当前位置:文档之家› 抗氧化作用的机制

抗氧化作用的机制

抗氧化作用的机制
抗氧化作用的机制

一:碳氢化合物氧化和抗氧化作用的机制

1.1润滑油的自身氧化

总所周知,碳氢化合物通过自动氧化过程氧化,这个过程形成酸和油的稠化。更严重的情况下,油泥和油漆类可能形成。润滑效果下降,降低燃油经济性,和增加摩擦,抗氧剂是很重要的添加剂来最小化氧化的影响,机理分析如下:

1.1.1

油的自身氧化

自由基机理[179-181],包括链引发,增长,分支,终止。

1)链引发

链引发的特征是通过烃类化合的C-H、C-C的断裂产生烷基自由基,这个过程一般是在烃类暴漏在氧气氛围、则加热状态下、紫外光、机械剪应力等条件下【182】,这种均裂的难易程度有以下规律:C-H的键能和自由基的稳定性,183.苯基﹤伯﹤仲﹤叔﹤烯丙基﹤苄基。这样的话烃类化合物如果含有叔氢和氢在碳碳双键的α位时特别容易受到氧的影响。这个过程在室温下一般比较慢,但是通过加热或则金属催化下会大大加快(铜、铁、镍、钒、锰、钴等)。

2)链增长:

增长过程包括一个不可逆的烷基自由基与氧气反应生成烷基过氧自由基。这个反应很快,速率与自由基上的取代基有密切的关系【179】。一旦形成,过氧自由基可以随机与其他烃反应生成氢过氧化物(ROOH)和新的烷基自由基,基于以上机理,一个烷基自由基的形成,大量的烃类化合物会被氧化为氢过氧化物。

3)链分支:

A:自由基的形成

B:醛酮的形成:

链分支过程开始于氢过氧化物断裂为烷氧基自己基和羟基自由基。这个反应需要很高的活化能一般是温度大于150℃.金属则催化这个过程。结果就是自由基可能经历以下过程a:烷氧基自由基从烃吸收氢变为醇,而烃生成新的烷基自由基b:羟基自由基通过吸收烃上的氢变成水和新的烷基自由基。c:仲烷氧基自由基可以通过分解变为醛和和新的烷基自由基。d:叔烷氧基自由基则降解为酮和新的烷基自由基。

以上过程对于加快润滑油的氧化过程是非常重要的,不但生成大量的烷基自由基来加速氧化过程,而且生成很多小分子的醛和酮,这个物质无疑会降低润滑油的粘度、增加润滑油的挥发性和极性。在高温条件下醛和酮则会被继续氧化为酸和其他大分子化合物使油变得粘稠,从而形成油泥和varnish deposits。

4)链终止:

在氧化过程中,大分子碳氢化合物的形成会增加油的粘度。当润滑油的粘度增加到影响氧气在有油中的传递的时候,链终止过程就开始了,比如:两个烷基自由基可以反应生成新的烃类化合物。烷基自由基可以与烷基过氧化物自由基反应生成新的过氧化物。当然这种过氧化物不稳定,容易形成更多的烷氧基自由基。在这个过程中生成的羰基化合物和醇类化合物也可能是含有α氢的过氧自由基反应所得:

1.1.2金属催化降解

金属催化主要是通过氧化还原过程作用在链分支阶段催化氢过氧化物降解,【184】。可以显著减低氧化反应的活化能,使氧化反应能够在低温下进行。

初始阶段:

增长阶段:

1.1.3温度对润滑油的影响:

之前谈论了润滑油在低温和高温的自氧化降解过程。低温过程形成了过氧化物、醇、醛、酮和水【185、185】。

在高于120℃时,过氧化物和氢过氧化物的断裂成为主要的反应,直接导致羰基化合物被氧化为酸类,润滑油的酸度增加。随着氧化的进行,酸或碱催化的羟醛缩合反应发生。如下图:【187】

首先,α,β-不饱和醛或则酮生成,然后生成大分子化合物。这些化合物会增加油的粘度并进一步结合成为在油中无法溶解的聚合物,表现为油泥或则

热金属表面的油漆沉积物。润滑油粘度增加和沉积物被证明是机械损害的重要因素。【188】。

1.1.4 基础油组成对氧化稳定性的影响

矿物质油由原油经过加工得到的含有直链的、支链、环烷烃、芳香族环烃类,分子中的碳原子数一般都为15个或则更多【189】。根据加工技术的不同还会含有硫、氮、氧等元素。根据美国石油协会的分类,矿物油可以通过饱和烃含量、硫、粘度指数分类为Ⅰ,Ⅱ,Ⅲ,Ⅴ,

Ⅰ组占有全世界50%的比率,Ⅱ,Ⅲ组虽然刚刚起步,但是会越来越有竞争力,特别是在精致过的植物油成为新的Ⅱ,Ⅲ油类之后【190】。

总所周知,矿物油中的组成,包括:直链或支链烃、饱和烃、不饱和烃、但芳环烃、多芳环烃、以及氮、硫、氧和杂环等在油品氧化过程中起到重要的作用,人们也有很多深入的研究试图建立起基础油结构和氧化稳定性的关系【191-195】。但是由于油品的来源、测试方法、测试条件、人员因素,最终导致这些结论很难具有推广性,甚至发生前后矛盾的现象。总的来说,饱和烃的对氧化的稳定性超过不饱和烃;直链的烃因其化学组成的作用稳定于环烷烃和芳香烃类;单环的芳香烃优于双环和多环的芳香烃类【196】。芳香族烃类化合物易氧化的主要因素是非常活泼的苄基氢原子【193】。有人统计给予500N的氢裂解能时,矿物油中芳香烃含量从质量分数1%到8.5%的话,将会增加一倍的氧化量。硫化合物是早期的使用的抗氧剂之一,实验室统计在165℃,硫化物含量低于0.03%的白矿油和PAO会有很好的抵抗氧化的效果【145】。人们发现在氢化裂解石油过程中降低芳香烃含量,增加硫含量>80ppm而不是传统的小于20ppm将会有更好的抗氧化性能【192】。人们推测硫化物通过生成强酸催化过氧化物通过非自由基过程降解,或则通过酸催化重排烷基氢过氧化物形成酚等抗氧剂【145‘179】。相对于硫,含氮化合物尤其是含氮杂环化合物即使在很低浓度下依然会加速氧化过程【197】。在高精致的Ⅱ,Ⅲ组基础油中,杂环化合物被认为已经去除干净,芳环化合物和含硫化合物成为影响润滑油稳定性的主要因素【192、193】。显示人们可以通过条件含硫和芳烃的组成和浓度来影响油品的氧化稳定性。

1.1.5氧化抑制

这些测试在于搞清楚几个可能的办法来控制氧化过程。阻碍能量的供给是一个途径。但是这是唯一有效的途径在低剪切力和低温条件下。一种更有效的办法是

通过捕捉催化剂杂质和破坏烷基自由基、烷氧基自由基和氢过氧化物来控制氧化。以上过程可以分别通过加入金属减活剂或则适当的烷基自由基、烷氧基自由基清除剂来达到目的。

自由基清除剂被认为是主要的抗氧剂。它们通过贡献氢原子来终止烷基或则烷氧基自由基,来打断自氧化过程的链式反应过程。一种化合物要成为好的抗氧剂需要具备给过氧化物或过氧自由基提供氢原子的能力强于烃类化合物【198】。失掉氢原子后,抗氧剂变成稳定的自由基,烷基自由基变成烷烃,烷基过氧自由基变成烷基氢过氧化物,受阻酚和芳胺类化合物是2类主要的抗氧化剂。

分解过氧化物的抗氧剂一般被称为辅助抗氧剂【180】。他们的功能主要是在链式反应中将烷基氢过氧化物转化为醇类。它们通常是含有机磷、有机硫或则同时含有硫和磷的化合物。如ZDDP就是这些化合物。

润滑油中含有很多过渡金属,所以金属减活剂被引入来减少金属的催化作用。由金属减活剂作用的机理,金属减活剂主要分成2大类:螯合剂【180】、表面钝化剂【199】。表面钝化剂主要是通过附着在金属表面形成钝化膜,从而阻止金属和烃类的相互作用。同时他们能够通过限制腐蚀物与金属表面的接触来减少金属的腐蚀。螯合剂则是分散在润滑油中通过捕捉金属离子形成无活性或则低活性的复合体来达到目的。不管是那种机理的金属减活剂,都能有效降低抗氧化剂作用中的金属催化问题。如下表所示常用商业化金属减活剂

1.1.6主要抗氧剂的抗氧机理

1)受阻酚

一个典型的例子就是3,5-二叔丁基-4-甲基苯酚(BHT)下图比较了烷基自由基与氧气和BHT的反应竞争能力

烷基自由基与氧气反应速率k2远远大于烷基自由基与受阻酚的反应速率k1【179】.这样的话,如果供给充足氧气的情况下,烷基自由基与受阻酚的反应会更低。但是随着更多的烷基自由基转化为烷基过氧自由基,BHT开始贡献氢给它们,如下图:

在这个过程中,烷基过氧化物转化为氢过氧化物,同时受阻酚转化为酚氧自由基,而且酚氧自由基通过位阻和共轭作用更加稳定。由邻位的两个叔丁基带来的位阻作用阻碍了酚氧自由基继续与烃类反应。这种共轭的环己二烯酮自由基您能够进一步与仲烷基过氧自由基结合形成烷基过氧自由基,一般温度不超过120℃【200】。

如果没有共轭转化的话,以上反应仍然是受阻酚一个重要的可能途径,如两分子酚氧自由基之间互相反应生成BHT和甲基环己二烯酮。

在高温条件下,之前生成的烷基环己二烯酮过氧自由基不再那么稳定,如下

图:

他们会自身降解为一个烷氧基自由基和一个烷基自由基以及一个2,6-二叔丁基-1,4-二苯醌。就像预期的一样,高温条件下生成的自由基将会恶化BHT在抗氧作用。

2)芳胺

芳胺是一类特别有效的主要抗氧剂,比如烷基二苯胺化合物。他的反应开始于烷基过氧自由基和烷氧基自由基夺取芳胺上的氢原子。如下图:

由于烷氧基自由基与氧气的快速反应,结果就是烷基过氧自由基会有很高的浓度,接着与烷基二苯胺供体进行反应。根据温度的不同、氧化程度(烷氧基自由基和烷基自由基的比例)、烷基二苯胺的结构,胺的反应会有多个可能的反应途径【201】。

下图反应了低于120℃时的阻止氧化机理:【179,202】

这个反应开始于胺基自由基进攻第二个烷基过氧自由基形成氮氧自由基和烷氧自由基。氮氧自由基通过三种可能的共轭结构得到稳定【182,202】。如下图:

接着,第三个烷氧基自由基与胺氧基自由基反应形成氮过氧化物复合物,这种复合物会释放出醚类分子,自身则形成氮氧基环己二烯酮。紧接着,第四个烷氧基自由基与氮氧基环己二烯酮反应生成氮氧基环己二烯酮过氧自由基,最终离解为1,4-苯醌和一个烷基亚硝基苯。所以一个在等当量的理论情况下,一个二苯胺具有低温条件下受阻酚两倍消除自由基能力。

在高温条件下(大于120℃时):

氮氧自由基很快会经历两种可能的反应途径,要么与仲烷基反应生成N-sec-alkoxy二苯胺【179,186,203】;或则叔烷基自由基反应生成N-羟基二苯胺。在前一种情况下,生成的烷氧基胺会很快热重排一个酮和最初的烷基二苯胺。在后一种情况下氮氧自由基会被再生成通过一个羟基二苯胺和一个烷基自由基的快速反应。这样,在高温条件下,一摩尔烷基二苯胺分子在氮氧自由基被破坏之前会消除很多自由基。有人报道了每摩尔烷基二苯胺可以消除12摩尔的自由基【186】。

1.1.7辅助型抗氧剂

1.1.7.1有机硫化物

有机硫化物通过氧化降解产物来清除氢过氧化物。机理如下图:

生成烷基硫砜类化合物。反应主要是通过硫化物与烷基氢过氧化物反应生成低活性的醇和亚砜来达到目的。首选的机理就是接下来的反应为:亚砜通过分子内β氢的转移形成次磺酸(RSOH)。次磺酸可以与氢过氧化物继续反应生成sulfur-oxy acids。在高温条件下,sulfininc acid(RSO2H)可以降解形成二氧化硫,二氧化硫是一种经典的路易斯酸,他通过形成三氧化硫和硫酸促进了氢过氧化物的分解。有人报道了一当量的二氧化硫可以催化破坏20000当量的异丙苯氢过氧化物【204】。更强的有机硫抗氧剂在特定情况下,有机硫-氧酸可以消除烷氧基自由基,从而具备主要抗氧剂的特性,如下图:

1.1.7.2有机磷化物

亚磷酸盐(酯)是一类主要的有机硫化合物辅助型抗氧化剂。亚磷酸盐(酯)消除氢过氧化物和过氧自由基通过以下反应。在这些反应中,亚磷酸盐(酯)被氧化成为相应的磷酸盐,同时氢过氧化物和过氧自由基分别被还原为低活性的醇或则烷氧基自由基。

带有特定苯氧取代基的亚磷酸盐(酯)类化合物也可做为过氧化物自由基和烷氧自由基的清除剂如图:

苯氧自由基可以通过共轭作用转化为之前讨论的环己二烯酮自由基,从而最终消除过氧自由基。归功于邻位的烷基取代基,这种亚磷酸盐(酯)对水解特别稳定,因此可以用在潮湿环境下的润滑油中。

1.1.8协同作用

协同作用描述的是两种或则多种抗氧剂在一起的效果要明显好于单独的抗氧剂。协同抗氧系统指的是在以下两种情况下:一单一的抗氧剂无法得到满意的结果,或则现在的方法因经济或环境的因素无法得到满意的结果。人们提出了三种类型的协同抗氧剂被在润滑油中。(a) homosynergism(同源协同?),(b)heterosynergism(杂化协同?),(c)autosynergism(自动协同?).

同源协同指的是2种抗氧剂属于同一个作用机理,他们产生一个单电子转移体系。比如一个经典的例子就是二苯胺与受阻酚的协同。烷基二苯胺在清除烷氧基自由基方面比受阻酚更加高效。如下图

胺很快转化为氨基自由基,氨基自由基不够稳定很快吸收受阻酚的氢原子,形成烷基胺【179,182】。因此受阻酚转化为酚氧自由基。以上的反应之所以能循环发生在于烷基二苯胺比受阻酚更强的反应活性以及酚氧自由基比胺基自由基更强的稳定性【201】。当受阻酚消耗光之后,芳胺类才开始消耗。这个反应因为产生了活性更强的胺,使整个过程的效率加强,抗氧剂能使用的时间也变得更长。

杂化协同指的是发生在完全不同机理但是互相加强的抗氧体系。这种协同作用一般出现在主抗氧剂和副抗氧剂同时存在的润滑体系中。主抗氧剂消除自由基,副抗氧剂则转化氢过氧化物为更加稳定地醇,从而降低了氢化氧化物的浓度。这样的话氧化过程中的链增长和链分支过程就被延缓或则阻止。典型的例子就是

芳胺抗氧剂与ZDDP的协同作用。

自动协同是第3种类型的协同,指的是两种不同的抗氧基团在同一个分子中。通常情况下,抗氧剂含有不同的抗氧基团,比如提供自由基清除和氢过氧化物消除功能。经典的例子为硫酚类抗氧剂和吩噻嗪类抗氧剂。

186:Jensen, R.K., S. Korcek, L.R. Mahoney, and M. Zinbo. Liquid–phase autoxidation of organic com-pounds at elevated temperatures. 1. The stirred l ow reactor technique and analysis of primary prod-ucts from n-hexadecane autoxidation at 120–180°C. Journal of the American Chemical Society , 101, 7574 –7584, 1979.

179:Rasberger, M. Oxidative degradation and stabilisation of mineral oil based lubricants, in Chemistry and Technology of Lubricants. R.M. Motier and S.T. Orszulik, eds., Blackie Academic & Professional, London, UK, 98–143, 1997.

200:Boozer, C.E., G.S. Hammond, C.E. Hamilton and J.N. Sen. Air oxidation of hydrocarbons II. The stoichiometry and fate of inhibitors in benezene and chlorobenezene. Journal of the American Chemical Society , 77, 3233–3237, 1955.

201. Gatto, V.J., W.E. Moehle, T.W. Cobb, and E.R. Schneller. Oxidation fundamentals and its application to turbine oil testing. Presented at the ASTM Symposium on Oxidation and Testing of Turbine Oils, December 5, 2005, Norfolk, VA.

202. Berger, H., T.A.B. Bolsman, and D.M. Brower. Catalytic inhibition of hydrocarbons autoxidation by secondary amines and nitroxides. In Developments in Polymer Stabilisation, 6. G. Scott, ed., Elsevier Applied Science Publishers, London, 1–27, 1983.

203. Jensen, R.K., S. Korcek, M. Zinbo, and J.L. Gerlock. Regeneration of amines in catalytic inhibition

oxidation. Journal of Organic Chemistry, 60, 5396–5400, 1995.

我突然有一种想法,你看下自由基的消耗循环图,我觉得你说的也许有道理,氧化诱导期长的可能是抗氧剂能够多次循环,消耗更多的烷基自由基,也就是说循环起来很顺,这个和位阻和氮氧自由基稳定性是否有关呢?你看下

油脂自动氧化的机制及其控制

第三节 油脂自动氧化的机制及其控制 油脂氧化是油脂及油基食品败坏的主要原因之一。 油脂在食品加工和贮藏期间, 因空气中的氧气、光照、微生物、酶等的作用,产生令人不愉快的气味,苦涩 味和一些有毒性的化合物,这些统称为酸败。但有时油脂的适度氧化,对于油 炸食品香气的形成是必需的。 油脂氧化的初级产物是氢过氧化物,其形成途径有自动氧化、光敏氧化和酶促 氧化三种。氢过氧化物不稳定,易进一步发生分解和聚合。 一、油脂氧化的类型 1、自动氧化 不饱和油脂和不饱和脂肪酸可被空气中的氧氧化,这种氧化称为自动氧化。氧 化产物进一步分解成低级脂肪酸、醛酮等恶臭物质,使油脂发生酸败。 其大致过程是不饱和油脂和脂肪酸先形成游离基,再经过氧化作用生产过氧化 物游离基,后者与另外的油脂或脂肪酸作用生成氢过氧化物和新的脂质游离基, 新的脂质游离基又可参与上述过程,如此循环形成连锁反应。示意如下: 02 RH 天然油脂 油脂游 过氧化物 氢过氧化物 或脂肪酸 离基 游离基 ____________ 油脂的自动氧化是油脂酸败的最主要的原因,它对于油脂和含油食品质量的控 制极为重要。 2、 油脂的光敏氧化 不饱和油脂和不饱和脂肪酸可因光而发生光敏氧化。其速度比自动氧化的速度 快得多(约高103倍)。油脂的光敏氧化中不形成初始游离基( R.),而是通过 直接加成,形成氢过氧化物。一个双键可产生两种氢过氧化物,生成的氢过氧 化物继续分解产 生醛、酮及低级脂肪酸等。有些次级过氧化物如 C5--C9的氢过 氧化烯醛有强毒性,可破坏一些酶的催化能力,危害性极大。 3、 酶促氧化 脂肪在酶参与下发生的氧化反应,称为酶促氧化。油脂在酶的作用下氧化产生 的中间产物也是一些氢过氧化物。 以上各种途径生成的氢过氧化物均不稳定,当体系中的浓度增至一定程度时, 就开始分解。可能发生的反应之一是氢过氧化物单分子分解为一个烷氧基和一 个羟基游离基,烷氧基游离基的 RH --------- ? R ------------- ? R00 ------ ? R00H + R 新生的脂 质游离基

肝损伤时的抗氧化防御机制

一、前言 肝脏是人体最大的实质性器官,执行大量的新陈代谢的功能,是药物和其他异物如杀虫剂主要的代谢器官。这些功能的实行需要线粒体中很多的有氧代谢来提供足够量的三磷酸腺苷(ATP)。然而,这种代谢过程可不断产生一些氧化活性物质(reactive oxygen species,ROS)。除此之外,药物的代谢和炎症时细胞的损伤能明显地增加细胞与器官氧化应激的负担。本篇重点讨论活性氧和过氧化硝酸盐的形成,介绍不同细胞和血管腔隙中抗氧化系统,并分析肝脏中过多的氧化应激所产生的不良后果。 二、活化氧和氮的中间产物 氧分子可以通过一个电子的转移生成超氧化物(O2-),过氧化氢(H2O2),羟自由基(OH.),然后可以生成水。超氧化物不稳定,可在超氧化物歧化酶的作用下快速生成过氧化氢和单价氧分子,以及另一个ROS。然而,在一氧化氮中,超氧化物易跟一氧化氮反映,生成过(氧化)亚硝酸盐。过(氧化)亚硝酸盐生成的比率取决于一氧化氮和超氧化物(一级动力学)的浓度,这个反应倾向于扩散控制。在生物体内,由于二氧化碳和碳酸氢根的普遍存在,过(氧化)亚硝酸盐根二氧化碳快速反应,生成反应中间体,这些中间体是可以高效的氧化和硝化的物质。除此之外,过(氧化)亚硝酸盐可以经过质子化生成过氧乙酸,过氧乙酸是很强的氧化剂。过氧化氢可以与过渡态金属发生氧化还原反应,生成羟基(芬顿反应)。然而,如果吞噬细胞释放髓过氧化物酶(myeloperoxidase,MPO),次氯酸就会产生,次氯酸也是一种强力氧化剂。除了一些被发现的活性中间体,一些次要的自由基也可以形成,如烷基、过氧自由基和烷氧自由基。一般而言,在反应中,次要的自由基反应活性低且有更多的选择性。在机体中,这些活性氧和氮的形成和浓度的稳定取决于很多因素,包括:前体的形成率,解毒反应,酸碱度和过渡金属的可利用性。 三、细胞内和血管中氧化剂的来源 1.线粒体 所有的肝细胞和脉管产生的主要的初始氧化活性物质就是超氧化物和过氧化氢。细胞内一种主要的连续的超氧化物形成的来源就是:线粒体中的电子传递链。每个细胞中约有2%的氧用来产生超氧化物。即使在生理条件下,还原型辅酶I脱氢酶(复合体1)和泛醌-细胞色素b复合体(复合体3)也能释放超氧化物。研究发现,在缓慢的安静状态下,每分钟呼吸四次,线粒体中超氧化物的形成最多,话句话说,当呼吸链中的组分主要处于简化形式时,超氧化物的形成最多。当线粒体受损时,线粒体中的超氧化物可以明显增加。当超氧化物从电子传递链中释放出来时,它可以和一氧化氮反应生成过(氧化)亚硝酸盐。据推测,线粒体中包含一氧化氮合成酶(NOS)。然而,是否真的存在一氧化氮合成酶

抗氧剂协同作用机理

抗氧剂的协同作用 聚合物稳定化助剂种类繁多,功能各异。但大量研究结果表明,不同类型,甚至同一类型、不同品种的抗氧剂之间都有可能存在协同或对抗作用。汽巴精化(Ciba—Geigy)公司开发的Irganox B系列复合型抗氧剂的研究表明,抗氧剂之间复配得当,不仅可以提高产品性能,增强抗氧效果,还可降低成本;但如果搭配不当,不但起不到抗氧作用,可能还会加速聚合物的老化。受阻酚类抗氧剂以其抗氧效果好、热稳定性高、低毒等诸多优点近年来倍受人们关注。但抗氧剂复配是否得当直接影响抗氧效果的好坏。因此,研究抗氧剂复配时的作用机理显得尤为重要。近年来,世界各大抗氧剂的生产厂商都在致力于研究开发复合型抗氧剂,而熟知各种抗氧剂之间的协同作用机理对抗氧剂新品种开发具有重要的指导 意义 1 受阻酚类抗氧剂的作用机理 聚合物材料在高温加工或使用过程中,由于氧原子的袭击会使其发生氧化降解。经过多年的研究发现,聚合物的A动氧化过程是一系列A由基反应过程。反应初期的主要产物是由氢过氧化物在适当条件下分解成活性自由基,该自由基又与大分子烃或氧反应生成新的自由基,这样周而复始地循环,使氧化反应按自由基链式历程进行。 在聚合物中添加抗氧剂,就是为了捕捉链反应阶段形成的自由基R.和R00 .,使它们不致引起有破坏作用的链式反应;抗氧剂还能够分解氢过氧化物RO0H,使其生成稳定的非活性产物。按作用机理,抗氧剂可分为主抗氧剂和辅助抗氧剂。主抗氧剂能够与自由基R.,ROO .反应,中断活性链的增长。辅助抗氧剂能够抑制、延缓引发过程中自由基的生成,分解氢过氧化物,钝化残存于聚合物中的金属离子[1]。 作为主抗氧剂的受阻酚类抗氧剂是一类在苯环上羟基(~OH)的一侧或两侧有取代基的化合物。由于一OH受到空间障碍,H原子容易从分子上脱落下来,与过氧化自由基(ROO .)、烷氧自由基(RO.)、羟自由基(.OH)等结合使之失去活性,从而使热氧老化的链反应终止,这种机理即为链终止供体机理[2]。 在聚合物老化过程中,如果可以有效地捕获过氧化自由基,就可以终止该氧化过程。但生成过氧化自由基的反应速率极快,所以在有氧气存在的条件下,自由基捕获剂便会失效。在受阻酚类抗氧剂存在的情况下,1个过氧化自由基(R00 7)将从聚合物(RH)上夺取1个质子,打断这一系列自由基反应,这是自动氧化的控制步骤。当加入受阻酚抗氧剂时,它比那些聚合物更易提供质子,即提供了一个更加有利的反应形成酚氧自由基,这使聚合物相对稳定,不会进一步发生氧化。 除此之外,受阻酚还可以进行一些捕捉碳自由基的反应。如上式的2,4,6一自由基可以生成二聚物,而这种二聚物又可与过氧化自由基反应使其失去活性,自身则变成稳定的醌分子[2]。由于每个受阻酚可以捕捉至少2个自由基,故其抗老化的效果较好。

抗氧化剂的作用机理研究进展

抗氧化剂的作用机理研究进展 摘要:食品抗氧化剂的作用比较复杂。BHA和BHT等酚型抗氧化剂可能与油脂氧化所产生的过氧化物结合,中断自动氧化反应链,阻止氧化。抗坏血酸、异抗坏血酸及其钠盐因其本身易被氧化,因而可保护食品免受氧化。另一些抗氧化剂可能抑制或破坏氧化酶的活性,借以防止氧化反应进行。研究食品抗氧化剂的作用机理并合理使用抗氧化剂不仅可延长食品的贮存期,给生产者、经销者带来良好的经济效益,也给消费者提供可靠的商品。 关键词:抗氧化剂作用机理自由基现状前景展望 食品的变质,除了受微生物的作用而发生腐败变质外,还会和空气中的氧气发生氧化反应。食品氧化不仅会使油脂或含油脂食品氧化酸败(哈败),还会引起食品发生退色、褐变、维生素破坏,从而使食品腐败变质,降低食品的质量和营养价值,氧化酸败严重时甚至产生有毒物质,危及人体健康。防止食品氧化变质,在食品的加工和储运环节中,除采取低温、避光、隔绝氧气以及充氮密封包装等物理的方法还可以配合使用一些安全性高、效果大的食品抗氧化剂以防止食品发生氧化变质。 1 食品抗氧化剂的定义 食品抗氧化剂是指防止或延缓食品氧化,提高食品稳定性和延长食品储藏期的食品添加剂。具有抗氧化作用的物质有很多,但可用于食品的抗氧化剂应具备以下条件:①具有优良的抗氧化效果; ②本身及分解产物都无毒无害;③稳定性好,与食品可以共存,对食品的感官性质(包括色、香、味等)没有影响;④使用方便,价格便宜。[1] 2 食品抗氧化剂的分类 目前,对食品抗氧化剂的分类,按来源可分为人工合成抗氧化剂和天然抗氧化剂(如茶多酚、植酸等)。按溶解性可分为油溶性、水活性和兼溶性三类。油溶性抗氧化剂有BHA、BHT等;水溶性抗氧化剂有维生素C、茶多酚等;兼溶性抗氧化剂有抗坏血酸棕榈酸酯等。按作用方式可分为自由基吸收剂、金属离子螯合剂、氧清除剂、过氧化物分解剂、酶抗氧化剂、紫外线吸收剂或单线态氧淬灭剂等。[2] 3 食品抗氧化剂的作用机理 由于抗氧化剂种类较多,抗氧化的作用机理也不尽相同,归纳起来,主要有以下几种: 一是抗氧化剂可以提供氢原子来阻断食品油脂自动氧化的连锁反应,从而防止食品氧化变质; 二是抗氧化剂自身被氧化,消耗食品内部和环境中的氧气从而使食品不被氧化; 三是抗氧化剂通过抑制氧化酶的活性来防止食品氧化变质。 四是将能催化及引起氧化反应的物质封闭,如络合能催化氧化反应的金属离子等。[3]

有关抗氧化能力分析

有关抗氧化能力分析 ORAC (Oxygen radical absorbance capacity) 即抗氧化能力指数,是目前抗氧化研究领域一个重要的评价方法。该方法以偶氮类化合物AAPH作为过氧自由基来源,以荧光素Fluorescence为荧光指示剂,维生素E水溶性类似物Trolox为定量标准,使用荧光微孔板分析仪进行分析。与其他抗氧化能力分析方法相比, ORAC方法具有诸多显著的优点。该方法自1993年建立以来,经过不断发展和完善,可以说ORAC方法是目前评价抗氧化物质的抗氧化活性的最为简单、准确、灵敏度高、应用范围广和最具影响力的抗氧化能力研究方法之一。目前,ORAC方法已成功应用于生物样品、植物或食品提取物和纯化合物等多种样品的体内外抗氧化能力分析。 科标检测,其团队通过多年的研究沉淀,通过模拟各种氧自由基在人体内的产生机制产生各种氧自由基,而这些自由基可破坏荧光探针的结构从而造成荧光信号的衰减。当具有抗氧化活性的样品加入到实验体系中时,可以不同程度的保护荧光探针不被氧自由基所损坏,因而通过检测荧光信号的不同,便可以计算出某种样品的抗氧化活性。在ORAC实验中,以水溶性维生素E(Trolox)为标准品,因此最终样品的抗氧化实验结果最终以每克或是每毫升样品含有多少Trolox当量的形式表示。通过ORAC5.0检测样品的抗氧化活性,为抗氧化食品、保健品、化妆品以及药品的研发提供了有效的检测手段。 ORAC(Oxgen Radical Absorbance Capacity)指氧自由基吸收能力,即测试食品药品中抗氧化物的含量的国际通用标准单位。ORAC的含量超高,抑制自由基的抗氧化能力就越强。 对于一个未知样品,ORAC化学方法测试出样品的理论抗氧化值,并测出对各种自由基作用的具体数值,以寻找研发方向。然后通过ORAC生物细胞方法测试其生物利用度(被人体细胞所吸收的值),以验证其真实的效果。最后进行动物临床或人体临床,证实样品(产品)的实际效果。通过这种循序渐进、符合逻辑的研发方案步骤,企业可以安全、有效的研发出符合预期的新产品,建立起一套扎实的数据支撑体系。ORAC已建立从化学层面、生物细胞层面、临床层面纵向立体的分析方法。 常见蔬菜或水果的ORAC: "ORAC-total"是指总抗过氧化自由基能力值;“ORAC-5.0”是指总抗自由基能力值; 芦荟: ORAC-total :2737 μmol TE/g ORAC-5.0 :135,647 μmol TE/g

冷蒿抗氧化防御系统对机械损伤的响应机制

目录 摘要 (Ⅰ) ABSTRACT (Ⅱ) 中英文缩略词表 (Ⅲ) 前言 (1) 第一章文献综述 (3) 1.1冷蒿研究现状 (4) 1.1.1冷蒿生物学特性 (4) 1.1.2冷蒿的生态效应 (4) 1.1.3冷蒿化感作用对其周围其他物种的影响 (5) 1.1.4放牧下冷蒿的响应机制 (5) 1.1.5冷蒿的抗性研究 (6) 1.2逆境与植物抗氧化保护酶系统 (6) 1.2.1逆境与活性氧的产生 (6) 1.2.2超氧化物歧化酶研究现状 (7) 1.2.3过氧化氢酶研究现状 (7) 1.2.4过氧化物酶研究现状 (7) 1.2.5抗坏血酸-谷胱甘肽循环研究现状 (8) 1.3逆境与植物生长相关物质 (9) 1.3.1逆境与蛋白质 (9) 1.3.2逆境与氨基酸 (9) 1.3.3逆境与叶绿素 (10) 1.3.4逆境与碳水化合物 (10) 第二章材料与方法 (13) 2.1采样地概况 (13) 2.2试验材料处理 (13) 2.3试验方法 (13) 2.3.1可溶性糖含量测定方法 (13) 2.3.2蛋白质含量测定方法 (14) 2.3.3叶绿素含量测定方法 (14) 2.3.4氨基酸含量测定方法 (15) 2.3.5淀粉含量测定方法 (15) 2.3.6ROS和丙二醛含量测定 (16) 2.3.7抗氧化酶活性测定 (17)

2.3.8AsA和GSH含量测定 (17) 2.3.9AsA-GSH循环相关酶活性测定 (18) 2.4数据处理 (18) 第三章不同程度机械损伤对冷蒿生长相关物质含量的影响 (19) 3.1结果与分析 (19) 3.1.1不同程度机械损伤对冷蒿葡萄糖含量的影响 (19) 3.1.2不同程度机械损伤对冷蒿蔗糖含量的影响 (20) 3.1.3不同程度机械损伤对冷蒿果糖含量的影响 (20) 3.1.4不同程度机械损伤对冷蒿淀粉含量的影响 (21) 3.1.5不同程度机械损伤对冷蒿蛋白质含量的影响 (22) 3.1.6不同程度机械损伤对冷蒿氨基酸含量的影响。 (22) 3.1.7不同程度机械损伤对冷蒿叶绿素含量的影响 (23) 3.2结论与讨论 (24) 第四章不同程度机械损伤对冷蒿抗氧化防御系统的影响 (27) 4.1结果分析 (27) 4.1.1不同程度机械损伤对冷蒿ROS和MDA含量影响 (27) 4.1.2不同程度机械损伤对冷蒿抗氧化酶活性的影响 (29) 4.1.3不同程度机械损伤对冷蒿AsA水平的影响 (29) 4.1.4不同程度机械损伤对冷蒿GSH水平的影响 (30) 4.1.5不同程度机械损伤对冷蒿AsA-GSH循环相关酶活性的影响 (30) 4.2结论与讨论 (31) 第五章冷蒿抗氧化防御系统对机械损伤的响应 (33) 5.1结果与分析 (33) 5.1.1机械损伤后冷蒿ROS和MDA含量的变化 (33) 5.1.2机械损伤后冷蒿抗氧化酶活性的变化 (34) 5.1.3机械损伤后冷蒿AsA和DHA水平的变化 (35) 5.1.4机械损伤后冷蒿GSH水平的变化 (35) 5.1.5机械损伤后冷蒿AsA-GSH循环相关酶活性的变化 (36) 5.2结论与讨论 (37) 第六章全文结论与展望 (41) 6.1全文结论 (41) 6.2展望 (39) 参考文献 (43) 个人简介 (48) 致谢 (49)

几种抗氧化酶的作用

一.超氧化物歧化酶(SOD): 超氧化物歧化酶,是一种新型酶制剂,是生物体重要的抗氧化酶,广泛分布于各种生物体,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体清除自由基的首要物质。SOD在生物体的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞。由于现代生活压力,环境污染,各种辐射和超量运动都会造成氧自由基大量形成;因此,生物抗氧化机制中SOD 的地位越来越重要! 超氧化物歧化酶(SOD)按其所含金属辅基不同可分为三种,第一种是含铜(Cu)锌(Zn)金属辅基的称(Cu.Zn—SOD),最为常见的一种酶,呈绿色,主要存在于机体细胞浆中;第二种是含锰(Mn)金属辅基的称(Mn—SOD),呈紫色,存在于真核细胞的线粒体和原核细胞;第三种是含铁(Fe)金属辅基的称(Fe—SOD),呈黄褐色,存在于原核细胞中。 SOD是一种含有金属元素的活性蛋白酶。超氧化物岐化酶(SOD)能催化如下的反应:O2-+H+→H2O2+O2,O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。SOD 是机体天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有害的活性氧,但体的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解

为完全无害的水。这样,三种酶便组成了一个完整的防氧化链条。 目前,人们认为自由基(也称游离基)与绝大部分疾病以及人体的衰老有关。所谓的自由基就是当机体进行代时,能夺去氧的一个电子,这样这个氧原子就变成自由基。自由基很不稳定,它要在身体组织细胞的分子中再夺取电子来使自己配对,当细胞分子推出新一个电子后,它也变成自由基,又要去抢夺细胞膜或细胞核分子中的电子,这样又称会产生新的自由基。如,超氧化物阴离子自由基、羟自由基、氢自由基和甲基自由基,等等。在细胞由于自由基非常活泼,化学反应性极强,参与一系列的连锁反应,能引起细胞生物膜上的脂质过氧化,破坏了膜的结构和功能。它能引起蛋白质变性和交联,使体的许多酶及激素失去生物活性,机体的免疫能力、神经反射能力、运动能力等系统活力降低,同时还能破坏核酸结构和导致整个机体代失常等,最终使机体发生病变。因此,自由基作为人体垃圾,能够促使某些疾病的发生和机体的衰老。虽然自由基会对机体产生诸多危害,但是在一般的条件下人体细胞也存在着清除自由基、抑制自由基反应的体系,它们有的属于抗氧化酶类,有的属于抗氧化剂。像SOD就是一种主要的抗氧化酶,能清除超氧化物自由基,在防御氧的毒性、抑制老年疾病以及预防衰老等方面起着重要作用。 SOD能专一地清除体有害的自由基,以解除自由基氧化体的某些组成成分而造成的机体损害。如氧中毒、急性炎症、水肿、自身免疫性疾病、辐射病等疾病都与活性氧的毒性有关。实验证明,SOD 能够清除自由基,因此可消除上述疾病的病因。此解毒反应过程是两

天然产物抗氧化机理的研究

上海大学 2010~2011学年冬季学期研究生课程考试小论文 课程名称:天然产物的研究与开发课程编号 121201903 论文题目 : 天然产物抗氧化机理的研究 研究生姓名 : 张义凯学号 : 10721718 论文评语 : 成绩 : 任课教师 : 评阅日期 : 天然产物抗氧化机理的研究 摘要 :在崇尚自然的要求下, 近二十年来天然的食品抗氧化剂有了较快的发展。目前已从单纯的作为油脂和含脂食品的抗氧化剂发展到作为体内氧自由基清除剂, 以达到保护组织, 抗病及延缓衰老的等生理作用。我国天然资源十分丰富,对天然产物的抗氧化性的深入研究, 特别是对黄酮、多酚、多糖等天然活性物质的研究表明, 天然产物大多具有抗氧化性, 而抗氧化性是众多生理功能的基础, 对天然产物抗氧化作用机理的研究将成为这一领域的研究热点。我们从清除自由基、抑制自由基的产生与激活机体抗氧化体系三个方面, 对天然产物抗氧化作用机理的研究进行了综述。 关键词 :抗氧化,作用机理,天然产物 Study on antioxidant mechanism of natural products Abstrcct : With the request of the respect for nature, natural food antioxidants has been rapid development in the past two decades. To achieve conservation organizations, such as disease resistance and physiological role in delaying aging, current research in this field from a simple food as fat and greasy food transfer to the development of antioxidants as scavengers of oxygen free radicals in vivo. Natural resources are extremely rich in our country, the scientist has conducted thorough research to the natural products oxidation, specially to flavones, polyphone, polysaccharide and so on. The research indicated that the natural products

认识体内重要的抗氧化物

认识体内重要的抗氧化物 当今社会,科学在不断发展,社会在不断进步,人们的生活水平在日益提高,可是也出现了许多疾病,如心脑血管病、糖尿病、肿瘤等慢性病的发病率不断增高,同时,还存在大量症状不明显的“亚健康”人群。人群健康现状警示我们:靠药物得不到长寿,换不到健康;健康重在保养,疾病重在预防。 医学研究表明,许多慢性病的发生和发展与营养代谢、机体氧化、机体抗氧化能力密切相关。人体在利用氧的过程中,会因各种内因和外因而产生各种活性氧和自由基。由于自由丛电子转移过程常与“氧”有关,故自由基电子转移发生反应的过程被称为”氧化”或“过度氧化”。由于“氧化”而产生的活性氧和自由基是一种因失去一个电子而成的不对称、不稳定的原子或分子,具有很大的能量,对机体极具侵略性,它会不断攻击正常细胞组织中的脂质、蛋白质、糖类和遗传物质DNA,企图夺取一个电子以求得到重新平衡,这就造成了脂质和糖类的氧化、蛋白质的变性、酶失活、DNA正常结构的切断等种种氧化损伤。据报道,由于机体氧化损伤而引起的疾病已超过100种,在我们的生活中,过氧化现象处处可见,例如:铁锅生锈,苹果去皮后很快变黄,食用油存放过久后产生异味。而我们身体上也存在可见或不可见的过度氧化现象,如:皮肤色素色斑的形成,血管内低密度脂蛋白(LDL)氧化引起动脉粥样硬化、心脑血管疾病,细胞遗传物质DNA氧化损伤、基因突变引起恶性肿瘤以及某些自身免疫性疾病、白内障、衰老等等,均可能是从氧化损伤开始而导致的后果。 人体内也有各种消除活性氧和自由基的抗氧化防御体系,维持体内“氧化与抗氧化”的平衡,但当体内抗氧化防御体系出现超负荷状态时,活性氧和自由基的形成与消除之间的平衡丧失,从而诱发各种组织损伤和疾病。例如,日常接触的一些物质(如腐败、霉变的食物、抗菌素、农药)、污染的空气、吸烟时产生的烟雾和焦油、阳光和电磁辐射,甚至运动、心理压力等都会激发活性氧和自由基的产生,引起机体的氧化损伤。因此,为了健康,人们应注意合理营养,经常摄入一些富含抗氧化营养素和植物化学物质的食物,以提高机体抗氧化能力,维护机体“氧化与抗氧化”的平衡。其中类胡萝卜素,维生素C和维生素E等是可从食物和营养补充剂中获取的重要抗氧化物。 类胡萝卜素 类胡萝卜素由植物合成,包括600多种化合物,如?—胡萝卜素、叶黄素、虾青素等,?—胡萝卜素是其中的典型代表类胡萝卜素以色素形式存在于自然界,约有50种在人和动物体内可转变成维生素A,发挥维生素A的生理作用,故有”维生素A原”之称。类胡萝卜素及其代谢产物有多种生物学功能,对人体健康有一定保健作用。 类胡萝卜素的生理和营养作用 抗氧化作用 类胡萝卜素的重要化学特征之一是猝灭单线态氧。单线态氧是极易转变为自由基的氧化物,能与细胞中的许多成分相互作用产生多种过氧化物而引发氧化损伤。而类胡萝卜素可与单线态氧相互作用,生成类胡萝卜素氧化物,它可以向周围的细胞溶液释放能量,从而消除细胞内强氧化剂的毒性。 类胡萝卜素能直接捕获自由基而阻断自由基的链式反应,因而防止自由基对蛋白质、脂质和DNA的氧化损伤,进而有效地预防多种疾病和癌症的发生,并具抗衰老和美容作用;研究显示,?—胡萝卜素是防止红细胞氧化老化的有效成分之一。随着?—胡萝卜素摄入量的增加,红细胞膜中?—胡萝卜素的含量也相应增加,而红细胞中过氧化脂质的含量相应降低,可帮助预防老年性痴呆患者红细胞膜的脂质过氧化。 免疫调节作用 人体免疫系统主要具抵御病原体的作用,主要由免疫细胞、免疫器官和免疫分子组成,

抗氧化功能评价方法

附件1: 抗氧化功能评价方法 试验项目、试验原则及结果判定 Items, Principles and Result Assessment 1 试验项目 1.1 动物实验 1.1.1 体重 1.1.2 脂质氧化产物:丙二醛或血清8-表氢氧异前列腺素(8-Isoprostane) 1.1.3 蛋白质氧化产物:蛋白质羰基 1.1.4 抗氧化酶:超氧化物歧化酶或谷胱甘肽过氧化物酶 1.1.5 抗氧化物质:还原性谷胱甘肽 1.2 人体试食试验 1.2.1 脂质氧化产物:丙二醛或血清8-表氢氧异前列腺素(8-Isoprostane) 1.2.2 超氧化物歧化酶 1.2.3 谷胱甘肽过氧化物酶 2 试验原则 2.1 动物实验和人体试食试验所列的指标均为必测项目。 2.2 脂质氧化产物指标中丙二醛和血清8-表氢氧异前列腺素任选其一进行指标测定,动物实验抗氧化酶指标中超氧化物歧化酶和谷胱甘肽过氧化物酶任选其一进行指标测定。 2.3 氧化损伤模型动物和老龄动物任选其一进行生化指标测定。 2.4 在进行人体试食试验时,应对受试样品的食用安全性作进一步的观察。 3 结果判定 3.1 动物实验:脂质氧化产物、蛋白质氧化产物、抗氧化酶、抗氧化物质四项指标中三项阳性,可判定该受试样品抗氧化功能动物实验结果阳性。 3.2 人体试食试验:脂质氧化产物、超氧化物歧化酶、谷胱甘肽过氧化物酶三项指标中二项阳性,且对机体健康无影响,可判定该受试样品具有抗氧化功能的作用。

抗氧化功能检验方法 Method for the Assessment of Antioxidative Function 1 动物实验 1.1 实验动物 选用10月龄以上老龄大鼠或8月龄以上老龄小鼠,也可用氧化损伤模型鼠。单一性别,小鼠每组10-15只,大鼠8-12只。 1.2 剂量分组及受试样品给予时间 实验设三个剂量组和一个溶剂对照组,以人体推荐量的10倍(小鼠)或5倍(大鼠)为其中的一个剂量组,另设两个剂量组,高剂量一般不超过30倍,必要时设阳性对照组、空白对照组。受试样品给予时间30天,必要时可延长至45天。 1.3 实验方法 1.3.1 老龄动物 选用10月龄以上大鼠或8月龄以上小鼠,按血中MDA水平分组,随机分为1个溶剂对照组和3个受试样品剂量组。3个剂量组给予不同浓度受试样品,对照组给予同体积溶剂,实验结束时处死动物测脂质氧化产物含量、蛋白质羰基含量、还原性谷胱甘肽含量、抗氧化酶活力。 1.3.2 D-半乳糖氧化损伤模型 1.3. 2.1原理 D-半乳糖供给过量,超常产生活性氧,打破了受控于遗传模式的活性氧产生与消除的平衡状态,引起过氧化效应。 1.3. 2.2造模方法 选25-30g健康成年小鼠,除空白对照组外,其余动物用D-半乳糖40mg-1.2g/kg BW 颈背部皮下注射或腹腔注射造模,注射量为0.1mL/10g,每日1次,连续造模6周,取血测MDA,按MDA水平分组。随机分为1个模型对照组和3个受试样品剂量组,3个剂量组经口给予不同浓度受试样品,模型对照组给予同体积溶剂,在给受试样品的同时,模型对照组和各剂量组继续给予相同剂量D-半乳糖颈背部皮下或腹腔注射,实验结束处死动物测脂质氧化产物含量、蛋白质羰基含量、还原性谷胱甘肽含量、抗氧化酶活力。 1.3.3 乙醇氧化损伤模型 1.3.3.1原理

体育运动与自由基及抗氧化剂.

体育运动与自由基及抗氧化剂 周迎松 (宁波大学体育学院315211 摘要 活性氧(ROS的产生是需氧生物生命的正常过程。在生理的条件下,这些有毒性的物质大部分会被抗氧化系统清除掉,这个系统主要有具有抗氧化作用的维生素、蛋白质、硫醇和抗氧化酶组成。由于体内的抗氧化系统储备相当有限,在紧张的体育训练会引起大量的氧消耗,从而产生大量的ROS对抗氧化系统进行考验。在一场急性的高强度的训练中,可以刺激抗氧化酶的活性。这被认为在氧化压力下细胞的自我防御体系。然而,长时间的高负荷的训练会引起体内组织维生素E减少与谷光甘肽(GSH与谷光甘肽过氧化物(GSSG比率的改变。缺少抗氧化剂的营养物质会出现阻碍抗氧化系统,增加训练引起氧化压力,破坏体内的组织。长时间训练似乎可以使体内抗氧化物酶的活性增加和体内的GSH含量的提高。最近研究表明,补充抗氧化营养物质对于长期训练的运动员是非常必要的。 关键词:自由基,抗氧化剂,训练,活性氧 Physical activity and free redicals and antioxidant Zhou ying-song (Physical department of Ningbo university 315211. Abstract Generation of reactive oxygen species (ROS is a normal process in the life of aerobic organis -ms. Under physiological conditions, these deleterious species are mostly removed by the cellul ar antioxidant systems, which include antioxidant vitamins, protein and non-protein thiols, and anti-oxidant enzymes. Since the antioxidant reserve capacity

抗氧化体内的评价方法

抗氧化体内的评价方法 张丽楠 天津科技大学生物工程学院,天津300457 摘要:抗氧化是抵抗集体氧化作用的过程,目前准确评价生物活性物质的抗氧化能力已经成了氧化与抗氧化研究领域的热点问题,为了更好地评价样品的抗氧化性,常用的评价方法分为体内和体外评价方法,本文主要介绍几种体内的评价方法。 关键词:抗氧化性;体内测定方法 Evaluation of the antioxidant in the body Zhanglinan Biological Engineering, Tianjin University of Science and Technology,Tianjin 300457 Abstract:Anti-oxidation is the process of collective resistance to oxidation, antioxidant capacity currently accurate evaluation of bioactive substances have become oxidized and antioxidant research in the field of hot issues, in order to better evaluate the antioxidant activity of the sample, the commonly used evaluation methods into in vivo and in vitro evaluation methods, this paper describes several methods evaluated in vivo. Key words:antioxidant activity:Determination of in vivo methods 抗氧化是抵抗集体氧化作用的过程,也是任何以低浓度存在就能有效抑制自由基的氧化反应的物质,其作用机理可以是直接作用在自由基,或是间接消耗掉容易生成自由基的物质,防止发生进一步反应。越来越多的研究显示抗氧化是预防衰老的重要步骤,因为自由基或氧化剂会将细胞和组织分解,影响代谢功能。因此,当生物体内产生了大量的自由基,平衡被破坏时,生物体就会生病,这样需氧生物在不断进化过程中,逐渐形成了一套完整的抗氧化系统。 基于不同原理的各种抗氧化活性检测方法已广泛用于抗氧化活性物质,这些方法虽然能够在不同的条件下反映抗氧化活性物质的多种功能特性,但也各有其局限性,目前常用的抗氧化活性检测方法主要基于以下机理:(1)样品对检测体系中脂类物质的氧化抑制能力反映被测物的抗氧化活性;(2)样品对检测体系中自由基的清除能力反映被测物的抗氧化活性;(3)测定样品的还原能力反映被测物的抗氧化活性。[1] 很据以上机理,抗氧化活性物质的检测方法分为体内评价方法和体外评价方法,本文针对当前该领域的发出状况,在总结前人的科研成果的基础上,简单的介绍几种体内评价方法。 1体内抗氧化防御系统 需氧生物在不断进化过程中,逐渐形成了一套完整的抗氧化系统,包括预防性的、阻断性的和修复性的,也即一级和二级抗氧化防御系统;分别在不同水平发挥着防御作用。一级抗氧化防御系统也称为初级抗氧化防御系统,分为抗氧化酶和非酶性抗氧化剂。能够是自由基失效的化学物质称为“抗氧化剂或抗氧化酶”。抗氧化剂或抗氧化酶是清除氧自由基或阻止、抑制氧自由基产生过氧化物的物质。抗氧化酶系统包括超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶、谷胱甘肽转硫酶、髓过氧化物酶、细胞色素C过氧化物抗坏血酸过氧化物酶等。抗氧化非酶系统,也即抗氧化剂,包括两大类,一类是人体必需的抗氧化剂,包括维生素E、维生素C、类胡萝卜素、锌、硒、半胱氨酸、蛋氨酸、色氨酸、组氨酸、铜蓝蛋白、转铁蛋白、乳铁蛋白等;另一类是人类非必需的抗氧化剂,如生物类黄酮、花色素、番茄红素和叶黄素等。 脂质、蛋白质和核酸是氧自由基攻击的主要靶点。在正常情况下,虽然初级抗氧化防御系统通过各种抗氧化剂和抗氧化酶能有效地防止活性氧对靶

具有抗氧化功效的食物

具有抗氧化功效的食物,可以有效抗击肌肤衰老。美国《时 代杂志》选出了最具抗氧化能力的10种食物,在日常饮食中 ,注意多摄取这些食物,能帮助你减掉肌肤年龄。 1、番茄 在10种食物中,番茄的抗老化能力最强。这是因为番茄 中含有丰富的茄红素,而茄红素的抗氧化能力是维他命C的20 倍。而在多个番茄品种中,小番茄的维他命C含量最高。 如何食用,才能更有效的抗氧化呢?那便是熟吃。虽然 经烹调或加工过的番茄(番茄酱、番茄汁、罐装番茄)所含的 维他命C会遭到破坏,但是茄红素的含量可增加数倍,抗氧化功能也更超强。 2、葡萄 葡萄籽中的花青配糖体,其抗氧化能力是维他命C的20倍、维他命E的50倍。但作为水果的葡萄或饮料的葡萄汁因其少了发酵的过程,抗氧化的成分就少了许多。而用葡萄酿成的 红酒因经过发酵,其抗氧化能力则得以提高。因此,在吃葡 萄的同时,适量饮用些红酒,可以减缓肌肤老化。 3、绿茶 在抗氧化的同时,绿茶还具有去油解腻、清新口气的功能,所以坚持饮用绿茶,既抗老化,又有助于减肥。 4、鲑鱼 味美好吃的鲑鱼中,因含有超强的omega-3多元不饱和脂肪酸,所以有很强的抗氧化功效。因人体内的omega-6多元不饱和脂肪酸会影响抗氧化功能,而多摄取omega-3多元不饱和脂肪酸,便可以平衡身体里两种不饱和脂肪酸的比例,相应 地起到抗氧化功效。 5、坚果 富含维他命E的坚果类食物(腰果、核桃、榛子、花生等) 除了具有抗氧化功能之外,还能修护皮肤组织。不过,又因 为坚果类食物含有高油脂,如果摄取过量,不但有致胖的危险,由高油脂所造成的氧化反应还会损害维他命E的抗氧化作用。因此,这类食物的摄取要适量。 6、花椰菜 花椰菜,除了含有丰富的维他命A、C之外,还含有一种特有的抗氧化物质,它几乎集所有抗氧化物于一身,因此, 抗氧化性能比其他食物更优良,而且还是抗癌明星。

应多摄入具有抗氧化功能的营养素

应多摄入具有抗氧化功能的营养素近年来,“抗氧化”饮食概念逐渐成为我们生活中的关键词。营养学家常常推荐我们多吃番茄、绿茶、葡萄等食物,以摄入其中具有抗氧化功能的营养素,抵抗自由基对我们身体的危害,达到延缓衰老、抵抗疾病、增强体质等目的。什么叫做自由基、抗氧化,哪些营养素具有“抗氧化”性呢? 自由基与抗氧化 所谓自由基,是指外层带有一个未成对电子的原子、分子或基团。它具有较强的氧化性,会攻击细胞及组织,引起连锁性的氧化反应。医学研究证明,许多疾病如心血管疾病、肿瘤、癌症、皮肤黑斑沉积、白内障、老年痴呆等以及免疫功能、衰老等生物过程都与自由基有着密切的关系。可以说,自由基是人体疾病、衰老,甚至死亡过程的制造者、加速器。 大家都知道,铁在空气中会生锈,这是因为铁离子被空气中的氧气氧化所致,我们的身体也是一样,如果被过多的自由基氧化、组织、细胞的生理功能就会逐渐衰弱,健康受到损害。 空气污染、电脑辐射、过度运动、饮食不当,阳光辐射等,都是造成体内自由基生成增多的原因。而多食抗氧化食品,或补充具有抗氧化性的营养素,就能够减轻自由基的氧化作用,提高身体抗氧化能力,维持身体健康,延缓衰老进程。 明星食品谱 番茄红素 番茄红素是目前为止发现的抗氧化功能最强的营养素,抗氧化活性是维生素E的100倍。每天摄入10毫克番茄红素,对于清除体内自由基、消除疲劳、提高身体免疫力有明显的促进作用。 许多研究实验都从不同角度证明了它对人体的益处,如可以预防和抑制肿瘤、癌症,保护心血管,提高男性生殖能力,抗辐射、保护皮肤等。 番茄红素主要存在于番茄、西瓜、蜜柚等食物中,在新鲜成熟的番茄中含量最高,可达31-37毫克/公斤,番茄皮中番茄红素含量更高。一般来说,番茄颜色越红,番茄红素含量越高,而在未成熟或半成熟的番茄中的含量相对较低。由此看来,我们应该多吃些番茄。但是食用方法不当也不能很好地获得番茄中的营养。番茄红素属于脂溶性类胡萝卜素的一种,它的吸收和转运必须溶于油或脂肪中才能利用,所以,食用烹炒的番茄或者番茄酱会有利于番茄红素的吸收。番茄红素的热稳定性较高,加热可使番茄细胞裂解,比生食更易被人体吸收利用。 为了更好地摄入番茄红素,市场上出现了专门补充番茄红素的营养食品。在选择这些营养食品时,建议你不仅要考虑其价格,还要考虑其番茄红素的含量和质量。一般来讲,番茄红素的含量是决定产品质量、效果的主要因素。目前,市面上比较多见的是胶囊装番茄红素。也就是说,一粒番茄红素胶囊中番茄红素的含量越高,则产品的功效越佳,当然,价格也会相应高一些。此外,番茄红素的来源也很重要,高品质的番茄红素采用提纯方法从日照充足的番茄中获得,能够保证产品的强抗氧化性。 葡萄籽提取物 葡萄籽中的提取物原花青素是一种高效抗氧化剂之一。研究表明,其抗氧化能力为维生

抗氧化作用的机制

一:碳氢化合物氧化和抗氧化作用的机制1.1润滑油的自身氧化 总所周知,碳氢化合物通过自动氧化过程氧化,这个过程形成酸和油的稠化。更严重的情况下,油泥和油漆类可能形成。润滑效果下降,降低燃油经济性,和增加摩擦,抗氧剂是很重要的添加剂来最小化氧化的影响,机理分析如下: 1.1.1 油的自身氧化 自由基机理[179-181],包括链引发,增长,分支,终止。 1)链引发 链引发的特征是通过烃类化合的C-H、C-C的断裂产生烷基自由基,这个过程一般是在烃类暴漏在氧气氛围、则加热状态下、紫外光、机械剪应力等条件下【182】,这种均裂的难易程度有以下规律:C-H的键能和自由基的稳定性,183.苯基﹤伯﹤仲﹤叔﹤烯丙基﹤苄基。这样的话烃类化合物如果含有叔氢和氢在碳碳双键的α位时特别容易受到氧的影响。这个过程在室温下一般比较慢,但是通过加热或则金属催化下会大大加快(铜、铁、镍、钒、锰、钴等)。 2)链增长: 增长过程包括一个不可逆的烷基自由基与氧气反应生成烷基过氧自由基。这个反应很快,速率与自由基上的取代基有密切的关系【179】。一旦形成,过氧自由基可以随机与其他烃反应生成氢过氧化物(ROOH)和新的烷基自由基,基于以上机理,一个烷基自由基的形成,大量的烃类化合物会被氧化为氢过氧化物。 3)链分支: A:自由基的形成 B:醛酮的形成: 链分支过程开始于氢过氧化物断裂为烷氧基自己基和羟基自由基。这个反应需要很高的活化能一般是温度大于150℃.金属则催化这个过程。结果就是自由基可能经历以下过程a:烷氧基自由基从烃吸收氢变为醇,而烃生成新的烷基自由基b:羟基自由基通过吸收烃上的氢变成水和新的烷基自由基。c:仲烷氧基自由基可以通过分解变为醛和和新的烷基自由基。d:叔烷氧基自由基则降解为酮和新的烷基自由基。 以上过程对于加快润滑油的氧化过程是非常重要的,不但生成大量的烷基自由基来加速氧化过程,而且生成很多小分子的醛和酮,这个物质无疑会降低润滑油的粘度、增加润滑油的挥发性和极性。在高温条件下醛和酮则会被继续氧化为酸和其他大分子化合物使油变得粘稠,从而形成油泥和varnish deposits。 4)链终止: 在氧化过程中,大分子碳氢化合物的形成会增加油的粘度。当润滑油的粘度增加到影响氧气在有油中的传递的时候,链终止过程就开始了,比如:两个烷基自由基可以反应生成新的烃类化合物。烷基自由基可以与烷基过氧化物自由基反应生成新的过氧化物。当然这种过氧化物不稳定,容易形成更多的烷氧基自由基。在这个过程中生成的羰基化合物和醇类化合物也可能是含有α氢的过氧自由基反应所得: 金属催化主要是通过氧化还原过程作用在链分支阶段催化氢过氧化物降解,【184】。可以显着减低氧化反应的活化能,使氧化反应能够在低温下进行。 初始阶段: 增长阶段:

第三章抗氧化剂

第三章食品抗氧化剂 Antioxidants 第一节概述 一、食品抗氧化剂 1、食品抗氧化剂 (1)定义:防止或延缓食品氧化,提高食品的稳定性和延长贮存期的物质。 (2)作用:阻止或延迟空气中氧气对食品中油脂和脂溶性成分(如维生素、类胡萝卜素等)的氧化作用,从而提高食品的稳定性和延长食品的保质期。 ⑶使用意义: 终止贮藏、加工过程中因自由基的导致的链锁反应,延缓食品被氧化的过程。 自由基(free radical):由氧化反应或活性氧产生的带电粒子。 二、油脂的氧化机理 (一)油脂的氧化过程 RH R? ROO? ROOH+R? (二)激发油脂氧化的因素 1、可变价金属离子(尤其是铜和铁) (1)金属离子直接与油脂作用,生成脂肪自由基 Mn+ + RH M(n-1)+ + R?+ H+ (2)金属离子使氧分子活化成单线态氧或过氧化自由基 Mn+ +O2 M(n+1)+ + O2- O2- –e 1O2 或O2- + H+ HOO?(3)加速氢过氧化物的分解,并成为自由基的主要来源 ROOH + Mn+ RO?+ OH- + M(n+1)+ ROOH + M(n+1)+ ROO?+ H+ + Mn+ 2、温度 3、紫外线 4、碱性条件和碱土金属离子 5、油脂的不饱和度 6、体系中氧含量 周期系ⅡA族元素,包括铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)、镭(Ra)六种金属元素。(三)油脂氧化的终结和分解 氢过氧化物作为脂类自动氧化的主要初期产物,经过许多复杂的分裂和相互作用,最终形成有油脂酸败特征的醛、酮、醇、碳氢化合物、环氧化物及酸等低分子物质;也可经聚合作用生成深色的、有毒副作用的聚合物,同时也会使色素、香味物质等被氧化。 二、抗氧化剂的种类及其作用机理 (一)抗氧化剂的种类 按照抗氧化剂的溶解性分为水溶性抗氧化剂和脂溶性抗氧化剂两大类; 按照抗氧化剂的来源分为天然抗氧化剂(生物抗氧化剂)和人工合成抗氧化剂; 按照抗氧化剂的作用方式可以分为自由基吸收剂、金属离子螯合剂、氧消除剂、酶类抗氧化剂、紫外线吸收剂或单线态氧淬灭剂等。 (二)抗氧化剂的作用机理 1、自由基吸收剂

相关主题
文本预览
相关文档 最新文档