当前位置:文档之家› 多波束测量的精度控制与规范指标

多波束测量的精度控制与规范指标

多波束测量的精度控制与规范指标
多波束测量的精度控制与规范指标

多波束测量的精度控制与规范指标

摘要:分析多波束测量、辅助测量的数据精度,研究其对成果水深的影响程度,结合《海道测量规范》与《多波束水深测量技术规定》中的测量等级指标以及IHO规范中对水深不确定度的定义和传播结构的介绍,建立数学模型反解出符合规范的作业环境与辅助测量数据的等级指标,为多波束测量作业提供明确的技术指标、为测量数据的质量建立更全面的评价指标。

关键词:声剖;潮汐;海况;不确定度

1引言

海底地形资料是海洋环境信息的重要组成部分,现阶段主要通过多波束和单波束测深系统以走航式手段获取[1]。由于多波束测深系统在探测航行障碍物中具有足够的分辨率,如果采用合理的工作方式,该技术在准确性和全覆盖探测海底地形方面具有巨大的潜力。目前新一代多波束测深系统的换能器标称精度与分辨率等关键指标均已达到厘米级,影响系统测深精度的主要因素已经从设备本身精度转移到了辅助测量精度以及作业组织的规范程度和成果评价的科学性、全面性上[2]。我国现行的《海道测量规范(GB12327—1998)》对多波束测量作业过程没有质量指标的界定,其测深精度指标只简单的对分段水深进行限差界定,而最终的数据质量是否符合限差要求是通过主测线与检查测线上交点水深的内符合精度来判断,不能反映客观实际,不具备实际作业的全面指导意义,导致在进行多波束测深作业中,测量人员对作业环境、辅助测量数据没有更深刻的认识和精度的控制。

2测量限差与多波束测量等级指标

目前海洋水深测量的技术指标存在较大的模糊性,对实际测量作业没有全面的参考意义。通过对比国内外的各项技术指标,理清各种数据指标的关系和意义。

《海道测量规范》对测深限差(95%置信度)的要求见表2-1:

根据IHO S-44(5th)对水深精度的要求,以不确定度代替精度指标对测深数

据进行质量评估,该指标是评价多波束测深数据的总指标。确定水深不确定度的关键在于概率分布和相应的置信域,以及标准差σ的获取。

在IHO S-44(5th)中,已假定测深数据服从正态分布,并要求置信度为95%。

σ

因此,水深总不确定度(TVU)为:TVU=1.96×

Depth

σ为水深标准差。

式中,Depth

IHO对TVU的计算定义为:TVU=?

式中,a为不确定度中不随深度变化的部分,b表示不确定度中随深度变化部分的系数,d为水深。

在IHO S-44(5th)中,按照不同海区对航行安全的重要程度制订了不同精度等级要求,并将其划分为四个等级(95%置信度),见表2-2。

《多波束水深测量技术规定》多波束水深测量分级精度指标见表2-3:

分析《多波束水深测量技术规定》对深度精度的规定,可以得出结论:通过一级多波束测量能够满足《海道测量规范》对测深限差的要求而二级多波束测量的精度则不符合测深限差要求。如表2-4:

多波束一二级测量在特定深度的精度指标

3多波束测量误差传播过程及精度分析

3.1随深度变化的不确定度

换能器横摇、纵摇、艏摇对测量数据的影响是不同的,其中横摇造成多波束测量的测深误差,纵摇和艏摇造成定位误差。横摇值误差1o水深为50m的斜距上时,对测量成果产生0.6m的误差;纵摇1o水深20m时,将在航迹线方向上引起0.4m的位移误差[3]。通过往返测量,可以计算横摇偏差的测量精度为±0.05o,在边缘波束上水深50m时引起的最大测量误差大约大于3cm。20m处的误差则为0.012m,对测深数据不确定影响很小。

因此,随深度变化的不确定度主要是声速和时间差引起,时间差的精确性较难评估而且误差很小,暂时不必考虑。当前测量部门对声剖数据的评价没有一个直观的数值指标,一般通过控制时间和空间的测量间隙尽量减小由于时空结构性差异引起的声剖数据误差。而在测量成果上,水深点一般选择距离最近的声剖数据进行水深计算,如果水深点在声剖变化较大的区域,相邻的声剖数据差异较大,则导致测深误差具有难以估计的不确定度。当声剖整体误差为10m/s时,若海水中声速为1500m/s,则100m的深度会有约0.67m的测量误差。因此声剖数据的好坏很大程度上决定了成果的质量,建立一个科学的声剖评价指标,不应该从测量间隙上考虑,而应该建立声剖数据的间隔差。

通过公式推导,我们可以得到:

d'=(v'/v)×d

其中,v'为实测声速,v为实际声速,声速引起的测深不确定度为1.96×d'。

由于中误差的传播通过不相关因子的中误差平方和来进行计算。因此可认为:1.96×(v'/v)=b,所以v'=b×v/1.96。

由于在一般海区,海水声速一般约为1500m/s。因此可以大致推算出声剖测量数据中声速的中误差如表2-5所示:

3.2不随深度变化的不确定度

由《多波束水深测量技术规定》可知,验潮站水位观测误差不大于5cm,一、二级精度水深测量时,必须实测水位;三、四级精度测量时,可用预报水位,预报水位的精度优于±25cm,当水深大于200m时,可不进行水位改正。

在沿岸海域的水深测量中验潮数据基本都与多波束测量同时进行,所以可以

仅考虑观测误差,一般不大于5cm。而在近海和远洋的浅水区域测量中,大多采用潮汐预报,精度优于±25cm。

动态吃水一般观测误差也不大于5cm,测量船航行时动态吃水变化的影响因素比较多,可以理解为动态吃水的不确定度为±5cm。

升沉引起的不确定度的估计值可以由升沉幅度(1/2波高)乘以0.707计算得到[4]。假设沿岸水深测量条件是一、二级海况,波高为0.5m,则升沉引起的不确定度为±0.17675m;近海水深测量(水深范围一般100m左右)条件为三级海况,波高范围0.5-1.25m,假设波高为 1.25m,则升沉引起的不确定度为±0.441875m。

在TVU的计算公式中,不随深度变化的部分主要有潮汐预报的不确定度、动态吃水的不确定度和深沉引起的不确定度构成。结合误差传播规律,可以得到细化的深度不确定度公式:

TVU=

其中,e为潮汐预报不确定度,f为动态吃水不确定度,g为深沉不确定度。

因此,在有实测验潮数据,一、二级海况条件下的沿岸测量精度为:

TVU=

则:在20m水深处的测深不确定度为:

在无实测验潮数据,三级海况的条件下的近海水深测量精度为:

TVU=

则:在100m水深处的测深不确定度为:

对多波束一级测量而言,两种潮汐改正后的精度均符合海道测量水深限差要求。在大于100m水深的近海进行测量,通过潮汐预报,采用一、二、三级声剖测量数据得到的测量结果符合限差要求。在20m左右水深的沿岸多波束二级测量中,采用二级声剖数据,在波高0.5m的条件下,测量精度超出了限差要求,这种情况下可以通过降低声剖数据间隔差,或选择在海况好的环境下实施测量。

0.3

在有实测验潮数据的沿岸测量作业中,采用一级声剖数据,波高在0.707m 以内;采用二级声剖数据,波高在0.373,m以内,测量成果符合限差要求。

4历史测量数据等级划分与质量评价

由于在多波束测量作业中,等级的划分不是很明显,当前的测量部门对测量成果的评价指标主要是通过主检测深线深度点的比对来完成的。

首先对不符值数列进行系统粗差检验,剔除系统误差和粗差后,再进行主检不符值计算。如表4-1所示,为2012年某测量数据质量评价结果。

表4-1 主检测深线深度点比对统计情况

该数值实质隐含了吃水、涌浪、声速一级潮汐等多种动态海洋环境效应改正因素的综合影响,因此这些改正项是否精确和完善,通过主检比得不到很好的反映[5]。并且在全覆盖测量条件下,水深点的选择、系统差、粗差的剔除等影响对结果的客观真实的评价。因此这种评价指标对过程的质量控制没有实质的指导价值,只能作为一个重要的参考,测量过程的质量评价也应该引起足够的重视。

4.1声剖数据的评价

在某次海洋多波束扫测作业中,技术文档对声剖数据的质量分析:将SV–Plus 8321采集的数据与高精度CTD采集的数据进行比对,声速曲线相近,互差很小,证明SV–Plus 8321采集数据满足测量要求。

声剖平均每天投放两次,如表4-2所示:

表4-2 声剖投放次数和投放间隔

这些指标是在技术文档中,对声剖数据的评价,凭此可以大致判断声剖数据是合格的,没有更多的说明与分析。

本人通过对2011年至2013年测量任务中部分声剖数据的各水层声速进行平均值计算,通过对相邻两次测量的声剖数据比较,然后对各水层声速进行差值计算,求各水层声速差的中误差,定义为相邻声速中误差,将该数据与上文介绍的等级测量声剖指标进行比对,形成对声剖数据的质量评价。

对2011年至2013年中三次测量作业中的声剖数据进行分析,如表4-3,表4-4, 表4-5所示。

表4-4 2012年测量任务部分声剖数据计算结果

表4-5 2013年测量任务部分声剖数据计算结果

计算可得2011年相邻四次声剖数据的相邻声速中误差为14.17m/s,4.81 m/s,7.621 m/s;2012年相邻三次声剖数据的中误差为:1.88m/s,0.42m/s;2013年相邻三次声剖数据的中误差为:0.99m/s,1.39m/s。

可以得出结论:

(一)随机抽取的声剖连续数据,基本保持比较稳定的中误差;

(二)2011年声剖数据的声剖投放时间间隔较长,中误差较大,相邻两天的声剖水层差也比较大,数据达不到一级测量质量指标基本达到二级测量质量指标;

(三)2012、2013年声剖测量数据质量较高,符合一级测量质量指标

(四)根据表4-4,第二次与第一次声剖投放时间间隔较短,但中误差却大于时间间隔较长的第三次与第二次投放。

4.2测量环境的评价

多波束测量任务中,一般没有将海况作为一个数据指标对测量成果进行评价,一般情况下,只要海况不是很差,船艇能够比较平稳,多波束测量系统能够稳定的获取数据,就断定该海况下可以进行测量作业。

通过上文的计算可知,在沿岸测量作业中,对波高的要求是比较高的,采用一级声剖数据波高在0.707m以内,采用二级声剖数据波高在0.373m以内。在近海测量作业中,采用一、二级声剖数据,波高在1.25m以内时符合限差要求的。

因此多波束一级测量作业需要对声剖数据、潮汐预报精度和测量环境进行综合分析,声剖数据质量高、潮汐资料精确,则测量环境可选择性更大,但一般测量作业要优于三级海况。

通过查看历史技术文档,发现一般没有对海况进行描述,只有在海区概况中有历史资料的简单介绍,没有对海况的实时情况进行记录。另外,因为测区的海况恶劣而结束测量,会简单说明原因,没有描述具体海况,这种情况下的海况一般大于三级,对测量数据质量的影响较大。

5总结

本文深入分析了多波束测量的等级指标,探讨了影响测量指标的因素,研究基于成果数据质量指标的辅助测量数据质量指标,并根据不确定度传播原理计算出声剖的等级指标,在此基础上,评价测量环境对等级测量误差的影响。并对近

几年的测量资料进行整理与分析,发现声剖的数据质量与声剖的投放间隔有一定相关性,以往测量数据存在误差较大情况,需要对数据进行严密的监控。另外测量作业中对测量环境的评估不够,根据本文研究,可以明确测量环境对测量成果质量的影响,对测量作业有一定的指导意义,对如何在测量过程中实施有效监控提供了一定的理论依据。

参考文献

[1].李家彪,王小波,华祖根等. 多波束勘查原理技术与方法[M]. 北京,海洋出版社,1999.

[2].黄辰虎,陆秀平,欧阳永忠等. 多波束水深测量误差源分析与成果质量评定[J]. 海洋测

绘,Vol.34(No.2):2014,1-6.

[3].巫贤虎,吕良. 多波束系统的参数校正及其在CARIS软件中的实现[J]. 基地科技论文,

2009.

[4].肖付民,边刚,金绍华等.IHO海道测量外业程序手册[M],中国人民解放军海军司令部

航海保证部.2013,120-121

[5].黄辰虎,陆秀平,申家双等.海道测量水位改正通用模式研究[J].海洋测绘,2011,31(4):

13-16

测量规范标准[详]

测量培训 一、平面控制测量 (一)、一般规定 平面控制网的建立,可采用卫星定位测量、导线测量、三角形网测量等方法。平面控制网精度等级的划分,卫星定位测量控制网依次分为为二、三、四、等和一、二级,导线及导线网依次为三、四等和一、二、三级,三角形网依次为二、三、四等和一、级。 (二)、导线测量 1.导线测量的主要技术要求 各等级导线测量的主要技术要求,应符合表2.1的规定。 注:1 表中n为测站数。 2 当测区测图的最大比例尺为1:1000时,一、二、三级导线的导线长度、平均边长可适当放长,但最大长度不应大于表中规定相应长度的2倍。

当导线平均边长较短时,应控制导线边数不超过表2.1相应等级导线长度和平均边长算得的边数;当导线长度小于表2.1规定长度的1/3时,导线全长的绝对闭合差不应大于13cm。 导线网中,结点与结点、结点与高级点之间的导线段长度不应大于表2.1中相应等级规定的0.7倍。 2.导线网的设计、选点与埋石 导线控制网的布设应符合下列规定: (1)导线网用作测区的首要控制时,应布设成环形网,且宜联测两个已知方向。 (2)加密网可采用单一附合导线或结点导线网形式。 (3)结点间或结点与已知点间的导线段宜布设成直伸形状,相邻边长不宜相差过大,网不同环节上的点也不宜相距过近。 导线点位的选定,应符合下列规定: (1)点位应选在土质坚实、稳固可靠、便于保存的地方,视野应相对开阔,便于加密、扩展和寻找。 (2)相邻点之间应通视良好,其视线距障碍物的距离,三、四等不宜小于1.5m;四等以下宜保证便于观测,以不受旁折光的影响为原则。 (3)当采用电磁波测距时,相邻点之间视线应避开烟囱、散热塔、散热池等发热体及强电磁场。

精密水准测量的测量精度分析

精密水准测量的测量精度分析 【摘要】现阶段,在对地面上点的高程进行测量的过程中,运用精密水准测量的方式是众多测量方式中较为有效的方法之一。本文对目前精密水准测量中的相关规范进行阐述,并结合笔者自身的实践经验,对精密水准测量中的误差进行分析,并对提高精密水准测量精度的措施进行总结。 【关键词】精密水准测量;测量精度;分析 Abstract:At this stage, the process of measurement in the elevation of the ground point, using precise leveling way is one of the effective methods in many measurements. This article carries on the elaboration to the related specifications in precise leveling at present, and combining with the author’s own practical experience and analyzes the error in precise leveling, and to improve the leveling precision measures were summarized. Keyword:precise leveling accuracy of measurement; analysis; 中图分类号: P224.1 1前言 在对地面点高程进行测量的过程中,精密水准测量是目前精度较高的方法之一,该类测量方式能够有效的运用在野外测量的工作中。精密水准测量一方面为国家统一的高程测量系统的建立发挥着积极的作用,另一方面能够为相关学者对地球的研究提供较为精确的数据,尤其是在对海平面等方面的研究发挥着积极的作用。然而随着我国科学技术的不断发展以及相关研究领域对精度方面的日益提高的要求,精密水准测量的测量精度也越来越受到社会各界的关注。 2精密水准测量的相关规范 目前,在进行精密水准测量的过程中,其相关规定主要包括以下几个方面的内容: 第一,在进行测量之前的半个小时左右,应将仪器避光放置,并使得仪器的温度基本与外界环境的温度保持一致。在进行测量的过程中,应运用遮阳伞等设备对阳光进行遮挡,避免对测量结果产生影响。同时,在变换观测地点期间,应运用相关的保护装置将仪器进行遮盖。 第二,在对测量仪器位置进行确定的过程中,应将其置于与前后标尺连线中央的位置,其所偏差的距离应控制在相关规定允许的范围之内。在进行二等测量的过程中,其测点与前后标尺之间距离的差异应控制在1m之内。

02 第二章 精度指标与误差传播

第二章:精度指标与误差传播 内容及学习要求 本章详细讨论偶然误差分布的规律性,衡量精度的绝对指标-中误差,相对指标-权及其确定权的实用方法;方差、协因数定义及其传播律等问题。本章内容是是测量平差的理论基础,也是本课程的重点之一。学习本章要求深刻理解精度指标的含义,掌握权、协方差、协因数概念,确定权及根据已知协方差、协因数的观测值求其函数的方差、协因数的方法(协因数、协方差传播律)。 §2-1概述 概括本章内容,其主线是偶然误差的统计规律→衡量单个随机变量的精度指标-方差→衡量随机向量的精度指标-协方差阵→求观测值向量函数的精度指标-协方差传播律→精度的相对指标-权。 §2-2偶然误差的规律性 本小节阐述偶然误差的统计规律性,提出偶然误差服从正态分布的结论 任何一个观测值,客观上总是存在一个真正代表其值的量,这一数值就称观测值的真`值。从概率统计的观点看,当观测量仅含偶然误差时,真值就是其数学期望。 某一随机变量的数学期望为:i n i i p x X E ∑== 1 )( 或 ?+∞ ∞ -=dx x xf X E )()( 期望的实质是一种理论平均值,可用无穷观测,以概率为权,取加权平均值的概念理解.dx x f )(表示x 出现在小区间dx 的概率。 设对n 个量进行了观测,观测值为。 、、、n L L L ???21其相应的真值分别为。 、、、n L L L ???21令i i i i L L ?-=?, 即真误差。由于假定测量平差所处理的观测值只含偶然误差,所以真误差i ?就是偶然误差。用向量形式表述为: ? ????????????=?n b L L L L 211、?????? ????????=?n n L L L L ..211、?? ?????????????=??n n .211 则有:111???-=?n n n L L 注意:本教程中凡是不加说明,即没有下标说明的向量都是列向量,若表示行向量则加以转置符号表示,如:T T T B A L 、、等。 对单个的偶然误差而言,大小和符号都没有规律,及事先完全不可预知。但从大量测量实践中知道,在相同的观测条件下,偶然误差就总体而言,有一定的统计规律,表现为如下几点: 1、 误差绝对值有一定限值 2、 绝对值小的比大的多 3、 绝对值相等的正负误差出现的个数相等或接近。 教材中分别列举两个实例,以358和421个三角形闭合差的分析结果验证了上述结论(闭合差是理论值与观测值之差,故是真误差)。注意:统计规律只有当有较多的观测量时,才能得出正确结论。 为了形象地刻画误差分布情况,以横坐标表示误差的大小,纵坐标采用单位区间频率(出现在某区间内的频率,等于该区间内出现的误差个数i v 除误差总个数n ,而采用单位频率 i i nd V ?为纵坐标值,使曲线(直方图)趋势不因区间间隔不同而变化)。根据统计规律可知,在相同条件下所得一组独立观测值,n 足够大时,误差出现在各个区间的频率总是稳定在某一常数(理论频率)附近,n 越大;稳定程度越高。n 趋于∞,则频率等于概率(理论频率)。令区间长度0→?d ,则长方条顶形成的折线变成光滑曲线,称概率曲线。

控制测量技术要求内容

图根导线测量的主要技术要求 4.5 控制测量 4.5.1 控制测量的基本要求 充分利用济南市连续运行卫星定位服务系统(JNCORS 系统)和已有的各等 级平面和高程控制点,采用 GPS 静态定位、网络 RTK 技术、图根导线(网)等 方式进行地籍图根控制测量。 4.5.2 地籍控制测量 4.5.2.1 图根点布设要求 图根点在基本控制点或 JNCORS 系统的基础上加密,以直接满足城镇土地调 查的需要、便于利用为原则,点位一般布设在道路、街巷的交叉口及其它利于 采集界址点和碎部点的地方。图根点的密度应满足《城镇地籍调查规程》的要 求,一般地区 8-10 个点/每幅图,复杂地区不低于 15 个点/每幅图,建筑物密 集地区应适当加密,还应保证图根点相对于起算点的点位中误差不得超过 5cm 。 4.5.2.2 图根点标志 图根点设临时标志,当测区内基本控制点密度较疏时,应适当埋设固定标 石。埋石确有困难时,可在沥青或水泥地面上打(嵌)入刻有十字的钢桩代替 标石,在四周凿刻深度为 1cm 、边长为 15cm×15cm 的方框,涂以红漆,内写点 号。每幅 1:500 图内埋石(钢桩)点数量不得少于 4 点。 4.5.2.3 图根点编号 图根点编号共 5 位。第一位为标段的英文字母代码,13 标段为 M,点号均自 0001 开始编排,如 A0001、A0002,C0003、D0008 等。 4.5.2.4 采用 JNCORS 系统进行图根测量 采用 JNCORS 系统进行图根控制测量时,应使用三脚架模式,不得采用单杆 模式。每点均应独立测量两次,每次不少于 15 个历元,两次测量的平面坐标之 差不应大于 2cm ,高程之差不应大于 3cm ,取两次测量的中数作为最后成果。 4.5.2.5 静态 GPS 测量 采用静态 GPS 方式加密控制点时,标志选设、观测和数据处理等应严格按 照相关规范要求进行。 4.5.2.6 图根导线测量 图根导线测量 依据各等级基本平面控制点,可分为两级进行布设,布设形 式为附(闭)合导线或结点网。

全站仪三角高程测量精度分析报告

全站仪三角高程测量精度分析 作者修涛 容摘要全站仪三角高程测量具有效率高,实施灵活等优点。全站仪三角高程测量可以代替水准测量进行高程控制,主要有对向观测法和中间观测法。在这两种方法中,前者将大气折光系数作为常数考虑,认为各个方向的折光系数相同,这与实际的情况有出入。而中间观测法则将大气折光系数作为变量处理,并加以改正。经研究并通过实践验证,在观测结果进行修正的条件下,全站仪三角高程测量完全能达到三、四等水准测量的精度要求,同时可借助Excel强大的数据处理能力,使观测数据的处理更为方便快捷[1]。文章根据三角高程测量原理及误差传播定律,对全站仪三角高程测量在测量中的应用及精度进行了探讨。对三角高程测量的不同方法进行了对比、分析总结。通过试验,对全站仪水准法三角高程测量进行了精度分析。 关键词全站仪;三角高程测量;精度分析

Total Station trigonometric leveling accuracy analysis Abstract T otal Station trigonometric leveling with high efficiency, the implementation of the advantages of flexible. Total Station trigonometric leveling can replace the standard of measurement for elevation control, mainly on the observation method to the observational method and intermediate. In both methods, the former take into account atmospheric refraction coefficient as a constant, that the refraction coefficient in each direction, this discrepancy with the actual situation. While the rule of the middle observation of atmospheric refraction coefficient as a variable processing and correction. Research and verify through practice, Total Station trigonometric leveling observations amendment can fully meet the accuracy requirements of the third and fourth level measurement, Can take advantage of Excel's powerful data processing capabilities, more convenient to make the processing of observational data.Article based on trigonometric leveling principle and law of error propagation, Total Station trigonometric leveling application and accuracy in the measurement are discussed. Different methods of measurement for triangulation were compared, analyzed and summarized. Trigonometric leveling Total Station Standards test, measurement accuracy analysis. Key words Electronic Total Station;trigonometric leveling;accuracy analysis

如何理解电子测量仪器的精度指标

如何理解电子测量仪器的精度指标 精确度是衡量电子测量仪器性能最重要的指标,通常由读数精度、量程精度两部分组成。本文结合几个具体案例,讲述误差的产生、计算以及标定方法,正确理解精度指标能够帮助您选择合适的仪器仪表。 一、测量误差的定义 误差常见的表示方法有:绝对误差、相对误差、引用误差。 1)绝对误差:测量值x*与其被测真值x之差称为近似值x*的绝对误差,简称ε。 计算公式:绝对误差 = 测量值 - 真实值; 2)相对误差:测量所造成的绝对误差与被测量(约定)真值之比乘以100%所得的数值,以百分数表示。 计算公式:相对误差 =(测量值 - 真实值)/真实值×100%(即绝对误差占真实值的百分比); 3)测量的绝对误差与仪表的满量程值之比,称为仪表的引用误差,它常以百分数表示。引用误差=(绝对误差的最大值/仪表量程)×100% 引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围,以减小测量误差 举个例子,使用万用表测得电压1.005V,假定电压真实值为1V,万用表量程10V,精度(引用误差)0.1%F.S,此时万用表测试误差是否在允许范围内? 分析过程如下: 绝对误差:E = 1.005V - 1V = +0.005V; 相对误差:δ=0.005V/1V×100%=0.5%; 万用表引用误差:10V×0.1%F.S=0.1V; 因为绝对误差0.005V<0.1V,所以10V量程引用误差0.1%F.S的万用表,测量1V相对误差为0.5%,仍在误差允许范围内。 二、测量误差的产生 绝对误差客观存在但人们无法确定得到,且绝对误差不可避免,相对误差可以尽量减少。误差组成成分可分为随机误差与系统误差,即:误差=测量结果-真值=随机误差+系统误差因此任意一个误差均可分解为系统误差和随机误差的代数和系统误差: 1)系统误差(Systematic error) 定义:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。 产生原因:由于测量工具(或测量仪器)本身固有误差、测量原理或测量方法本身理论的缺陷、实验操作及实验人员本身心理生理条件的制约而带来的测量误差。 特性:是在相同测量条件下、重复测量所得测量结果总是偏大或偏小,且误差数值一定或按一定规律变化。 优化方法:方法通常可以改变测量工具或测量方法,还可以对测量结果考虑修正值。 2)随机误差。 定义:随机误差又叫偶然误差,是指测量结果与同一待测量的大量重复测量的平均结果之差。产生原因:即使在完全消除系统误差这种理想情况下,多次重复测量同一测量对象,仍会由于各种偶然的、无法预测的不确定因素干扰而产生测量误差。 特点:是对同一测量对象多次重复测量,测量结果的误差呈现无规则涨落,可能是正偏差,也可能是负偏差,且误差绝对值起伏无规则。但误差的分布服从统计规律,表现出以下三个

控制测量技术设计书

控制测量技术设计书 1.工程名称及任务。 2.测区概况简述。 3.已有资料的来源及分析、利用论证。 4.坐标系统的选择及处理方法的论证,起始数据的配置和处理。 5.水平控制网布设方案阐述,其中包括: (1)首级网的等级和布网方式,以及本次控制网在精度和密度方面对日后布设加密网的保证。 (2)控制网(点)精度估算的简要过程及结果。 (3)从经济上、技术上、精度上对两个以上布网方案进行对比论证,从中确定一个最优方案。 (4)填写精度统计表。 6.技术依据及作业方法。内容主要包括: (1)工程执行的规范及施测细则。 (2)觇标及标石图并注明规格,材料及埋设方法(绘出示意图)。 (3)仪器的选择及检验项目要求。 (4)观测方法及各项限差(参阅规范或教材,不能杜撰)。 (5)概算内容和平差方法。 7.工作量综合计算及工作进程计划表(自行估计)。 8.需用的主要仪器设备(包括名称、型号和标称精度)、材料及经费预算。 9.工程项目完成后应提交的资料清单。

目录 一.测区情况 1.1测区位置及面积 1.2地理状况 二.作业依据 三.测区已有资料及利用 3.1平面控制资料 3.2高程控制资料 3.3其他资料 四.平面控制测量 4.1E级GPS测量 4.2三级导线测量 五.高程控制测量 5.1四等水准测量 5.2光电测距三角高程测量 六.一级导线、水准测量和光电测距三角高程测量平差计算6.1观测数据的检查 6.2平差计算 七.提交成果资料 7.1技术总结 7.2控制点成果表的制作 7.3控制网图的制作要求

八.图根控制测量 8.1图根导线 8.2图根高程测量 8.3平差计算 8.4提交资料 九.附图、附表、附件 本次实习的目的是了解控制测量作业的全过程,通过对长沙县水渡河及其周边地区实现控制测量,巩固课堂学习的理论知识,将理论及实践有机结合,提高理论水平及外业操作能力。 一.测区情况 1.1测区位置及面积 东经113°,北纬28°向涉及周围13km左右。 施测范围呈不规则形状,范围面积约14km2。 1.2地理状况 测区位于长沙县水渡河区,交通便利。东至水渡河大桥、筒灰村、望新村、孙家坡、长沙人民政府一线,南到开元路、国防科大,西沿洪山路一线,北止水渡河。 测区为经济开发区,农田。构成了以经济开发去为主的城市建筑物,以星沙大道、开元路、洪山路、潇湘西路、湘龙路及附属街坊的建筑区,西北边的成片 农田,该区地势平坦,便于开展成片测绘作业,测区东南部建筑密度较大,对于开展成片测绘作业有一定的影响。

建筑物沉降观测精度指标及评定方法

建筑物沉降观测精度指标及评定方法 摘要:本文结合相关标准,探讨了建筑物沉降观测精度指标的含义及其估算方法,并对沉降观测结果的精度评定进行了研究。 关键词:建筑物;沉降观测;精度评定;精度指标 0 引言 沉降观测的精度要求取决于观测的目的、该建筑物的允许变形值以及建筑物的结构与基础类型[1]。由于沉降观测的精度直接影响到观测成果的可靠性和精确性,因此精度指标的确定及评定是沉降观测中的一个重要环节。然而,在现实工作中,建筑物沉降观测的精度评定经常被忽视,不少测量工作者甚至不清楚精度指标的含义及精度评定的方法。本文结合标准《建筑物沉降观测方法》DGJ32/J18-2006及《建筑变形测量规范》JGJ8-2007的要求,对建筑物的精度指标及评定进行深入探讨,弄清精度指标的概念及精度评定的方法。 1 基本概念 在测量中,由于受到测量仪器、观测者、外界条件等种种因素的影响,产生误差是不可避免的。测量误差分为偶尔误差和系统误差两大类,所谓精度,就是描述偶然误差分布的参数,精度越高,表示偶然误差的离散度越小,观测成果越可靠,反之亦然。 为了衡量观测精度的高低,利用一些数字反映误差分布的离散程度,这些数字称为衡量精度的指标,较常用的精度指标为方差和中误差,计算公式如下: (1) (2) 方差和中误差是表征精度的绝对数字指标,权、协因数(权倒数)则是表征精度的相对数字指标。设有观测值,对应的方差为,如选定任一常数,协因数的计算公式为: (3) 则称为的协因数或权倒数,为单位权中误差。对于水准测量,常用每公里观测高差中误差或者每测站高差中误差作为单位权中误差。 2 建筑物沉降观测精度指标及评定方法 2.1 精度指标

施工组织设计测量控制程序

一、编制依据 1、田湾核电站排水口工程投标文件 2、田湾核电站技术规格书 3、工程测量规范GB 50026—93(基线布设) 4、水运工程测量规范JTJ 203—94(施工测量) 5、核电发《JCAL—M—0002—JHGI》号文 二、技术设计(执行《工程测量规范》GB 50026—93) 经过对现场的勘察、工程情况和业主提供的控制点的坐标和高程,确定基线布设采用闭合导线方法,基点为导线点。高程点以02#点高程H=8.2930m(黄海高程系)为施工高程控制点。 本工程使用测量仪器:距离测量为日本索佳SET5B全站仪,角度测量为苏州产J2经纬仪,高程测量为苏州产DSZ3水准仪和钟光DS3—DZ水准仪。 首先根据具体情况对业主提供的6个控制点 02# A=2946.0192/B=6069.0183 H=8.2930 04# A=3119.0377/B=5855.0228 H=8.3157 HX04#A=3070.3862/B=6044.9025 010# A=3393.4176/B=5322.0251 011#A=3540.5771/B=5443.4149 012# A=3576.5792/B=5580.4284进行了平面位置校核和高程校核。 实测三角形04—010—012: 测回法测∠010—04—012=31o47′25.28″(6个测回),理论值∠010

—04—012=31o47′27.54″。 全站仪测距D04—010=599.496m,理论值D04—010=599.476m。 D04—012=533.633m,理论值D04—012=533.633m。 符合规范要求。详见附件。 012:A=3576.5792 B=5580.4284 010:A=3393.4176 B=5322.0251 04:A=3119.0377 B=5855.0228 图一 复核02—04点的高程:采用三等水准测量的方法进行。实测高差0.0235m,理论值0.0227m。符合规范要求。详见附件。 平面控制网布设如图: A=2738.1647 1 B=6136.4934 010:A=3393.4176 B=5322.0251 B=5649.612 基1 A=2738.1647 采用一级闭合导线,观测、计算和平差见附件。B=6150.0393 高程控制网布设:因业主提供的02#点(H=8.2930m,黄海高程)位

各种测量限差规范

各种测量限差规范

————————————————————————————————作者: ————————————————————————————————日期: ?

一、建筑变形测量 1建筑变形测量的等级及其精度要求 变形测量等级沉降观测位移观测 适用范围观测点测站高差 中误差(mm) 观测点坐标 中误差(mm) 特级≤0.05≤0.3 特高精度要求的特种精密工程和重要科研项目变形观测一级≤0.15≤1.0 高精度要求的大型建筑物和科研项目变形观测 二级≤0.50 ≤3.0 中等精度要求的建筑物和科研项目变形观测:重要建筑物主体倾斜观测、场地滑坡观测 三级≤1.50≤10.0低精度要求的建筑物变形观测:一般建筑物主体倾斜观测、场地滑坡观测 2 建筑变形水准观测的视线长度、前后视距差和视线高度(m) 等级视线长度前后视距差前后视距累积差视线高度特级≤10≤0.3 ≤0.5 ≥0.5 一级≤30≤0.7 ≤1.0≥0.3 二级≤50 ≤2.0≤3.0≥0.2 三级≤75≤5.0≤8.0 三丝能读数3建筑变形水准观测的限差(mm) 等级基辅分划 (黑红面) 读数之差 基辅分划 (黑红面)所 测高差之差 往返较差及 附合或环线 闭合差 单程双测站所测高 差 较差 检测已测 测段高差 之差 特级0.15 0.2 ≤0.1≤0.07≤0.15一级0.30.5 ≤0.3≤0.2≤0.45 二级0.5 0.7≤1.0≤0.7≤1.5 三级光学测微 法 1.0 1.5 ≤3.0 ≤2.0 ≤4.5 中丝读数 法 2.03.0 I角对于特级水准观测的仪器不得大于10″,对于一二级水准观测仪器不得大于15″,铟瓦水准尺、尺垫。 二、城市测量规范 1平面控制 光电测距导线的主要技术指标 等 级 城测 导线 城测平 均边长 工测 导线 工测平 均边长 测角中 误差" 测距 中误 城测导线 相对闭合 工测导线 相对闭合 测回数方位角 闭 J1 J2 DJ6

如何读懂测量仪器的精度指标

如何读懂测量仪器的精度指标 摘要:在精密测试测量行业,测量准确度(精度)是仪器本身的灵魂,是仪器最重要的指标之一,但不同的仪器其准确度有不同的表达方式,因此只有理解了仪器的精度指标后才能更好地指导我们进行测量。 在测试测量过程中,受测量仪器硬件本身、测量条件或测量方法的影响,测量得到的结果(测量值)与真实值之间有一定的差异,这个差异就是测量误差,测量误差可能包含与测量值成比例的误差,也可能包含与测量值无关的固定误差。通常测量仪器的精度指标会以这两种误差的组合方式给出,例如PA8000的精度指标如图1所示。 图1 PA8000精度指标 图1中的精度指标是以“±(%读数 + %量程)”的方式表示的,即读数精度+满量程精度表示法。顾名思义,读数精度就是仅与测量值成比例的误差,而满量程精度则是与测量值无关仅与量程有关的固定误差,即当量程确定后这个误差也就固定了。 电测量仪表的精度指标还有另外一种表达方式,介绍之前先回顾一下误差的两种表示方式:绝对误差和相对误差。绝对误差是测量值与标准值(真实值)之差;相对误差是绝对误差与标准值(真实值)的比值。前面所说的读数精度就是用相对误差来表示,而满量程精度就是用绝对误差来表示的。相对误差能直观地表示测量的质量,而绝对误差则不如相对误差来的直观。 电测量仪器仪表精度指标的另外一种表达方式就是准确度等级。电测量仪器仪表在规定条件下工作时,绝对误差的最大值与仪表量程的比值就叫做仪表的准确度等级,比如某电流互感器的准确度等级如图2所示。 图2 电流互感器指标参数 在《GB/T 13283-2008工业过程测量和控制用检测仪表和显示仪表精确度等级》中对我

控制测量技术要求

4.5 控制测量 4.5.1 控制测量的基本要求 充分利用济南市连续运行卫星定位服务系统(JNCORS系统)和已有的各等级平面和高程控制点,采用GPS静态定位、网络RTK技术、图根导线(网)等方式进行地籍图根控制测量。 4.5.2 地籍控制测量 4.5.2.1 图根点布设要求 图根点在基本控制点或JNCORS系统的基础上加密,以直接满足城镇土地调查的需要、便于利用为原则,点位一般布设在道路、街巷的交叉口及其它利于采集界址点和碎部点的地方。图根点的密度应满足《城镇地籍调查规程》的要求,一般地区8-10个点/每幅图,复杂地区不低于15个点/每幅图,建筑物密集地区应适当加密,还应保证图根点相对于起算点的点位中误差不得超过5cm。 4.5.2.2 图根点标志 图根点设临时标志,当测区内基本控制点密度较疏时,应适当埋设固定标石。埋石确有困难时,可在沥青或水泥地面上打(嵌)入刻有十字的钢桩代替标石,在四周凿刻深度为1cm、边长为15cm×15cm的方框,涂以红漆,内写点号。每幅1:500图内埋石(钢桩)点数量不得少于4点。 4.5.2.3 图根点编号 图根点编号共5位。第一位为标段的英文字母代码,13标段为M,点号均自0001开始编排,如 A0001、A0002,C0003、D0008等。 4.5.2.4 采用JNCORS系统进行图根测量 采用JNCORS系统进行图根控制测量时,应使用三脚架模式,不得采用单杆模式。每点均应独立测量两次,每次不少于15个历元,两次测量的平面坐标之差不应大于2cm,高程之差不应大于3cm,取两次测量的中数作为最后成果。 4.5.2.5 静态GPS测量 采用静态GPS方式加密控制点时,标志选设、观测和数据处理等应严格按照相关规范要求进行。 4.5.2.6 图根导线测量 图根导线测量依据各等级基本平面控制点,可分为两级进行布设,布设形式为附(闭)合导线或结点网。 图根导线测量的主要技术要求

测量精度指标

学习情境5 测量误差分析与数据处理 项目载体:北京工业职业技术学院地形图测绘数据分析与处理教学项目设计: 1、项目分析:项目来源:根据北京工业职业技术学院国家级示范院校建设工作的要求,为了提高学院管理的水平,已经测绘了该院综合地形图;根据实际工作的需要,测绘地形图的比例尺为1:500。 北京工业职业技术学院位于北京市石景山区五里坨地区,占地面积400余亩,建筑面积约20万平方米,大部分地区的自然地貌已经被建筑物和绿化带所覆盖,植被、建筑物相对比较密集,测区内的图根控制点大多数完好可以利用。 地形图的图式采用国家测绘局统一编制的《1:500、1:1000、1:2000大比例尺地形图图式》。 在地形图测绘过程中,获得了大量的外业观测数据,由于测量观测成果中测量误差的存在,使得测量数据之间存在着诸多矛盾,为了消除这些矛盾获得最终的测量成果,冰瓶定期精度,就必须要按照要求进行测量数据的分析与处理。。 2、任务分解:根据根据实际工作的需要,测量数据分析与处理工作任务可以分解为:评定精度的指标、中误差传播定律、盈盈误差传播定律处理测量观测资料、坐标方位角、根据地形图绘制断面图、量算制定区域的面积、根据指定坡度确定最短路线等 3、各环节功能:评定精度的指标是进行测量数据分析与处理时,进行精度评定的重要环节,是衡量测量成果精度高低的指标和手段;中误差传播定律是分析测量内业计算成果的误差分析的重要手段和基本技能;测量数据分析与处理是测量内业工作的核心内容,是测量工作者的重要的专业技能之一。 4、作业方案:根据实际工作的需要,确定衡量精度的指标,运用中误差传播定律分析解决测量工作中的数据分析问题;运用误差理论对测量过程中获得的高程测量数据、平面控制测量数据进行综合分析与处理,获得合格的测量内业成果并进行精度评定。 5、教学组织:本学习情景的教学为14学时,分为3个相对独立又紧密联系的子学习情境,教学过程中以作业组为单位,以各作业组的外业观测成果数据分

控制测量规范与要求

第一部分茅荆坝(蒙冀界)至承德公路(第15标)控制网复测技术设计书 一、编制依据及技术标准 (1)、《大广高速公路蒙冀界至承德高速公路GPS控制网成果表》(设计院交给的)(2)、《全球定位系统(GPS)铁路测量规程》(TB10054) (3)、《工程测量规范》(GB50026-2007) (4)、《国家三四等水准测量规范》(GB/T12898-2009) (5)、《公路勘测规范》(JTGC10-2007) 二、平面GPS、四等水准加密方法与精度要求 根据《全球定位系统(GPS)铁路测量规程》平面控制测量等级规定和本项目实际情况,隧道段控制网采用GPS观测方法时,精度按四等网技术要求施测。为确保线路衔接的平顺性,加密点必须联测其相邻的GPS平面控制点。 平面加密控制网的施测精度控制按:加密GPS网最弱边相对中误差小于1/70000,基线边方向中误差不大于1.7″的要求进行。 2.1具体精度控制标准 2.2 四等水准施测技术要求 四等水准测量的主要技术标准见表6.3-3. 注:表中L为往返测段、符合或环线的水准路线长度,单位Km。 三、平面控制网复测实施计划 3.1 GPS复测组网实施

为保证线路上所有控制点成果具有较高的可靠性和尽量保证点位精度的均匀性,平面控制网复测采用4太GPS接收机同时作业的观测模式,以此提高GPS观测网形的图形强度。GPS 网各时段全部以边连接方式构网,形成由大地四边形组成的带状网。 3.2 采用GPS测量方法的平面复测 遵循与设计单位建网时相同的构网原则,本次GPS方法的控制网复测组网以大地四边形为基本构网图形组成带状网,采用边联式构网。实际外业测量必须遵循基线组网设计所确定的作业模式,并在接收机或控制器上配置GPS外业观测参数,参与作业的接收机所配制的参数应相同。 每天出工之前,必须检查电池容量是否满足作业要求,数据存储设备应有足够的存储空间,仪器及其附件必须齐全。 天线安置应符合下列要求: —在开始GPS外业观测前,必须确认天线安置基座的对中器合格,天线安置基座的对中精度要求为1mm。天线应利用脚架和天线安置基座直接实现队中—在开始GPS外业观测前,必须确认天线安置基座的管水准器合格,天线安置基座必须严格整平。脚架必须稳定、牢固安置。 —如天线有指北定向标志,则应借助指北针或罗盘,在开始观测和观测过程中都使接收机天线指北标志指向正北方向。 —雷雨季节架设天线时,要注意防雷击。雷雨过境时,应立即停止观测,并卸下天线。GPS测量需要遵循的操作要点有: —观测组必须严格遵守调度命令,按规定时间开始同步观测。当没按计划到达点位时,应及时通知其他组,并经观测计划编制者同意后对观测时段作必要调整,观测者不得擅自更改观测计划。 —经检查,接收机的电源电缆、天线电缆等各项连接正确,接收机设置状态和工作状态正常后,方能启动接收机开始测量。 —每时段观测前后分别量取天线高,天线高丈量必须按接收机使用规定,从天线相位中心标志处丈量至地面点位标志,丈量的天线高是垂直高还是斜高必须在记录手薄上清楚的表明,且无论是垂直高还是斜高,直接丈量距离的误差在前后2次丈量中必须小于等于1mm,方取两次直接距离丈量的平均值作最终距离丈量的结果。 —不同时段的观测间隔期间必须重新进行天线安置基座的整平、对中操作,并重新丈量仪高。 —接收机开始记录数据后,应及时将观测站名、测站号、时段号、天线高等信息完整地记录在观测手薄上。同时严密注意仪器的警告信息,及时汇报和处理各种特殊情况。

测量常用规范、规程主要技术要求、规定汇总

常用规范、规程主要技术规定、要求汇总 一、城市测量规范(CJJ 8——99) 1. 城市平面控制测量 1.1 坐标系统:1980西安坐标系或1954北京坐标系或城市坐标系。 1.2 城市平面控制网的等级划分: GPS网、三角网和边角结合网:依次为二、三、四等和一、二级; 导线网:依次为三、四等和一、二、三级。 说明: ⑴.导线网中结点与高级点间或结点与结点间的导线长度不应大于附合导线规定长度的 0.7倍;

⑵.当附合导线长度短于规定长度的1/3时,导线全长的绝对闭合差不应大于13cm; ⑶.光电测距导线的总长和平均边长可放长至1.5倍,但其绝对闭合差不应大于26cm。当 附合导线的边数超过12条时,其测角精度应提高一个等级; ⑷.导线相邻边长之比不宜超过1:3。 1.6 三角测量水平角观测的技术要求 0d 1.7 导线测量水平角观测的技术要求 注:n为测站数。 ⑴.凡超出以上规定限差的结果,均应进行重测。重测应在基本测回完成后并对成果综

合分析后再进行。

⑵.2C较差或各测回较差超限时,应重测超限方向并联测零方向。因测回较差超限重测 时,除明显孤值外,原则上应重测观测结果中最大和最小值的测回。 ⑶.零方向的2C较差或下半测回的归零差超限,该测回应重测。方向观测法一测回中, 重测方向数超过方向总数的1/3时(包括观测三个方向有一个方向重测),该测回应重测。 ⑷.采用方向观测法时,每站基本测回重测的方向测回数,不应超过全部方向测回总数 的1/3,否则整站重测。 ⑸.基本测回成果和重测成果,应载入记簿。重测与基本测回结果不取中数,每一测回 只取一个符合限差的结果。 ⑹.因三角形闭合差、极条件、基线条件、方位角条件自由项超限而重测时,应进行认 真分析择取有关测站整站重测。 1.10 光电测距各项较差的限值 2. (a+b·D)为仪器标称精度。 2. 城市高程控制测量 2.1 高程系统:1985国家高程基准或沿用1956年黄海高程系统。 2.2 城市高程控制测量方法与等级:水准测量和三角高程测量。 水准测量等级依次分为二、三、四等,首级高程控制不 应低于三等水准。 光电测距三角高程测量可代替四等水准测量。

关于城市测量中的测量精度分析

关于城市测量中的测量精度分析 城市测量是以城市总体规划为基础而进行的一项测量活动,它涉及的内容是十分丰富的,包括建设用地界址线、市政规划测量及城市道路规划测量等,这项工作的目标是促进城市建设的发展,基于其自身的特点,测量精度的要求是很高的,一旦出现误差,城市规划就可能出现不合理,最终影响到整个城市的发展。 标签:城市测量;测量精度;分析 随着计算机技术的不断发展,其在城市测量中的运用也越来越多,城市测量的高精度要求测量必须在统一的地面坐标系统控制下进行,它通常采用人工测量与计算机分析相结合的作业方法,其与周边测量工程的衔接度反映出实际操作的可行性,文章结合城市测量的实践经验,对测量精度进行了分析与思考。 1 城市测量精度分析 当前城市规划测量的控制主要采用在城市一、二级导线上分别设三级导线或导线网的方法,这种方法通过对导线中误差的分析,结合测边、测角、起始数据的影响,计算出导线的误差,其采用的公式是十分复杂的,公式中包含导线中点、导线横向误差以及导线纵向误差等数据,以上误差的分配都采用的是等影响原则,各项误差的分配值为+2.5cm或-2.5cm,最后,利用导线中点与端点各误差的比例关系,计算出导线端点各误差值的规定值,该计算公式中主要包含m、n、L三个数据,m代表偶然测距误差;n表示导线边数,L表示导线总长。 三级导线的平均边长为120cm,导线长度为1.5km,以三级导线测量精度要求估算导线误差如下表所示,其中,导线误差单位为mm,导线长度单位为km。 从以上表可以看出,随着导线长度的增加,导线测角误差对点位误差的影响越来越大,测站数对点位误差也有一定的影响,测边误差包括系统误差和偶然误差,大气折光误差和照准误差属于偶然误差,三级导线作为一种短导线,其系统误差与测边中偶然误差相比较小,所以,偶然误差是导线点位误差的主要影响因素,偶然误差会随着导线长度的增加而减少,随着导线边数的增加而增加,系统误差对点位的影响很小,它随导线长度的增加而增加,导线长度为1.5km时,系统误差只有±3毫米。在短导线中,导线点位误差受测邊误差的影响较大,当导线测站数为12站,长度为1.5千米时,各项误差对导线的影响大致相同,均在±2.5毫米左右,其中,最弱点的中误差为±5毫米,这个误差满足导线中误差精度的要求,测角误差会随着导线长度的增加而增大,此外,测站数的增加对最弱点导线误差的影响也会增大。 2 城市测量的现状 目前,GPS技术已在城市测量中得到有效运用,但大多数城市依然采用的是导线网的常规测量方法,据统计,在全年1217条导线中,三级导线为485条,

施工控制测量规范

2 施工控制测量 (Ⅰ)场区平面控制: 第7.2.1条场区的平面控制网,可根据场区地形条件和建筑物、构筑物的布置情况,布设成建筑方格网、导线网、三角网或三边网。 第7.2.2条场区的平面控制网,应根据等级控制点进行定位、定向和起算。 第7.2.3条场区平面控制网的等级和精度,应符合下列规定: 一、建筑场地大于1K㎡或重要工业区,宜建立相当于一级导线精度的平面控制网; 二、建筑场地小于1K㎡或一般性建筑区,可根据需要建立相当于二、三级导线精度的平面控制网; 三、当原有控制网作为场区控制网时,应进行复测检查。 第7.2.4条建筑方格网的主要技术要求,应符合表7.2.4的规定。 建筑方格网的主要技术要求表7.2.4 第7.2.5条建筑方格网的首级控制,可采用轴线法或布网法,其施测的主要技术要求,应符合下列规定: 一、轴线法。 1轴线宜位于场地的中央,与主要建筑物平行;长轴线上的定位点,不得少于3个;轴线点的点位中误差,不应大于5cm;

2放样后的主轴线点位,应进行角度观测,检查直线度;测定交角的测角中误差,不应超过2.5″;直线度的限差,应在180°±5″以内;3轴交点,应在长轴线上丈量全长后确定; 4短轴线,应根据长轴线定向后测定,其测量精度应与长轴线相同,交角的限差应在90°±5″以内。 二、布网法,宜增测对角线的三边网,其测量精度,不应低于本规范第 2.1.8条中四等三边网的规定。 第7.2.6条标桩的埋设深度,应根据地冻线和场地平整的设计标高确定。 第7.2.7条建筑方格网的测量,应符合下列规定: 一、角度观测可采用方向观测法,其主要技术要求,应符合表7.2.7的规定; 角度观测的主要技术要求表7.2.7-1

测量规范1

矿山测量工作 矿山测量是指矿山建设时期和生产时期全部测量工作,主要任务包括: 1、建立足够精度的矿区基本控制网及建立满足井下生产所需的测量控制系统。 (1)测绘矿区地形图及矿界。 (2)进行地上、地下各种工程的施工、竣工测量。 (3)绘制反映矿山生产现状的各种采掘工程图和各种矿山专用图。 (4)验收采掘、支护工程量和质量。 (5)开展岩层地表移动及建(构)筑物变形的观测研究。 2、矿区地表平面、高程控制测量 (1)测设四等控制网,高程按四等水准测量要求,平均边长1 Km,控制面积约10 Km2 ,控制网完全覆盖采矿权范围,控制网采用1954年北京坐标系,高程为1956年黄海高程系,控制网为3°带正形投影,边长投影至矿区平均高程面1000 m,在2009年以后,确定矿区四等控制点与1980年西安坐标系、1985国家高程基准转换关系。 (2)矿区地表各项测量工作在四等控制网点上进行,四等控制点无法到达时,在四等控制网内采用全站仪测设5″级闭、附合导线,导线主要技术要求及规定见《有色金属生产技术规程》。

(3) 5″级导线点高程可采用三角高程,采用全站仪对向观测导线边传递;高程精度要求高时,可采用四等水准测量要求传递。 (4)矿区地表GPS静态定位测量按C级要求,执行《全球定位系统(GPS)测量规范》(GB/T18314-2001),GPS测量基本技术要求按此规范中10.3.1表7,数据处理按规范中12要求。 3、矿区矿界测量及矿区地形测绘 (1)矿区矿界具有法律的采矿权属功能,矿界测量工作、采矿权范围,按要求勘测并埋设了标志。 (2)矿区地形图基本比例尺为1:1000,更小比例尺通过软件缩小绘制。 (3)地形图图根点采用30″级闭、附合导线全站仪测设,高程采用三角高程闭、附合路线,各边均应对向观测。测图工作开始前须进行仪器、工具等各项常规检校工作。 (4)采用全站仪测量1:1000地形图地形点间距20-40米,碎部点视距最大长度< 250米。 (5)矿山测绘和编绘各种比例尺地形图,符号、注记、整饰等测绘要求,按国家颁发的国家标准《1:500 1:1000 1:2000地形图图式》(GB/T 7929-1995)的规定执行。 4、近井点在矿区四等控制网的基础上建立,精度按地表5″导线要求施测,为了满足井巷贯通测量的精度要求,多井口

相关主题
文本预览
相关文档 最新文档