 二.系统软件 包钢薄板厂冷轧轧机区域TDC控制系统按框架分为以下三个功能:

2.1 处理器功能简介 1.COMMON FUNCTIONS 通用功能: 处理器1:SIL: 模拟功能 SDH: 轧制参数管理 IVI: 人机画面 处理器2:MTR: 物料跟踪系统 WDG: 楔形调整功能 处理器3: ADP: 实际值管理2.MASTER FUNCTIONS 主令功能: 处理器1: MRG-GT: 轧机区域速度主令 处理器2: THC-TH: 轧机厚度控制入口区域 处理器3: THC-TX: 轧机厚度控制出口区域 处理器4: SLC: 轧机滑差计算 ITG: 张力计接口 处理器5: LCO-LT: 轧机区域生产线协调3.STAND1-STAND5 机架控制系统1-5 处理器1: CAL: 机架标定 SCO: 通讯接口 MAI: 手动干涉 ITC: 机架间张力控制 处理器2: SDS: 机架压下系统 处理器3: RBS: 机架弯辊系统

轧钢机电气控制系统设计

信电学院 课程设计说明书(2014/2015学年第二学期) 课程名称:可编程控制器课程设计 题目:轧钢机电气控制系统设计 专业班级: 学生姓名: 学号: 指导老师: 设计周数: 设计成绩: 2015年7月9日

目录 1、课程设计目的 (2) 2、课程设计内容 (2) 2.1可编程控制器概述 (2) 2.2课程设计正文 (2) 2.3轧钢机电气控制模版 (3) 2.3.1轧钢机简介 (3) 2.3.2热金属探测仪 (3) 2.3.3液压系统 (4) 2.3.4电机正反转 (4) 2.4 设备选择 (4) 2.5 系统的I/O口配置 (5) 2.6梯形图程序设计 (5) 2.7程序流程图 (9) 3、课程设计总结 (10) 4、参考文献 (11)

1、课程设计目的 本次课程设计的主要任务如下: 1)了解普通轧钢机的结构和工作过程。 2)弄清有哪些信号需要检测,写明各路检测信号到PLC的输入通道,包括传感器的原理、连接方法、信号种类、信号调理电路、引入PLC的接线以及PLC中的编址。 3)弄清有哪些执行机构,写明从PLC到各执行机构的各输出通道,包括各执行机构的种类和工作机理,驱动电路的构成,PLC输出信号的种类和地址。 4)绘制出轧钢机电控系统的电路原理图,编制I/O地址分配表。 5)编制PLC的程序,结合实验室设备完成系统调试,在实验室手动仿真模型上仿真轧钢机工作过程的控制。 2、课程设计内容 2.1可编程控制器概述 可编程控制器是一种数字运算操作的电子装置,专为在工业环境下应用而设计。它采用可编程库的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式或模拟式的输入和输出控制各种类型的机械或生产过程。可编程控制器及其有关的外围设备都应按易于与工业控制系统连成一个整体,易于扩充其功能的原则设计。可编程控制器简称PLC,是以微处理器为基础,综合了计算机技术、自动控制技术和通讯技术而发展起来的一种新型、通用的自动控制装置。 2.2课程设计正文 (1)按下启动按钮,上下两轧辊电机(主拖动电机,M1)起动运转,轧制方向为从右向左轧制。左右侧轧道电机(M2和M3)启动逆时针运转,向左输送。(2)设备启动5秒后,PLC检测有无等待的轧件,即S1是否有效。若无轧件则一直等待。S1有效信号到来后,PLC通过某一路开出控制电磁铁动作,打开轧件挡板,让轧件进入轧机的右侧轨道。(3)待轧件完全进入后(设需时4秒),释放电磁铁,关闭轧件挡板。(4)轧件在右侧辊道推动下进入轧辊下轧制,轧辊间有热金属探测仪给出正在轧制的信号,由S2仿真,高电平表示正在轧制。(5)S2由高电平变为低电平表示轧件已经通过轧辊。轧件通过轧辊后PLC控制两侧辊道停止,电磁液压阀Y2动作使左侧辊道翘起。(6)1秒后启动左侧辊道向右输送。这时由安装在上轧辊上方的另一个热金属探测仪给出轧件通过的信号,由另一个手动开关S3仿真。(7)S3由高电平变为低电平表示轧件已经完全回到了轧辊右侧。PLC断开电磁阀Y2电源,并停止左侧辊道运转。(8)1秒钟后左侧辊道放平,启动左右侧辊道电机向左输送,开始下一次轧制。(9)重复(4)-(8)完成第二次轧制,并准备好第三次轧制。(10)三次轧制完成后,即热金属探测仪输出由高电平变为低电平后,左侧辊道继续向左输送3秒钟,把轧件送出轧机。结束该轧件的轧制过程。(11)回到第二步但不需要5秒的延时。(12)按下停止按钮结束工作。

轧机厚度自动控制AGC系统说明

轧机厚度自动控制AGC系统 使 用 说 明 书 中色科技股份有限公司 装备所自动化室 二零零九年八月二十五日

目 录 第一篇 软件使用说明书 第一章 操作软件功能简介 第二章 操作界面区简介 第三章 操作使用说明 第二篇 硬件使用说明书 第一章 接口板、计算机板跨接配置图 第三篇 维护与检修 第一章 系统维护简介及维护注意事项 第二章 工程师站使用说明 第三章 检测程序的使用 第四章 常见故障判定方法 第四篇 泵站触摸屏操作说明 第五篇 常见故障的判定方法 附录: 第一章 目录 第二章 系统内部接线表 第三章 系统外部接线表 第四章 系统接线原理图 第五章 系统接口电路单元图

第一篇 软 件 说 明 书

第一章 操作软件功能简介 .设定系统轧制参数; .选择系统工作方式; .系统调零; .显示时实参数的棒棒图、馅饼图、动态曲线; .显示系统的工作方式、状态和报警。 以下就各功能进行分述: 1、在轧机靠零前操作手需根据轧制工艺,设定每道次的入口厚度、出口厚度和轧制力等参数。也可以在轧制表里事先输入,换道次时按下道次按钮,再按发送即可。 2、操作手根据不同的轧制出口厚度,设定机架控制器和厚度控制器的工作方式,与轧制参数配合以得到较理想的厚差控制效果。 3、在泄油状态下,操作手通过在规定状态下对调零键的操作,最终实现系统的调零或叫靠零,以便厚调系统正常工作。 4、在轧制过程中,以棒棒图、馅饼图和动态曲线显示厚调系统的轧制速度、轧制压力、开卷张力、卷取张力、操作侧油缸位置、传动侧油缸位置、压力差和厚差等实时值。(注意:轧机压靠前操作侧油缸位置、传动侧油缸位置显示为油缸实际移动位置。轧机压靠后操作侧油缸位置、传动侧油缸位置显示的是辊缝值。)

轧钢机电气控制系统plc设计

科信学院 课程设计说明书(2008 /2009 学年第一学期) 课程名称:可编程序控制器设计任务书 题目:轧钢机电气控制系统设计 专业班级:电气及自动化05-1班 学生姓名:杨晓娜 学号:050062107 指导教师:安宪军 设计周数:2周 设计成绩: 2009年1月9日

目录 一、课程设计的目的 (1) 二、课程设计正文 (1) 三、可编程序控制器概述 (1) 四、轧钢机电气控制模板 (2) 五、编制梯形图 (2) 六.实验程序 (6) 十二、课程设计总结或结论 (7) 十三、参考文献 (8)

一、课程设计目的 了解普通轧钢机的结构和工作过程;弄清有那些信号需要检测;弄清有那些执行机构;绘制出轧钢机电控系统的电路原理图,编制I/0地址分配表;编制PLC的程序,结合实验室设备完成系统调试,在实验室手动仿真模型上仿真轧钢机工作过程的控制。 二、课程设计正文 1.控制要求 (1)按下启动按钮,上下两轧辊电机(主拖动电机,M1)起动运转,轧制方向为从右向左轧制。左右侧轧道电机(M2和M3)启动逆时针运转,向左输送。(2)设备启动5秒后,PLC 检测有无等待的轧件,即S1是否有效。若无轧件则一直等待。S1有效信号到来后,PLC通过某一路开出控制电磁铁动作,打开轧件挡板,让轧件进入轧机的右侧轨道。(3)待轧件完全进入后(设需时4秒),释放电磁铁,关闭轧件挡板。(4)轧件在右侧辊道推动下进入轧辊下轧制,轧辊间有热金属探测仪给出正在轧制的信号,由S2仿真,高电平表示正在轧制。(5)S2由高电平变为低电平表示轧件已经通过轧辊。轧件通过轧辊后PLC控制两侧辊道停止,电磁液压阀Y2动作使左侧辊道翘起。(6)1秒后启动左侧辊道向右输送。这时由安装在上轧辊上方的另一个热金属探测仪给出轧件通过的信号,由另一个手动开关S3仿真。(7)S3由高电平变为低电平表示轧件已经完全回到了轧辊右侧。PLC断开电磁阀Y2电源,并停止左侧辊道运转。(8)1秒钟后左侧辊道放平,启动左右侧辊道电机向左输送,开始下一次轧制。(9)重复(4)-(8)完成第二次轧制,并准备好第三次轧制。(10)三次轧制完成后,即热金属探测仪输出由高电平变为低电平后,左侧辊道继续向左输送3秒钟,把轧件送出轧机。结束该轧件的轧制过程。(11)回到第二步但不需要5秒的延时。(12)按下停止按钮结束工作。 三、可编程序控制器概述 可编程序控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的命令,并通过数字式模拟式的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关设备,都应按易于与工业控制系统联成一个整体,易于扩充功能的原则而设计”。 四、轧钢机电气控制模板

厚度控制

一、填空题 1、9.5根据轧机弹跳方程测得的厚度和厚度偏差信号进行厚度自动控制的系统称为GM-AGC或称 P-AGC。 2、9.5监控式厚度自动控制的基本原理就是反馈式厚度自动控制的基本原理。 3、9.5中厚板头部厚度补偿做法主要有两种:头部三角形补偿法和冲击补偿法。 4、9.6 20世纪90年代到现在,热轧带钢厚度偏差±40μm,全长命中率99%,宽度偏差+2~6mm, 全长命中率95%。 5、9.6热带厚度精度可分为:一批同规格带钢的厚度异板差和每一条带钢的厚度同板差。为此可将厚度 精度分解为带钢头部厚度命中率和带钢全长厚度偏差。 6、9.6热带头部厚度命中率决定于厚度设定模型的精度。 7、9.6带钢全长厚差则需由AGC根据头部厚度(相对AGC)或根据设定的厚度(绝对AGC)使全长各点厚 度与锁定值或设定值之差小于允许范围,应该说头部精度对AGC工作有明显影响。 8、9.6可将宽度精度分解为带钢头部宽度偏差和带钢全长宽度偏差。 9、9.6头部宽度偏差除了决定于宽度设定模型的精度外,还取决于变形条件及是否采用短行程控制 (SSC)。 10、9.6热带粗轧用立辊时为了克服头尾宽度变窄采用短行程(SSC)控制。 11、9.7热带轧机弹跳量一般可达2~5mm。 12、9.7在现场实际操作中,为了消除弹跳方程曲线段的影响,都采用了所谓人工零位的方法。 13、9.7做试验确定轧机刚度的方法有轧铝板法和自压靠法。 14、9.8带钢尾部补偿可选用的方法为压尾或拉尾。 二、判断题 1、9.5轧件通过轧辊时,由于轧辊及轧机的弹性变形,导致辊缝增大的现象称为“辊跳”。(√) 2、9.5从数据和实验中都获得共识:轧机的弹跳值越大,说明轧机抵抗弹性变形的能力越强。(×) 3、9.5轧机刚度越大,产品厚度精度就越易保证。(√) 4、9.5中厚板轧制时,在咬钢的瞬间,由于头部温度较低,再加上轧制力的冲击作用,辊缝有一个上 升的尖峰。若不进行补偿,使得轧件的头部变厚。(√) 5、9.6头部宽度偏差除了决定于宽度设定模型的精度外,还取决于变形条件及是否采用短行程控制。 (√) 6、9.7轧机机座的弹性变形与压力并非呈线性关系,而是在小压力区为一曲线,当压力大到一定值以 后,压力和变形才近似呈线性关系。(√) 7、9.7轧机压靠时所测的轧机刚度和实际轧制时的轧机刚度一样大。(╳) 8、9.8当轧件温度降低时,轧制压力增大,厚度增大。(√) 9、9.8当轧件温度降低时,轧制压力增大,厚度减小。(╳) 10、9.8只存在轧辊偏心时,轧制压力增大,厚度增大。(╳) 11、9.8只存在轧辊偏心时,轧制压力增大,厚度减小。(√) 12、9.8精轧机组各个机架都要进行尾部补偿。(╳) 13、9.8热带粗轧和精轧机组都需要设置厚度自动控制系统。(╳) 14、9.8当选用绝对AGC时,如设定误差过大,计算机将自动改用相对AGC。(√) 15、9.4宽度控制的任务主要是在热轧的粗轧阶段完成的。(√) 16、9.4随着立辊轧机宽度压下量的增大,在几十米长的带钢上,头尾部产生五到几十毫米的失宽,如 不加以控制,头部轧后宽度沿着轧制方向的变化规律由窄逐渐变宽,尾部是由宽逐渐变窄。(√)三、单选题 1、9.5为消除厚度偏差δh所必需的辊缝调节量?S应是( A )。 A、δS= h K M K m mδ + ;B、δS= h K M K m mδ +;C、δS= h M M K m δ + ;D、δS= h K M M m δ +

楼板厚度控制措施

钢都花园二期1#楼工程 楼 板 厚 度 控 制 措 施 编制人: 审核人: 审批人: 湖南涟钢建设有限公司 二0一四年十月

钢都花园1号楼楼板厚度控制措施 一、工程概况 工程基本情况 各责任主体名称 二、楼板厚度控制措施 为保证楼板厚度,特编制此措施,从测量、模板支设及混凝土浇筑等方面对楼板厚度进行控制,具体措施如下:

2.1测量工程控制措施 控制板厚必须从源头控制开始,必须保证测量组所提供的水平控制线绝对准确 1、因浇筑前用以控制浇筑顶面高度的水平控制点在模板上测设,因模板和排架相对不稳定,正常情况下会导致测设在钢筋上的控制点偏差较大,因此在板面浇筑完成后必须对钢筋上的控制点与原始控制线进行复核。 2、一般情况下,在排架搭设过程中应将已复核过的钢筋上的水平控制点在剪力墙没有封模之前引测到排架立杆上。以便木工的板顶水平标高控制。 3、在浇筑前,以原始水平控制线为基准,将标高引测到待浇筑面,以便混凝土浇筑时的顶面控制,在水平点引测到竖向钢筋上以后,应对离水平仪较远的点进行复核。(与模板下水平控制点的闭合) 4、复核无误后交下道工序使用 2.2楼板模板工程控制措施 (1)支设楼板模板时,要控制好标高,先在竖向结构构件上抄好标高,根据楼板厚度、模板厚度、木方厚度调整好搁放木方的水平钢管,然后铺模板。 (2)严格控制梁板模板的起拱率,框架梁L≥4m板,支模时跨中起拱1L/1000。 (3)模板接缝要求加工严密,表面错缝平整。 (4)模板安装允许偏差和检验方法见下表

2.3、质检员把关 1、质检员对整个项目的过程质量进行全面控制。 2、在板厚质量控制方面首先对水平控制线进行检查,水平控制点是否水平,上下层之间的水平控制点、线是否闭合。 3、根据水平控制线认真检查模板顶面标高是否符合规范要求。对超出允许偏差范围的成型模板及时通报栋号长及相关班组,并督促整改。 4、混凝土浇筑前调查混凝土工对板厚控制方法的掌握情况,浇筑过程中检查工人对板厚的实际控制情况,观察、认证班组对板厚控制所使用的其他方法是否具有可行性。 2.4、栋号长负责制 1、根据本项目的管理体制模式,栋号长为所辖楼号的安全、质量、进度的第一责任人。

20辊轧机电气控制系统介绍

20辊轧机电气控制系统介绍 发布时间:2007-11-15 来源:打印该页 一系统概述 某冷轧不锈钢板厂采用西门子S7 300系列的315-2DP控制器作为主控制单元,安置于主操作台上作为主站,采用2套西门子ET200 远程站作为从站,安置于前后两个操作箱内接受现场操作工控制指令。ET200远程站与CPU315-2DP主站之间采用PROFIBUS现场总线连接进行通讯。轧机采用前卷取、后卷取、主轧三台直流电机完成整个不锈钢板的张力轧制。直流电机采用西门子6RA70直流调速器进行控制,控制器与CPU315-2DP之间采用PROFIBUS现场总线通讯。 同时还为此轧机配置了一台平整机,电器配置完全相同,只在功能,电机功率等参数上与主轧机略有不同。 二系统要求 1.采用西门子6RA70直流调速器作为电机控制单元,调速器可以独立采集安装于电机上的编码器读取的数据,安装于轧机上的张力传感器读取的数据,作为基本参数高速运算得到当前系统所实际需要的张力,控制直流电机让其达到需要的张力。 2. PLC控制器控制液压,压下,润滑,等外部设备,同时将操作工设定的数据实时的通过PROFIUBS现场总线传输给6RA70直流调速装置。 3.采用油马达,利用液压装置实现对轧机机心的压力控制,采用上,下各10个轧辊相互之间的挤压力实现对不锈钢板的轧制。 4.甲方要求轧制线速度,主轧120M/分,平整 90M/分。 5.该设备为国内首家自发研制的20辊轧机。 三系统配置与功能实现 根据现场实际情况和功能扩展要求,主轧机我们采用两台450KW的直流电机作为前后卷取电机,采用一台1250KW的电机作为主轧电机,平整机我们采用两台250KW的直流电机作为前后卷取电机,采用一台400KW的电机作为平整电机。采用西门子S7 300系列的315-2DP的CPU 作为主控制器,采用ET200分布式I/O作为前后操作箱的控制装置。 西门子S7-300、6RA70控制器、分布式I/O ET200,特点如下: 1.采用CPU315-2DP作为主控制器,利用CPU315内存大、速度快、支持PROFIBUS现场总线的特点,充分满足轧钢行业要求响应速度快,控制灵敏,要求复杂,现场施工简单的要求;2.采用远程I/O方案,最大限度减少接线;

板带材纵向厚度精度控制

1.变形抗力及其影响因素 1.1变形抗力是指材料在一定温度、速度和变形程度条件下,保持原有状态而抵抗塑性变形的能力。变形抗力的大小与材料、变形程度、变形温度、变形速度、应力状态有关,而实际变形抗力还与接触界面条件有关。 1.2化学成分的影响 化学成分对变形抗力的影响非常复杂。一般情况下,对于各种纯金属,因原子间相互作用不同,变形抗力也不同。同一种金属,纯度越高,变形抗力越小。组织状态不同,抗力值也有差异,如退火态与加工态,抗力明显不同。 合金元素对变形抗力的影响,主要取决与合金元素的原子与基体原子间相互作用特性、原子体积的大小以及合金原子在基体中的分布情况。合金元素引起基体点阵畸变程度越大,变形抗力也越大。 1.3组织结构的影响 结构变化。金属与合金的性质取决与结构,即取决与原子间的结合方式和原子在空间排布情况。当原子的排列方式发生变化时,即发生了相变,则抗力也会发生一定的变化。 单组织和多组织。当合金为单相组织时,单相固溶体中合金元素的含量愈高,变形抗力则愈高,这是晶格畸变的结果。当合金为多相组织时,第二相的性质、大小、形状、数量与分布状况对变形抗力都有影响。一般而言,硬而脆的第二相在基体相晶粒内呈颗粒状弥散分布,合金的抗力就高。 晶粒大小。金属和合金的晶粒越细,同一体积内的晶界越多,金属和合金的变形抗力就越高。 1.4变形温度的影响 由于温度升高,金属原子间的结合力降低了,金属滑移的临界切应力降低,几乎所有金属与合金的变形抗力都随温度升高而降低。但对于那些随着温度变化产生物理化学变化和相变的金属与合金,则存在例外。 1.5变形速度的影响 变形速度的提高,单位时间内的发热率增加,有利于软化的产生,使变形抗力降低。另一方面,提高变形速度缩短了变形时间,塑性变形时位错运动的发生与发展不足,使变形抗力增加。一般情况下,冷变形时,变形速度的提高,使抗力有所增加,而在热变形时,变形速度的提高,会引起抗力明显增大。 1.6变形程度的影响

板带材高精度轧制和板形控制

板带材高精度轧制和板形控制 板带轧制产生两个过程:轧件塑性变形过程和轧机弹性变形(弹跳)过程。 轧机弹跳方程h=s o’+p/k h- ----轧出带材厚;s o’:理论空载辊缝;p:轧制力;k:轧机刚度 直线A线,又称轧机弹性变形线,斜率k为轧机的刚度 零位调整后的弹跳方程 厚控方程h =s。+(p-p。)/k s。----考虑预压变形的相当空载辊缝 轧件塑性变形过程: 当来料厚度一定,由一定h值对应一 定p值可得近似直线B线,又称轧件 塑性变形线(斜率M为轧件塑性刚度 系数)。与A线相交纵坐标为轧制力p, 横坐标为板带实际厚度h C线:该线为等厚轧制线 厚度控制实质:不管轧制条 件如何变化,总要使A,B两线 交于C线,即可得到恒定厚度(高 精度)的板带材。 板带厚度变化的原因和特点(影响出 口厚度的因素) S。----由轧辊的偏心运转、磨损与热膨胀及轧辊轴承油膜厚度的变化所决定。它们都是在压下螺丝定位时使实际辊缝发生变化的 K ----在既定轧机轧制一定宽度的产品时,认为不变 P -----主要因素:故可影响到轧制力的因素必会影响到板带的厚度精度(使B线发生偏移)(1)轧件温度、成分和组织性能的不均对温度的影响具有重发性,温差会多次出现。故只在热轧精轧道次对厚度控制才有意义 (2)坯料原始厚度的不均可改变B线的位置和斜率,使压下量变化,引起压力和弹跳的变化。必须选择高精度的原料 (3)张力的变化通过影响应力状态及变形抗力而起作用;还引起宽度的改变。故热连轧采用不大的恒张力,冷连轧采用大张力。调节张力为厚控的重要手段 (4)轧制速度的变化影响摩擦系数(冷轧影响大)和变形抗力(热轧影响大),乃至影响轴承油膜厚度来改变轧制压力。对冷轧影响大。 板带厚度控制方法1)调压下改变A(2)调张力改变B 3)调轧制速度 最主要、最基本、最常用的还是调压下的方法。 调压下适用于下图16-2 a b两情况 调压下(改变原始辊缝,即改变A线): 用于消除轧制力p引起的厚度差(即B线偏移)

厚度自动控制系统

板带箔轧制的厚度自动控制系统 金属加工产品广泛应用于建筑业、容器包装业、交通运输业、电气电子工业、机械制造业、航空航天和石油化工等各工业民用部门,其生产和消费水平已成为衡量一个国家工业发达程度的重要标志之一。 作为有色金属加工行业的设计研究单位,洛阳有色金属加工设计研究院早在1989年就自行设计研制出1400mm、1200mm、1300mm、1450mm、800mm 等各型全液压不可逆铝带箔冷轧机,1300mm 可逆铝带坯热轧机,560mm、850mm 全液压可逆铜带冷轧机,以及可逆钢带冷轧机的自动厚度控制配套系统,并积极开展铝板带箔厚度自动控制系统的开发研制工作,在吸收消化国外同类产品先进技术的基础上,先后开发出AGC-Ⅲ型到AGC-Ⅶ型厚度自动控制系统,厚控精度高,系统稳定。广泛用于铝、铜加工及钢铁加工行业的各类板带箔轧机上,深得用户好评(参见厚控系统用户表)。 板带材在轧制过程中的厚度变化,既与轧件的塑性变形抗力、厚度等因素有关,也与轧制工艺规程及轧机机架的刚度有关,下面对板带材轧制厚度自动控制原理作一简述。 1.弹跳方程和P-H 图 板带轧制过程中轧件作用于轧辊辊系的反作用力使机架发生弹性变形,遵循弹跳方程的规律: K P S h 0+= 式中: h — 轧件出口厚度,mm 0S — 原始辊缝,mm P — 轧制压力,t K — 轧机刚性系数,t/mm 作用于轧件的轧制力,使轧件发生塑性变形,轧件的塑性曲线虽然实际上不是直线,但在板带材轧制过程中塑性曲线处在微量变化情况下,可视为直线,轧件的塑性系数M 则可表示为: M=ΔP/Δh 式中: M — 轧件塑性系数 ΔP — 轧制力变化量 Δh — 轧件的厚度变化 利用弹性变形曲线和塑性变形曲线所构成的P-H图(图1-1),可以很方便地用来分析轧件厚度变化原因。

轧钢机PLC控制系统设计

轧钢机PLC控制系统设计 1 问题分析及解决方案 1.1 问题描述 在冶金企业中轧钢机是重要 的组成部分,运用PLC实现对轧钢 机的模拟,如右图。 当起始位置检测到有工件时, 电机M1、M2开始转动M3正转, 同时轧钢机的档位至A档,将钢板 轧成A档厚度,当钢板运行到左检 测位,电磁阀得电动作将左面滚轴 升高,M2停止转动,电机M3反 转将轧钢板送回起始侧。 此时起始侧再检测到有钢板, 轧钢机跳到B档,把钢板轧成B档厚度,电磁阀得电,将滚轴下降,M3正转,M2转动,当左侧检测到钢板时M2停止转动,电磁阀得电将滚轴抬高M3反转,将钢板运到起始侧。 如此循环直到ABC三档全部轧完,钢板达到指定的厚度,轧钢完成。 1.2 分析过程 该工作过程分为三个时序,当起始位置第一次检测到信号时,A档轧钢;起始位置第二次检测到信号时,B档轧钢;起始位置第三次检测到信号时,C档轧钢。由于每个档位都要工作一段时间才能切换,可以用两个定时器来实现。 2 PLC选型及硬件配置 PLC选型及硬件配置如图1。 图1

3 分配I/O地址表 I/O地址表如图2。 图2 4 主电路图及PLC外部接线图 4.1 主电路图 主电路图如图3。 图3

4.2 PLC外部接线图 PLC外部接线图如图4。 图4 5 控制流程图及梯形图程序 5.1 控制流程图 控制流程图如图5。 图5

5.2 T型图程序

6 程序调试 6.1 问题调试 为了解决A、B、C三个档位的时序问题,我选择用三条T型图程序来实现,但输出有重复,导致T型图程序运行正确但仿真出现错误。于是我改变方案,采用了M存储器来代替输出,仿真成功。 6.2 仿真图 A档运行: 传送回初始位: B档运行: C档运行:

轧机AGC培训资料.

轧机培训教程

1450液压AGC控制系统概述 一:厚度自动控制原理 AGC控制的目的,是借助于辊缝、张力、速度等可调参数,把轧制过程参数(如原料厚度、硬度、摩擦系数、变形抗力等)波动的影响消除,使其达到预期的目标厚度。而辊缝、张力等参数的调节又是以轧机的弹性曲线和轧件的塑性曲线以及弹塑曲线即P-H图为依据的。 板带轧制过程既是轧件在轧制压力P的作用下产生塑性变形的过程,又是轧机在轧制压力P的作用下产生弹性变形(即所谓弹跳)的过程,二者同时发生,其作用力和反作用力相等而相互平衡。由于轧机的弹跳,使轧出的带材厚度(h)等于轧辊的理论空载辊缝(So’)再加上轧机的弹跳值。按照虎克定律,轧机弹性变形与应力成正比,则弹跳值应为P/K,此时 h= So’+ P/ K 式中:P——轧制力,t; K——轧机的刚度(t/mm),即弹跳一毫米所需轧制力的大小。 上式为轧机的弹跳方程,据此绘成曲线A称为轧机相关性变形式,如图,它近似一条直线,其斜率就是轧机的刚度。但实际上在压力小时弹跳和压力的关系并非线性,且压力越小,所引起的变形也越难确定,亦即辊缝的实际零位很难确定。为了消除这一非线性区段的影响,实际操作中可将轧辊预先压靠到一定程度,即压到一定的压力P。然后将此时的辊缝批示定

为零位,这就是所谓“零位调整”。 由图可看出:h= S0+(P-P0)/K 式中S0——考虑预压变形的相当空载辊缝 另一方面,给轧件一定的压下量(h0-h),就产生一定的压力(P),当料厚(h0)一定,h越小即是压下量越大,则轧制压力也越大,通过实测或计算可以求出对应于一定h值的P 值,在图上绘成曲线B,称为轧件塑性变形线。B线与A线交点的纵坐标即为轧制力P,横坐标即为板带实际厚度h。由P-H图可以看出,如果B线发生变形(变为B’),则为了保持厚度h不变,就必须移动压下位置,使A线移到A’,使A’和B’的交点的横坐标不变,亦即须使A线与B线的交点始终在一条垂直线C上。因此,板带厚度控制实质就是不管轧制条件如何变化,总要使A线和B线交到C线上,这样就可得到恒定厚度的板带材,由此可见,P-h图的运用实际上是板带厚度控制的基础。 二. AGC的控制系统 AGC的目的是消除厚差,则首先必须检测到轧制过程中的带钢的厚差时,然后再采取措施消除这一厚差。因此,归纳为两个基本构成: a.厚度偏差的检测,目的是掌握轧制过程中,每时每刻带钢的厚度偏差的大小。 b.厚度偏差的消除:根据厚度偏差的大小,计算出调节量,输出控制信号,然后根据控制信号,调节机构动作,完成调节过程,见下图 1.测量方式 在厚度偏差检测当中,有直接测厚和间接测厚两种方式。 直接测量法的主要缺点是存在时间滞后问题。为解决此问题,采用间接测厚法。其间接测厚方式有压力测厚、张力测厚等。间接测量的方法虽然精度较低,但传递时差小,设备简单,便于维修,故被广泛采用。 2.控制手段

800mm电子铝箔轧机板形自动控制系统

800mm电子铝箔轧机板形自动控制系统 (洛阳有色金属加工设计研究院黄利斌河南洛阳471039) 摘要:本文介绍我院自主开发设计的800mm电子铝箔轧机板形自动控制系统的性能、组成及功能。 关键词:电子铝箔,板形仪,板形自动控制系统,分段冷却控制,板形目标曲线 1.前言 随着加工工业逐步采用高速自动作业线,特别是电子铝箔对板厚板形精度要求日益严格。目前,板厚自动控制技术(AGC,Automatic Gauge Control)已日益成熟,厚度控制精度得到了解决。而板形自动控制(AFC,Automatic Flatness Control),由于影响因素极其复杂,给板形控制带来很大困难,板形控制已成为国内外轧机界研究热点之一。国外这几年也先后有多家公司和研究机构推出了不同种类的板形自动控制系统,实践生产效果不错,但由于价格非常昂贵,国内目前引进的很少。1999年,我院成立新技术开发中心,把板形自动控制系统作为重点开发项目,通过近3年多努力终于取得成功,该系统借鉴了国外同类产品的先进经验、控制方法和模型,适用于冷轧铝薄带材板形自动控制的计算机自动控制系统。2002年12月板形自动控制系统在由我院总包的新疆众和股份有限公司800mm电子铝箔轧机上成功运行,各项指标达到设计要求,控制精度接近国际水平,受到用户好评。目前,应用于河南顺源铝业有限公司的1850mm铝箔轧机板形自动控制系统已安装就绪,进入最后的调试阶段。本文仅对800mm电子铝箔轧机自动控制系统的性能、组成及功能作些介绍,以供读者参考。 2.轧机参数及控制精度 新疆众和股份有限公司800mm电子铝箔轧机的主要参数如下: 轧机形式:四辊不可逆铝箔冷轧机 轧机尺寸:ф200mm/ф480mm ×800mm 最大轧制力: 2600KN 最大轧制速度:1200m/min 来料宽度:420—640mm 来料厚度: 0.6mm 开卷张力:180—5700N 卷取张力:80—4300N 通过有关技术人员的共同努力,经过现场调试实验,在投入板形自动控制系统且正常稳定轧制条件下达到以下控制效果: 厚度范围:0.32mm—0.017mm 最大轧制速度:900m/min 板形控制精度: 0.1mm: ±15I 0.065mm: ±20I 3.系统组成

楼板厚度控制措施范本

客天下碧桂园A10地块二标工程 楼 板 厚 度 控 制 措 施 编制人: 审核人: 审批人: 方远建设集团股份有限公司 二0一七年七月

楼板厚度控制措施一、工程概况 工程基本情况 楼板厚度分布情况

二、楼板厚度控制措施 为保证楼板厚度,特编制此措施,从测量、模板支设及混凝土浇筑等方面对楼板厚度进行控制,具体措施如下: 2.1测量工程控制措施 控制板厚必须从源头控制开始,必须保证测量组所提供的水平控制线绝对准确: 1、板面水平主控标高设置在已拆模完成的结构剪力墙上(设置点位不少于2个),在砼浇筑前用卷尺将水平标高引至板面50cm高竖向钢筋上(钢筋直径不小于16),并进行复测,复测合格后,将水平控制点引至在板面四周柱的钢筋上,确保每块板面四角均设置到位,以便混凝土浇筑时的顶面控制,在水平点引测到竖向钢筋上以后,应对离水平仪较远的点进行复核。(与模板下水平控制点的闭合)。 2、在模板支设过程中将已复核过的钢筋上的水平控制点在剪力墙没有封模之前引测到排架立杆上。以便木工的板顶水平标高控制。 3、复核无误后交下道工序使用 2.2楼板模板工程控制措施 (1)支设楼板模板时,要控制好标高,先在竖向结构构件上抄好标高,在模板安装时严格安排标高进行支设。 (2)模板接缝要求加工严密,表面错缝平整。 (3)模板安装完成后必须对模板的水平标高及平整度进行全数检查,检查标准控制4mm 以内。 2.3、实测组数据实测 1、实测组对整个项目的过程及事后数据质量进行全面控制。 2、在板厚质量控制方面首先对水平控制线进行检查,水平控制点是否水平,上下层之间的水平控制点、线是否闭合。 3、根据水平控制线认真检查模板顶面标高是否符合规范要求。对超出允许偏差范围的成型模板及时通报栋号长及相关班组,并督促整改。 2.4、栋号长负责制

相关主题
文本预览
相关文档 最新文档