当前位置:文档之家› 城市道路交通信号实时优化控制_2008B题

城市道路交通信号实时优化控制_2008B题

城市道路交通信号实时优化控制_2008B题
城市道路交通信号实时优化控制_2008B题

第39卷第16期数学的实践与认识V01.39No.162009年8月MATHEMATICSINPRACTICEANDTHEORYAugust,2009

城市道路交通信号实时优化控制

朱阳,李雨恒,张醒

(同济大学汽车学院,上海201804)

摘要:通过分析实际道路交通状况,在合理假设的基础上,建立了孤立十字、T字交叉路口、三个交叉路口

线状区域以及六个交叉路VI网络状区域的交通信号实时配时数学模型,利用Matlab产生满足泊松分布的车一流量实时序列,按照优化目标进行了算法的设计和编程,得到了相应的数值结果,并对优化结果进行了讨论.

关键词:交通信号;实时控制;优化算法;泊松过程

1问题分析

城市道路系统由路段和交叉口组成,由于不同方向的交通流在交叉口处相交,引起交通流之间的冲突、合流、分流等交通行为.城市交通信号控制就是通过对交叉路口的交通流进行警告、诱导和调节,减少或完全消除可能引发交通事故的交通冲突点,使车辆和行人的延误时间减少、交叉路口相连各车道的通行能力增加,实现交通流的安全性、快速性与舒适性叫.

2模型建立与求解

2.1控制类型及基本假设

从空间关系上,可分为单路口控制(点控)、干线控制(线控)、区域控制(面控):

1)点控制:对城市平面交叉路口或高速公路匝道口独立进行控制,不考虑与相邻交叉路口或匝道口的协调关系,控制目的是尽可能减少该交叉路口或匝道口的行车延误;

2)线控制:对含多个平面交叉路口的城市交通干线进行信号控制,其各路M的控制方案相互协调,使进入干线的车队按某一车速行驶时,能不遇或少遇红灯而通过该干线;

3)面控制:对城市中某个区域的多个平面交叉IZl进行信号控制,其控制方案相互协调,使得在该区域内某种指标,如总的停车次数、旅行时间、耗油量等最少.

。本文根据实际道路情况,制定以下基本假设:

1)任何一个交叉路口,或称之为叉路口,或为叉口,在空间上是由4个路口构成,在时间。上是由4个相位构成(丁字均为为三个);

2)最大周期长:过长的周期除了增大延误外,对驾驶员、行人也会造成负面影响.实际中最大周期一般取120s左右为好,也可以比120s更长,但最好不超过200s;

3)车用最小绿灯时间:为了保证安全,取包括直行交通在内的主流交通为15s以上,左转专用相位等次交通为5s以上,对于交通量非常小的交通原则上取8s以上.本文取最小绿灯时间为10s;

4)绿灯损失时间:包括路口绿灯信号开始时前排车辆启动延误时间,及绿灯结束后黄灯时的车辆减速停车损失时间.本文绿灯损失时间取5s;

收稿日期;2009—04—30

城市道路交通信号实时优化控制

作者:朱阳, 李雨恒, 张瑆, ZHU Yang, LI Yu-heng, ZHANG Xing

作者单位:同济大学汽车学院,上海,201804

刊名:

数学的实践与认识

英文刊名:MATHEMATICS IN PRACTICE AND THEORY

年,卷(期):2009,39(16)

被引用次数:0次

参考文献(4条)

1.吴明晖城市交通信号优化及仿真研究 2005

2.林元烈应用随机过程 2002

3.李江交通工程学 2002

4.杨佩昆交通管理与控制 2003

相似文献(10条)

1.期刊论文高成修.石永辉.刘春杰.GAO Cheng-xiu.SHI Yong-hui.LIU Chun-jie城市道路交通信号实时控制问题

的评述-数学的实践与认识2009,39(16)

对2008年全国研究生数学建模竞赛B题"城市道路交通信号实时控制问题"的命题背景,问题要求,建模方法,模型算法,结果分析,模型应用、模型评价等相关问题进行了分析和评述,结果表明,该问题的选择具有重要理论和实际应用价值,对研究生创新能力的培养具有重要作用.

2.学位论文张晓翠城市干线交通信号的实时模糊控制2008

城市交通干线承载着城市大部分交通量,它的通畅与否直接影响整个城市交通网络能否安全的运行。城市干线交通信号的协调控制是保障交通安全和充分提高城市干线通行能力的重要措施,也是解决城市交通问题的有效途径。为此,本文应用模糊控制与神经网络等理论与方法,研究城市干线交通信号的控制方案,为建设我国智能化城市干线交通控制系统提供控制策略与方案。

1.在分析了当前模糊神经网络学习方法的基础上,给出了确定模糊控制隶属函数和权值的一种混合学习算法,即应用共轭梯度法确定隶属函数的中心值和宽度,用正交最小二乘法确定输出权值。混合学习算法综合了共轭梯度法和正交最小二乘法的优点,在模糊神经网络参数的学习上优于二者。

2.针对目前城市干线交通的现状,采用改进的模糊神经网络控制方法进行干线的交通信号控制方案设计。以绿灯相位关键车流的到达车辆数和同一时刻相邻红灯相位关键车流的等候车辆数为输入,绿灯相位的延长时间为输出,设计了模糊控制器,用给出的混合学习算法学习了隶属函数和权值,实现了排队长度和绿灯延长时间的模糊化、模糊推理和反模糊化的过程,得到了周期长度和绿信比。并以车辆延误时间为目标函数,对干线交叉口之间的相位差进行优化,得到了干线绿波带,实现了干线实时双向绿波控制。

3.应用MATLAB/Simulink,对所给出的城市干线实时模糊神经网络控制方法进行了仿真研究。仿真结果表明:该方法有效的缩短了车辆的延误时间,得到了较好的绿波带宽。

3.期刊论文李建斌.高成修城市道路网络多交叉路口交通信号实时优化控制模型与算法-系统工程2004,22(10)

城市道路各交叉口交通信号的实时管理和控制直接影响了整个城市的交通拥挤.以武汉市武昌区各主要交叉路口的交通信号控制问题为背景,构造了交通网络中以多交叉口滞留的车辆数最少为目标的优化模型,用遗传算法对其进行了仿真数据求解,得到了实时控制的配时方案,并与固定周期固定绿信比方案进行了比较,结果表明该模型和算法对交通信号实时控制是非常有效的.

4.会议论文李建斌.高成修城市道路网络多交叉路口交通信号实时优化控制模型与算法2004

城市道路各交叉口交通信号的实时管理和控制直接影响了整个城市的交通拥挤.本文以武汉市武昌区各主要交叉路口的交通信号控制问题为背景,构造了交通网络中以多交叉口滞留的车辆数最少为目标的优化模型,用遗传算法对其进行了仿真数据求解,得到了实时控制的配时方案,并与固定周期固定绿信比方案进行了比较,结果表明该模型和算法对交通信号实时控制是非常有效的.

5.学位论文常宏顺城市单交叉口实时控制方法研究2008

我国已经进入城镇化及城市机动化的发展高潮期,在城镇化和机动化的双重作用下,全国约800个大中城市普遍陷入了难以摆脱的交通困境,交通拥挤问题已成为制约城市发展和居民生活质量提高的首要问题之一。解决城市交通拥挤的最有效的途径之一是建设和使用先进、适用的交通管理系统,而交通信号控制是交通管理系统的核心。本文以此为出发点,详细分析了传统的城市单交叉口信号控制方法,并重点研究了新型的自适应交通信号控制方法。

本文首先介绍了目前城市交通信号控制的现状,并且分析和讨论了交通流的基本理论,介绍了交通信号控制的基本概念、性能指标以及几种典型的交通信号控制分类。

其次,详细分析了传统的定时信号控制方法和感应信号控制方法,并且讨论了两种信号控制策略的优点和适用范围;提出了一种基于无线传感器的交叉口实时交通流预测方法,在此基础上,给出基于动态规划和基于遗传算法的自适应交通信号控制方法。

最后,在德国宇航局的开源微观交通仿真平台SUMO上,对本文中的各种信号控制方法进行了仿真比较,并分析各种信号控制策略的适用性。仿真结果表明:城市路网中的交通流在中度拥挤以下时,自适应信号控制方法优于定时信号控制和感应信号控制,减少了13.26%至40.64%的车辆平均延误时间,能更好的响应交叉口交通流的随机到达;但是当交通流达到重度拥挤情况以后,即路网中交通流到达过饱和,各种信号控制方法都没有得到较好的控制效果,全部接近定时信号控制所得到的控制结果。

6.期刊论文徐勋倩.黄卫.XU Xun-qian.HUANG Wei单路口交通信号多相位实时控制模型及其算法-控制理论与应

用2005,22(3)

针对城市道路交叉口的交通流特性,对单路口交通信号多相位实时控制的模型和算法进行研究.首先提出一种改进的单路口交通信号多相位实时配时模型,该模型可反映交叉口交通状况的实际需求.同时,采用能随交通需求的变化而实时变化的加权系数,将交叉口3个优化目标函数转化为单目标函数优化的问题.为提高模型的计算速度以及降低交叉口信号机的单机计算量,采用蚂蚁算法中的精英蚂蚁寻优策略求解模型.最后,以伪代码的形式设计了求解该问题的程序流程,并通过一个实例验证了模型及其求解算法是合理的和有效的.

7.学位论文杨晓芳基于模糊控制的城市交通信号控制系统的研究2003

随着城市交通的发展以及计算机、通信和自动化技术在交通中的应用,近年来人们开始借鉴新的理论和技术研究交叉口的交通控制技术.这些研究对于提高城市交通控制系统的控制效果具有现实的意义.该论文针对当前交通控制系统中存在的问题,提出了基于模糊控制的城市交通信号控制系统.针对交叉口交通流运行的高度复杂性和随机性,采用了模糊控制技术,不需要建立精确的数学模型,能够适应交叉口的实时控制.采用的模糊控制器输入参数是排队长度,它具有易于测量,误差小的特点.该论文详细进行了单点模糊控制器的设计.该论文还研究了两级线协调控制,采用两级模糊控制,减少了模糊控制系统的输入量,降低了控制规则的复杂性.该方法具有简单、实用的特点,对于提高交通控制系统的控制效果具有重大的现实意义.

8.期刊论文汤志浩.郭洪林.TANG Zhi-hao.GUO Hong-lin交通信号实时控制优化模型与算法-宁波职业技术学院

学报2007,11(5)

通过对交叉路口交通流到达和排队延误规律的研究,提出了一种新的交通信号控制理论,并建立了以PI值最小为目标的交通信号配时优化理论模型.该信号配时方法与通常采用的单点自适应信号控制方法的区别在于不但考虑了交通延误,而且考虑了停车次数,实现了对交通延误和停车次数两指标的优化,从而保证了以车队形式到达的交通流可以不间断地通过交叉路口.由于以实时交通流的到达规律为依据进行信号优化配时,因此,该信号配时优化模型又是实时自适应交通信号控制优化模型.

9.学位论文承向军基于多智能体的分布式交通信号协调控制研究2005

城市交通系统是一个具有随机性的大规模动态系统。现有的集中式信号控制方式不仅在处理海量数据、控制的可靠性和整体优化方面存在不足,而且实时控制的效果不能令人满意。目前,包括模糊控制、神经网络控制、分层递阶控制、集成控制和基于知识的控制等多个智能化信号控制的研究,已引起了有关专家、学者的广泛关注。特别是基于智能体的信号控制方法已经成为研究热点之一,这方面的概念模型、单路口控制模型、干线控制方法和路网控制方法都有相应的研究进展,但是,基于多智能体的分布式路网信号控制目前处于研究的起步阶段,许多相关问题有待解决。

本文从单路口交通信号控制入手,将具有感知和反应特点的信号控制智能体作为路口信号控制器,通过对到达车辆的模糊聚类处理形成对路口交通状态的定量描述,根据交通控制规律和经验建立面向各种交通状态的信号控制规则集,以总停车延迟时间作为交通控制的优化指标,采用遗传算法对信号控制规则进行编码,在整个信号过程中使用不同的规则组合进行信号控制,淘汰控制指标较差的控制方案,对信号控制规则集进行持续的改进。建立了一种具有学习能力的单路口交通信号控制模型。为验证该模型的有效性,采用8个不同的交通量对一个双向4车道的信号控制十字路口进行了仿真实验。仿真结果表明,在相同条件下,这种交通信号自学习控制方法的总停车延迟时间比定时控制方式平均减少28.0%,比感应式控制方式平均减少

15.1%。在自学习效果方面,随着时间的推移,使用该方法产生的总停车延迟时间呈下降的趋势,经过不到100代方案,控制效果就基本趋于稳定,此时,总停车延迟时间比初始方案平均减少6.2%。

针对城市交通路网的实际情况,文中借鉴多智能体系统的概念和方法,建立了基于多智能体的分布式交通信号协调控制系统(DTCMAS)。整个控制系统不设控制中心,每个路口的信号控制由本地智能体相对独立地完成。同时,通过相邻智能体间的信息交流及协作配合,提高相邻路口信号控制的整体效果。由于智能体都包含知识库和推理机制,使用这种具有自主性、主动性、交互性的智能体控制路口信号,不仅充分考虑了相关车队信息和周边路口的交通状况,兼顾到路网交通控制整体优化的实现,而且大大降低了控制算法的复杂度。因此,对于大城市、特大城市的大规模城市交通网,这种基于多智能体的分布式交通信号协调控制系统,在实时控制效果方面具有相当的优势。

为了验证基于多智能体的分布式交通信号协调控制系统的可行性和有效性,编制了相应的多路口交通控制微观仿真软件,实现了对车辆的跟驰、分流、合流、进路交叉时的避让、转弯、换道等行为的模拟,并采用二维动画技术,全程动态显示交通控制中的车辆行驶过程。采用该软件,对一个由8个路口组成的交通网分别用8中不同的交通量进行交通控制的仿真实验,比较了基于多智能体的分布式交通信号协调控制与其他控制方法的控制效果。仿真结果表明,在相同的条件下,这种分布式交通信号协调控制方法的总停车延迟时间比定时控制方式平均减少37.8%,比感应式控制方式平均减少

17.8%。

专门构造了用于形式化描述多智能体系统的M*语言,用于建立基于多智能体的交通控制模型。该符号系统以集合论作为表述框架,将Z语言的格式作为形式化描述的基本形式,使用BDI模型作为描述智能体内部结构的参考模型,利用π演算的描述对象作为描述智能体之间交互作用的组成部分,借鉴dMARS系统中对智能体内部推理过程的描述方式,在提炼和整合这些形式化模型的基础上,增加对多智能体系统组织结构和环境特征的描述,使之成为一种描述基于多智能体的交通信号控制系统组织结构、智能体之间交互作用、智能体内部结构和环境主要特征的通用化符号系统。M*符号系统简洁、系统、抽象地描述了DTCMAS模型,并可以作为该模型进一步深化和扩展的建模工具。此外,它还为其他学者建立分布式交通信号控制模型提供了可以借鉴的描述工具。

10.期刊论文姚洪.陈涛.刘宗钰.高成修.YAO Hong.CHEN Tao.LIU Zong-yu.GAO Cheng-xiu城市道路交通信号实时

控制的数学模型与算法研究-数学的实践与认识2009,39(16)

研究了交通信号的实时配时控制问题,建立了在已有交通设施条件下,控制信号具有线性约束的非线性实时配时系统优化模型,设计了与模型相适应的实时CLY系列算法,重点讨论了点控制问题,建立了相应的数学优化模型,设计了CLY-Point1算法求解,还对线控制问题和面控制问题,建立了多层优化控制模型,并设计CLY-Point2、CLY-Line和CLY-Area算法进行求解,数值模拟结果表明,CLY系列算法具有很强的实时性,车辆平均等待时间比固定配时减少了约20%.

本文链接:https://www.doczj.com/doc/ea6168546.html,/Periodical_sxdsjyrs200916008.aspx

授权使用:武汉大学(whdx),授权号:d7e9a052-04c8-4ef6-87c0-9db50181ea4f

下载时间:2010年7月16日

城市道路交通信号控制方式适用规范

城市道路交通信号控制方式适用规范1范围 本标准规定了不同信号控制方式的适用基本原则、多相位控制方式设计原则以及采用不同控制方式的技术-经济评价方法。 本标准适用于城市道路交通信号控制方式的设计和建设。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GA/T 509-2004城市交通信号控制系统术语 3术语和定义 GA/T 509-2004中确立的术语和定义适用于本标准。 4单点多时段定时控制方式、单点感应控制方式、线协调控制方式、区域协调控制方式适用基本原则单点多时段定时控制方式、单点感应控制方式、线协调控制方式、区域协调控制方式均应根据交通需求和道路条件选定,并需进行技术-经济评价。 在选用某种控制方式时,宜采用计算机仿真技术进行分析比较和配时方案的优化。 4.1单点多时段定时控制方式适用原则 单点多时段定时控制方式是最基本、最经济的控制方式。 当交通状况符合总体流量稳定、变化比较规律的条件时,可选用此种控制方式。 4.2单点感应控制方式适用原则

4.2.1当单点控制的交叉口交通状况变化比较频繁且没有规律时,宜采用单点感应控制。 4.2.2单点感应控制一般在交叉口进口车道设置检测器或在人行横道线前设置行人按钮,信号配时参数可随检测到的信息而改变。 4.2.3单点感应控制分为半感应控制和全感应控制。 在支路流量比较小的信号控制交叉口或路段的人行横道处,可采用半感应控制。在支路上设置检测器或在人行横道处设置行人按钮,根据是否有交通需求而确定是否运行该相位,并根据交通需求情况确定相应相位时间。 在各进口流量相近,且变化较为频繁的信号控制交叉口宜采用全感应控制方式。若单个路口信号机有能力根据检测的实时交通状况进行配时优化,也可实现单点优化控制。 4.3线协调控制方式适用原则 4.3.1当需要在单点控制的基础上扩大控制范围,对若干连续交叉口形成的线路上进行协调控制以提高整体通行效率时,可采用线协调控制方式。 4.3.2采用此种控制方式时,针对若干连续交叉口设计一种相互协调的配时方案,通过时钟同步,各交叉口的信号机按预设方案协调运行。 4.3.3线协调控制方式应考虑相邻交叉口的距离。通常若路口间距离大于800 m以上时,会降低路口间的协调效果。 4.3.4线协调控制通常采用无电缆线协调控制方式。 交通状况符合总体流量稳定、变化比较规律的条件时,可选用此种控制方式,但不能适应随机性较强的交通。 采用此种控制方式,宜进行事前交通调查,根据调查结果设定控制参数,并应根据交通变化情况适时调整控制参数,以取得较好的控制效果。 无电缆线协调控制方式若适当设置检测器,应用感应控制,可根据交通需求调整绿信比,提高控制效果。 4.4区域协调控制方式适用原则

道路交通信号灯图解

道路交通信号灯使用说明书 第一节概述 道路交通信号灯是为了加强道路交通管理 , 减少交通事故 , 提高道路使用效率 , 从而改善交通状况的一种重要工具. 道路交通LED信号灯具有以下特点: ● 符合中华人民国GB14887标准中的技术指标; ● 拥有多项国家专利; ?高亮度 : 采用 LED 组装的灯芯色彩亮丽 ; ?低功耗 : 只有白炽灯的四分之一,仅 25VA ; ?长寿命 : 可达 50000 小时以上 ; ?调光控制 : 根据环境变化自动调节亮度 ; ?限流控制 : 自动校正负载电流 ; ?亮度均衡 : 设有平衡电流电路加上专门设计的光学部件,发光特别均匀;?严格老化 : 产品经长时间通电老化 , 性能更加稳定。 ● 防护等级大于 IP53 。 第二节性能指标 1 .光学性能 1.1 光强分布 符合 GB14887 的要求 1.2 色度坐标 符合 GB14887 的相关要求,包括颜色视觉功能有缺陷的观察者所要达到的关规定 2 .电气性能 2.1 工作电压AC220 ± 15% V 50 ± 2Hz 2.2 额定功率单灯 <15 W 2.3 绝缘电阻 >10M? 2.4 介电强度耐压 144 VAC 2.5 燃点寿命正常条件使用下可达 50000h

3. 物理、机械性能 3.1 抗风压符合 GB14887 的相关要求 3.2 抗振动符合 GB14887 的相关要求 3.3 防护等级大于 IP53 4. 适应环境 4.1 信号灯工作环境温度为 -40oС~50oС, 可耐 -40oС 和+80oС 的高低温测试 4.2 温度为25oС 时 , 空气相对湿度不大于 95% 第三节结构尺寸 1 .道路交通信号灯总装图示: L 型支架安装 组合种类 a b c d e f h w ф 300 二灯600 1270 70 985 70 195 370* 130 三灯600 1620 70 1335 70 195 370 130 四灯600 1970 70 1685 70 195 370 130 五灯600 2320 70 2035 70 195 370 130 ф 300 二灯600 1445 70 1160 70 195 370 130

交通信号控制优化服务解决方案

交通信号控制优化服务解决方案 1概述 交通信号控制优化服务是借助专业团队对交通信号控制方面进行挖掘,以更加有效地缓解目前由于机动车数量过快增长而造成路网交通运行压力增大,道路硬件资源增长严重失衡这一问题。具体服务内容包括: ?对交通信号控制理论及相关技术进行总结,规范信号优化工作流程,落实责任,建立统一化与个性化相结合的交通信号管理模式,保证交通信号合理运行,满足各种条件下道路交通参与者的通行需要。 ?通过对相关路口进行周期性调查,及时发现存在不足并予以改善、跟踪,从而不断提高其运行水平。 ?通过路口排查和调研,对有条件进行协调控制的路口设计协调控制方案,降低协调控制路口的行车延误,提高交叉口服务能力。 ?以周报、月报和专项分析报告总结归纳工作开展情况及完成效果,有计划性的回检评价历史优化路口,提炼可取之处及考虑不周的地方,对未来将有可能发生变化的交叉口或路段有一定预测性。 2服务内容 2.1交通信号管理基础工作 (1)交通信号控制理论及相关技术总结 交通信号控制理论及相关技术的总结包括对交通信号控制相关理论的总结和对现今主流信号控制模式及方法的总结2部分内容。 ?对交通信号控制相关理论的总结 包括对信号控制涉及的相关参数的总结、对通过能力的总结及对信号路口对车流停滞作用的总结3部分内容。 ?对现今主流信号控制模式及方法的总结 包括对单点信号控制模式与方法的总结、对交通信号子区划分的模式与方法的总结、对主干道交通信号协调控制模式与方法的总结、对同类型交通信号路口协调控制模式与方法的总结、对长距离交通信号协调控制模式与方法的总结以及

对区域协调控制模式与方法的总结六大类涵盖点、线、面三个层次的信号控制与协调方法的相关技术理论的总结。 在对交通信号控制相关理论的总结基础上,根据各地市信号路口特点,重点对适用该地信号控制特点的信号控制模式及方法进行总结。 ?单点信号控制 主要包括单点定时信号控制、单点感应信号控制和单点自适应信号控制三种方式。针对信号控制路口常用的单点信号控制方法有Webster等方法。 ?交通信号子区划分 主要基于距离原则、车流特征原则、周期原则的子区划分原则及其相关的关联度判断方法、合理周期范围判断方法的划分方法总结。 ?主干道交通信号协调控制 主要包括单向绿波协调控制、对称双向绿波协调控制、非对称双向绿波协调控制的方法。针对不同地市信号控制路口不同的流量特征可选用相对应的主干道信号协调控制方法。 ?同类型交通信号路口协调控制 主要针对信号路口饱和度同类型及其基础上的潮汐特征同类型进行交通信号路口同类型的判定分析,归纳与其相对应的信号控制适用方法。 ?长距离交通信号协调 主要对相邻路口间距离较长的信号路口及交通信号路口数较多的整体距离较长的协调控制方法进行研究,针对长距离交通信号协调的分类归纳相对应的协调模式及方法。 ?区域协调控制 交通区域协调控制是二维上的控制,它通过将绿波协调控制的路口利用组合叠加的方式,对各信号控制路口的信号周期、绿信比以及路口间的相位差进行优化,以减小延误、提高路网通行效率的信号控制方法。当前交通信号区域协调控制的方法主要可以分为结合调控的协调方法、基于延误的协调方法和基于绿波带优化的协调方法。 通过全面深入的了解信号控制的基础理论及信号控制主流模式及技术方法,掌握前沿技术,归纳出适用性强的主流核心技术规范,为交通信号控制优化提供

交通信号控制系统方案

交通信号 控制系统(ATC)设计方案 x x x x有限责任公司

目录 1.概述 (1) 1.1系统简介 (1) 1.2设计原则 (2) 1.3系统设计依据及执行标准 (4) 2.总体设计方案 (6) 2.1控制系统总体功能 (6) 2.2通信系统总体结构 (6) 2.3通信系统主要优势 (8) 3.详细设计方案 (9) 3.1监测点设备 (9) 3.1.1设备功能描述 (9) 3.1.2监测点设备组成、结构及特点 (9) 3.2防雷保护及安全设计 (14) 3.3详细设备说明 (15) 3.3.1高清晰摄像机 (15) 3.3.2标清视频检测 (15) 3.3.3补光设备 (15) 3.3.4嵌入式存储 (15) 3.3.5 GOE210千兆工业以太网交换机 (15) 3.3.6 POE工业以太网光纤收发器 (17) 3.4系统典型配置清单 (18)

1.概述 城市发展交通智能信号灯,减少道路拥堵,最终达到智能化区域交通信号控制系统。智能交通信号灯迎合实现绿色经济的时代潮流,为了解决这个问题,提出智能交通信号灯及网络技术,会根据路口车辆多少,自动调节时间,可减少等候时间在75%以上,从而大大节省了人们的出行时间,减少了路口的无效等候,使出行更快捷。 在智能交通系统中,以往的常规摄像机是对所有通过该地点的机动车辆的车牌进行拍摄、记录与处理。由于受到图像采集设备分辨率的制约,图片仅能反映出车型、车身颜色、车牌号码等简单信息。公安执法部门对部分治安案件、交通肇事案件的取证要求上,希望能掌握更详细更清楚的资料,如驾驶员的面貌特征、车内驾驶室的情况、清晰的车辆信息、货车的装载情况。采用高清晰摄像机做前端采集,可以实现所抓拍的图像中用肉眼清楚地分辨:车辆的颜色、特征、车牌的号码、车牌颜色、司乘人员的面部特征。 如此一来智能化同时也带来了网络数据流量的剧增,对网络通信的可靠传输提出了更高的要求。工业以太网交换机在区域交通信号控制系统网络中稳定性、高可靠性、高安全性成为关键中的关键。 1.1系统简介 区域交通信号控制系统(ATC) 智能化区域交通信号控制系统采用百万像素的数字化网络摄像机(1600×1200 CCD传感器),一台摄像机覆盖两条车道,准确抓拍正常行驶、压线行驶、并行通过的车辆,并自动识别车牌号码,抓拍的车辆图片可清晰地显示车辆特征及前排司乘人员的面部特征。摄像机工作于外触发方式,通过视频分析、环形线圈或者窄波雷达检测通过车辆,在抓拍车辆的同时可获取车辆的行驶速度。两条车道共用一台高清数字摄像机的方式在保障系统性能的前提下,大大降低了系统成本。

我国城市交通信号控制现状与发展

我国城市交通信号控制的现状与发展 二零一二年四月

本论文的背景和意义 背景:我国近年城市交通信号控制的情况 意义:1、减少交通事故,增加交通安全。 2、缓和交通拥挤、堵塞,提高运行效率。 3、节约能耗,降低车辆对环境的污染。 本论文的主要内容 分析我国城市交通信号控制的现状、存在问题以及发展趋势。 本论文的结构安排 本论文主要分为两大部分: 第一部:分分析我国交通信号控制的现状以及存在问题; 1、我国城市交通状况 2、城市交通信号控制系统应用现状 3、国内交通信号控制系统问题分析 第二部分:分析我过交通信号控制的发展趋势。 1、交通系统的发展历程 2、我国一些城市的发展计划和目标

正文 第一部分:分析我国交通信号控制的现状以及存在问题 1、我国城市交通状况 我国城市交通面临的总体形势:城市化势头迅猛、机动车拥有量增长迅速、道路交通基础设施落后、交通结构和路网结构不尽合理、市民的交通法规意识和交通安全常识缺乏,交通管理措施不完善、管理效率低下、城市交通拥挤严重、社会消耗巨大、交通事故多发、汽车废气对城市环境污染严重。因此,在对我国城市交通目前的状况进行全面把握和详细解剖的基础上,探索解决我国城市交通问题行之有效的办法,展望城市道路交通的发展趋势和特点,探讨适合我国城市道路交通特点的道路交通管理发展战略,具有重要意义。而交通控制实际上属于交通管理的范畴,交通控制是交通管理的某一表现方式。 将城市道路互相连起来构成道路交通网的城市道路平面交叉口,是造成车流中断、事故增多、延误严重的问题所在,是城市交通运输的瓶颈。交叉口的通行能力又是决定道路通行能力的关键所在,对城市交通网络的交叉口信号控制系统进行协调优化控制,对提高道路通行能力和服务水平具有重要意义。 2、城市交通信号控制系统应用现状 交通控制的发展经历了点控、线控和面控3个阶段。把控制对象区域内全部交通信号的控制作为一个交通控制中心管理下的整体控制系统,是单点信号、干线信号和网络信号系统的综合控制系统。 随着计算机技术和自动控制技术的发展,以及交通流理论的不断完善,交通运输组织与优化理论的不断提高,世界上出现了多种城市交通信号控制系统——澳大利亚的SCATS系统、加拿大的RTOP系统、英国的TRANSYT系统和SCOOT系统、美国的UTCS-3GC系统以及ASCOT系统,其中TRANSYT系统、SCOOT系统和SCATS系统正在实践中取得了较好的应用效果,并在世界上很多城市得到广泛应用。 3、国内交通信号控制系统问题分析 上个世纪八十年代至今,北京、上海、天津、沈阳、南宁等中大城市先后引进SCOOT、SCATS、TELVENT等先进的城市交通控制系统,迄今国内已经有30多个城市引进类似系统。本土企业如青岛海信、上海宝康等自1990年后也先后进行了交通信号系统的研发,但总体的技术指标和应用范围与国外系统仍有一定差距。 交通信号系统建设工程是一项投资大、周期长和社会公益性强的系统工程,但目前无论是建设中国本土系统还是引进国外先进系统,许多城市建成后投入应用的城市交通信号系统普遍存在效能发挥不佳、使用不方便、经济效益差等问题,究其原因,排除系统产品本身的质量和功能因素外主要涉及一下几个方面: 1、轻视前期调查。交通调查和基于交通调查数据的交通工程设计是交通信号系 统是否个性化、适应性和效能发挥的关键性工作。遗憾的是,相对信号配时设计,中国内陆城市交通管理者和系统设计施工者对设计前期的交通现场调查、交通流组织、交通流量等分析工作普遍认识不足、重视不够。对交通调查的方法、内容、时间和数据分析缺乏针对性和系统性,导致受控区域的交

城市交叉口交通信号优化控制方法

城市交叉口交通信号优化控制方法 摘要:随着人们生活水平的不断提高,车辆保有量持续增加,城市交通拥堵情 况日益严重,交通信号的控制对缓解交通压力的具有重要作用,所以本文主要探 讨了城市交叉口交通信号优化控制方法,以此减轻城市交通压力,促进我国城市 交通的稳定发展。 关键词:城市交叉口;交通信号;优化控制;方法 目前各类交通工具不断增多,形成较为复杂的城市交通网,给城市交通带来 了较大的交通压力,若不能有效地管理交通,就会造成较为严重的交通拥堵情况,给城市发展带来不利影响。交通信号控制主要用于交叉路口车辆调度,传统的信 号灯控制方法比较单一,比较死板,对环境的适应情况比较差,导致交叉路口的 车辆调度较差,所以还应采取合理的方式,对城市交叉口实施有效的交通信号控 制方法,提高交叉口的车辆调度效率,达到有效缓解交通压力的目的。因此本文 在此提出一种城市交叉口交通信号控制方法。 1信号控制问题 每个城市交通路口都需要设置相关信号控制设备,假设所有的信号设备中都 安装一个传感器,为了监视交叉路口,指挥中心也需要设置传感器,而且传感器 的数量应达到W个,在观测过程中,没有其他因素进行干扰,且对于不同时间段的信号切换,其消耗的时间,可以忽略不计。所以针对信号控制问题,做出以下 描述:(1)用集合S={S1,S2,S3......Sm}表示控制控制资源m个。(2)用集合 O={O1,O2,O3.........On}表示交叉路口n个。(3)用集合T={T1,T2,https://www.doczj.com/doc/ea6168546.html,}表示交通信号控制分的时间段。(4)并采用φ{φ(i,j,k)}策略进行有效城 市交叉口的交通信号控制,其中,i代表第i个交叉路口,j代表第j个监控设备。 2交通信号优化控制方法的实现 2.1前沿驱动优化 在对城市交通信号优化控制过程中,可以采用前沿引导控制算法,通过对这 种方法的合理利用,改变传统的交通信号控制方法,实现交通信号的优化控制, 但是在实际情况下,最优控制方法适应性不强。所以本文提出Pareto的前沿驱动 粒子群优化算法,该算法的适应性更强,利用该算法进行交通信号优化控制,为 满足交叉路口的通行,先至少提出一种交通信号控制方案,然后提出不同的交通 信号控制方法,并计算最优通行能力控制,进而提出一种最优的交通解决方案。 前沿算法按照一定的流程进行计算,具体的流程如下图所示。 图1:前沿算法流程 2.2延迟分组控制机制 采用前沿算法对交叉口交通信号优化控制后,延迟分组控制也至关重要。所 以在延迟分组控制过程中,交通信号的优先级合理确定是延迟分组控制的关键环节,在确定控制信号的优先级后,还应对信号资源进行合理的分配,一般需要按 照交通信号的先后顺序进行。在交通信号控制过程中,需要先确定控制信号的优 先级,在确定后,应根据初始时间,对过程冲突时间进行合理的调整,进而确定 过程中冲突时间。一般情况下,整个控制工作,就是任务间的冲突时间。由于交 通灯期峰值对交通控制系统具有一定的约束,所以为了保证交通信号控制正常的 运转,还应满足交通灯期峰值功率,在此种条件下,还应采取合理的措施,最大 限度的将得交通信号控制过程中产生的能耗,以此节省能源,降低成本比。

交通信号控制系统解决实施方案

交通信号控制系统解决方案 1概述 交通信号控制系统,是智能交通系统(ITS)在交通管理工作中的基本应用,也是城市智能交通管控系统中最直接、最基础的应用系统。通过建设信号控制系统,实现信号路口联网远程控制、交通流量的采集、路口自适应控制、绿波协调控制以及区域的自适应控制,有效减少车辆的停车次数,节省旅行时间;后台实时调整信号配时,采取多时段控制方式,必要时,可通过智能交通管理中心人工干预,直接控制路口交通信号机执行指定相位,有效的疏导交通,减少行车延误,提高通行能力,缓解日益严峻的城区道路交通拥堵压力,提高城区交通综合管理能力,减少汽车尾气排放,美化环境,提升城区形象。 2系统结构设计 系统结构划分为3级:分别为中心控制级设备、区域控制级设备以及路口控制级设备。交通信号控制系统设备主要包括中心设备、前段设备和通信设备。

(1)中心控制级设备 中心控制级设备作用主要是: ?监控整个系统的运行。 ?协调区域控制级的运行。 ?具备区域控制级的所有功能。(2)区域控制级设备 区域控制级设备作用主要是: ?监控受控区域的运行。

?对路口交通信号进行协调控制。 ?对路口交通信号机的工作状态和故障情况进行监视。 ?通过人机回话对路口交通信号机进行人工干预。 ?监视和控制区域级外部设备的运行。 ?进行交通流量统计处理。 (3)路口控制级设备 路口控制级设备即信号机,其作用主要是: ?控制路口交通信号灯。 ?接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送。 ?接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息。 ?具有单点优化能力。 3系统功能设计 3.1基础功能 (1)区域自适应控制 系统以控制子区作为基本控制单元,综合考虑子区内的交通运行状态(如交通阻塞、交通拥挤、交通顺畅)、交叉口的关联性大小、交叉口的实际交通量,确定公共信号周期与相位差的决策模型,并运用智能优化算法实时优化子区协调控制配时参数,实现控制子区交叉口的协调控制功能。 系统的区域交叉口协调控制能够确保控制区域内的交通流时刻处于最佳运行状态,相邻交叉口之间协调方向的行驶车流可以获得尽可能不停顿的通行权,大大降低车辆在交叉口频繁加减速所产生的交通污染,减少区域交通总的车辆燃油

交通信号控制理论基础

第六章交通信号控制理论基础 经过调查统计发现,将城市道路相互连接起来构成道路交通网的城市道路平面交叉口,是造成车流中断、事故增多、延误严重的问题所在,是城市交通运输的瓶颈。一般而言,交叉口的通行能力要低于路段的通行能力,因此如何利用交通信号控制保障交叉口的交通安全和充分发挥交叉口的通行效率引起了人们的高度关注。 交通信号控制是指利用交通信号灯,对道路上运行的车辆和行人进行指挥。交通信号控制也可以描述为:以交通信号控制模型为基础,通过合理控制路口信号灯的灯色变化,以达到减少交通拥挤与堵塞、保证城市道路通畅和避免发生交通事故等目的。其中,交通信号控制模型是描述交通性能指标(延误时间、停车次数等)随交通信号控制参数(信号周期、绿信比和信号相位差),交通环境(车道饱和流量等),交通流状况(交通流量、车队离散性等)等因素变化的数学关系式,它是交通信号控制理论的研究对象,也是交通工程学科赖以生存和发展的基础。 本章主要针对建立交通信号控制模型所涉及到的基本概念、基本理论与基本方法,对交通信号控制的理论基础进行较为全面深入的阐述。 6.1交通信号控制的基本概念 城市道路平面交叉口是道路的集结点、交通流的疏散点,是实施交通信号控制的主要场所。根据交叉口的分岔数平面交叉口可以分为三岔交叉口、四岔交叉口与多岔交叉口;根据交叉口的形状平面交叉口可以分为T型交叉口、Y型交叉口、十字型交叉口、X型交叉口、错位交叉口、以及环形交叉口等。 6.1.1交通信号与交通信号灯 交通信号是指在道路上向车辆和行人发出通行或停止的具有法律效力的灯色信息,主要分为指挥灯信号、车道灯信号和人行横道灯信号。交通信号灯则是指由红色、黄色、绿色的灯色按顺序排列组合而成的显示交通信号的装置。世界各国对交通信号灯各种灯色的含义都有明确规定,其规定基本相同。我国对交通信号灯的具体规定简述如下:对于指挥灯信号: 1、绿灯亮时,准许车辆、行人通行,但转弯的车辆不准妨碍直行的车辆和被放行的行人通行; 2、黄灯亮时,不准车辆、行人通行,但已越过停止线的车辆和已进入人行横道的行人,可以继续通行;

交通信号控制优化服务解决实施方案

交通信号控制优化服务解决实施方案

————————————————————————————————作者:————————————————————————————————日期:

交通信号控制优化服务解决方案 1概述 交通信号控制优化服务是借助专业团队对交通信号控制方面进行挖掘,以更加有效地缓解目前由于机动车数量过快增长而造成路网交通运行压力增大,道路硬件资源增长严重失衡这一问题。具体服务内容包括: ?对交通信号控制理论及相关技术进行总结,规范信号优化工作流 程,落实责任,建立统一化与个性化相结合的交通信号管理模式,保证交 通信号合理运行,满足各种条件下道路交通参与者的通行需要。 ?通过对相关路口进行周期性调查,及时发现存在不足并予以改善、 跟踪,从而不断提高其运行水平。 ?通过路口排查和调研,对有条件进行协调控制的路口设计协调控 制方案,降低协调控制路口的行车延误,提高交叉口服务能力。 ?以周报、月报和专项分析报告总结归纳工作开展情况及完成效果, 有计划性的回检评价历史优化路口,提炼可取之处及考虑不周的地方,对 未来将有可能发生变化的交叉口或路段有一定预测性。 2服务内容 2.1交通信号管理基础工作 (1)交通信号控制理论及相关技术总结 交通信号控制理论及相关技术的总结包括对交通信号控制相关理论的总结和对现今主流信号控制模式及方法的总结2部分内容。 ?对交通信号控制相关理论的总结 包括对信号控制涉及的相关参数的总结、对通过能力的总结及对信号路口对车流停滞作用的总结3部分内容。 ?对现今主流信号控制模式及方法的总结 包括对单点信号控制模式与方法的总结、对交通信号子区划分的模式与方法的总结、对主干道交通信号协调控制模式与方法的总结、对同类型交通信号路口协调控制模式与方法的总结、对长距离交通信号协调控制模式与方法的总结以及

交通信号控制系统

1交通信号控制系统概述交通信号控制系统是智能交通管理系统的重要子系统,其主要功能是自动协 1.1调和控制整个控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染减至最小,充分发挥道路系统的交通效益。 必要时,可通过控制中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。 NATS交通信号控制系统用于城市道路交通的控制与管理,可以提高车速、减少延误、减少交通事故、降低能耗和减轻环境污染。 从上个世纪八十年代中期以来,中国电子科技集团公司第二十八研究所就开始了NATS系统和路口交通信号控制机的研制开发。 该系统通过了国家鉴定验收,获得了国家重大科技攻关成果奖、公安部科技进步一等奖和国家科技进步三等奖。 NATS交通信号控制系统特点: 适合中国城市混合交通的特点,具有自行车控制功能;系统支持多种硬件平台(微机、工作站以及大、中、小型计算机),多种软件平台(WINDOWS 98/NT/2000/XP);支持多种外部设备(动态地图板、室内信息板、室外信息板、违章记录仪…);支持多种系统互联(电视监视系统、地理信息系统、车辆定位系统、违章捕捉系统、信息管理系统…);系统配置灵活、裁剪方便;支持远程控制和维护;支持多种通信方式(光缆、电话线、GPRS/CDMA无线通信、城域网…);系统人机界面友好,显示内容丰富,操作使用方便;与国外同类系统相比,具有很高的性能价格比。 1.2系统结构 1.2.1系统控制应用层结构NATS交通信号控制系统采用三级分布式递阶基本控制结构: 中心控制级,区域控制级,路口控制级(参见下图)。

中心控制级区域控制级1区域控制级2路口控制级路口控制级路口控制级区域控制级N 1.2.2系统基本结构区域监控台动态地图板室内信息板违章捕捉仪区域控制计算机数据通信控制机(光端机)光纤(光端机)(光端机)路口信号机…(光端机)(光端机)路口信号机室外情报板…室外情报板交通信号灯车辆检测器其中: 区域控制计算机监视、控制、协调整个系统的运行,可同时控制128个外部设备,如果外部设备超过128路,可采用多台区域控制计算机。 区域监控台用作交通工程师工作台,实时显示被控区域内的交通状态和信息,下达人机会话命令;数据通信控制机为区域控制计算机与户外设备提供通信通道;路口信号机负责采集、处理、传送交通信息,控制路口信号灯色;环形线圈检测器和微波检测器安装位置可分布在路口或者路段;动态地图板实时显示被控区域内的交通状态。 1.3系统功能 1.3.1系统三级控制功能1)中心控制级监控整个系统的运行;协调区域控制级的运行;具备区域控制级的所有功能。 2)区域控制级监控受控区域的运行;对路口交通信号进行协调控制; 对路口交通信号机的工作状态和故障情况进行监视;通过人机会话对路口交通信号机进行人工干预;监视和控制区域级外部设备的运行;进行交通流量统计处理。 3)路口控制级控制路口交通信号灯;接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送;接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息;具有单点优化能力。 4)终端控制为了方便灵活地控制系统,系统可挂接终端控制计算机(工作站),终端控制计算机提供与区域控制计算机完全同样的显示操作功能,终端控制计算机既可以是本地的(如放在管控中心),也可以是远程的(如在任何地方通过公安网进行控制)。 1.

城市道路智能交通信号控制系统

城市道路智能交通信号控制系统 智能交通信号控制系统是城市道路交通管理系统中对交叉路口、行人过街,以及环路出入口采用信号控制的子系统,是运用了交通工程学、心理学、应用数学、自动控制与信息网络技术以及系统工程学等多门学科理论的应用系统。 主要包括交通工程设计、车辆信息采集、数据传输与处理、控制模型算法与仿真分析、优化控制信号调整交通流等。国内外各大中城市已有的交通信号控制系统就是根据不同环境条件,基于各自城市道路的规划和发展水平建立起来的。 国家重点基础研究规划(973)项目“信息技术与高性能软件”中设立的二级课题“城市交通监控系统”,结合我国城市交通发展的特点,确定了建立实时自适应的城市道路智能交通信号控制系统的智能化管理的发展方向。 智能交通信号控制系统的基本组成 智能交通信号控制系统的基本组成是主控中心、路口交通信号控制机以及数据传输设备。其中主控中心包括操作平台、交互式数据仓、效益指标优化模型、数据(图象)分析处理等。具体结构框架见下图。

城市道路智能交通信号控制系统框架 智能交通信号控制系统的核心 智能交通信号控制系统的核心是控制模型算法软件,是贯穿规划设计在内的信号控制策略的管理平台,体现着交通管理者的控制思想,它包括信号控制系统将起到的作用和地位。 目前,国内外已应用的信号控制系统大多是以优化定周期方案、优化路口绿信号配比以及协调相关路口通行能力为基础的,是根据历史数据和自动检测到的车流量信息,通过设置的控制模型算法选取适当的信号配比控制方案,是被动的控制策略。 应用较多的核心软件即效益指标优化模型的是英国运输和道路研究所(TRRL)

研制的SCOOT系统(Split Cycle Offset Optimization Technique)和澳大利亚悉尼为应用背景开发的SCATS系统 (Sydney Coordinated Adaptive Traffic System),他们是动态的实时自适应控制系统的早期代表,也是未来一个时期交通信号控制系统智能化发展的开发基础。 随着网络技术的发展,交互式控制策略使信号控制由感控到诱导实现了真正的智能,交通信号控制系统不仅可以检测到车流量等交通信息参数,调控路口绿信号配比,变化交通限行、禁行等指路标志,还可以根据系统联接的数据仓完成与交通参与者之间的信息交换,向交通参与者显示道路交通信息、停车场信息,提供给交通参与者合理的行驶线路,以达到均衡道路交通负荷的主动的控制策略。 尤其重要的是计算机网络技术和数字化使数据传输和信息利用得到了可靠保证。可以说,城市道路智能交通信号控制系统是城市道路交通管理随着信息产业技术迅猛发展的综合产物。 交通信号控制系统的主要术语和参数 周期:是指信号灯色发生变化,显示一个循环所需的时间,也称周期长,即红、黄、绿灯时间之和。 相位:即信号相位,是指在周期时间内按需求人为设定的,同时取得通行权的一个或几个交通流的序列组。 相位差:具有相同周期长的相关路口,在同方向上的两个相关相位的启动时间差,称为相位差。 绿信比:是指在周期长内的各相位绿灯时间与周期长之比。 饱和流量:是衡量路口交通流施放能力的重要参数,通常是指一个绿灯时间内的连续通过路口的最大车流量。 流量系数:是实际流量与饱和流量的比值。既是计算信号配时的重要参数,又是衡量路口阻塞程度的一个尺度。 绿灯间隔时间:是指从失去通行权的相位的绿灯结束,到下一个得到通行权的相位绿灯开始所用的时间。 有效绿灯时间:是指被有效利用的实际车辆通行时间。它等于绿灯时间与黄灯

优化道路交通信号灯设置 努力提高城市道路通行效率

优化道路交通信号灯设置努力提高城市道路通行效率 交通信号灯是在交通流有冲突的交叉口或路段,用于在时间和空间上给不同方向交通流分配通行权的一种交通控制和指挥的设施,交通信号灯轮流显示不同的灯色(红色、黄色、绿色)来指挥不同方向交通流的通行或停止。1868年,英国伦敦安装使用了世界上第一台交通信号灯,揭开了城市交通信号灯控制的序幕,经过近百余年的发展,交通信号灯在世界各国交通管理中得到广泛应用,在缓解道路交通拥堵、减少交通事故、改善交通环境等方面发挥着无可替代的重要作用。 交通信号灯在交通管理中的广泛应用,相对其他交通控制方式而言,交通信号灯体现出诸多优势,如交通信号灯通过颜色的变换明确告知驾驶人路权分配情况,不需驾驶人作出自主判断,合理分配通行路权,对交叉路口进行有效的控制和管理,对相互冲突的交通流进行有效的分配和控制,减少交通事故的发生等等;但其效能也不是万能的,交通信号灯给我们带来诸多便利的同时,其本身也存在一定的不足,如交通信号灯的工程造价以及维护费用相对较高,加大低交通量交叉路口的通行延误时间,不合理的信号配时可能会存在反作用,降低通行效率,有可能增加追尾事故等等。因此交通信号灯设置和使用应当综合考虑多方面因素,扬长避

经过科学判断和正确设计,能够合理设置和运行的交通信号灯,可以兼有改善交通安全的效果,但交通信号灯的主要目标和功能是使各方向交通有秩序、高效率的通行。如果交通信号灯只被看成一种纯粹的交通安全设施,仅仅是为了交通安全而盲目设置,往往会带来很多反面效应,国内外的一些研究表明,在不合理的地点设置交通信号灯,会出现相邻道路无车辆通行,但驾驶人却需要长时间等候交通信号,增加交通延误,通行效率降低,也造成能源的消耗和运行费用的浪费,而当驾驶人在相当长的时间内并未看到相邻道路有车辆通行,往往会引起故意或无意的闯红灯,从而增加发生交通事故的可能性,信号灯控制交叉路口的交通事故,多发生在交通流量较低的交叉路口,或是交通量较低的时段内。 因此,我们在交通管理实际工作中,必须要正确理解和严格把握交通信号灯的设置条件,本着科学严谨的工作态度,对是否设置交通信号灯要进行认真的交通调查,获得科学的数据作为依据,避免不经认真分析研究,就盲目设置交通信号灯,减少无谓的能源消耗和投资浪费,避免因交通信号灯设置不合理而引发交通事故。 二、合理确定信号灯的设置位置和数量 当路口、路段满足了设置信号灯的条件,我们就应当根据道路实际情况,合理选择确定信号灯的设置位置和数量,

智能交通信号灯控制系统设计

编号: 毕业论文(设计) 题目智能交通信号灯控制系统设计 指导教师xxx 学生姓名杨红宇 学号201321501077 专业交通运输 教学单位德州学院汽车工程系(盖章) 二O一五年五月十日

德州学院毕业论文(设计)中期检查表

目 录 1 绪论............................................................................................................................ 1 1.1交通信号灯简介...................................................................................................... 1 1.1.1 交通信号灯概述.................................................................................................. 1 1.1. 2 交通信号灯的发展现状...................................................................................... 1 1.2 本课题研究的背景、目的和意义 ......................................................................... 1 1. 3 国内外的研究现状 ................................................................................................. 1 2 智能交通信号灯系统总设计.................................................................................... 2 2.1 单片机智能交通信号灯通行方案设计 ................................................................. 2 2.2 功能要求 ............................................................................... 错误!未定义书签。 3 系统硬件组成............................................................................................................ 4 4 系统软件程序设计.................................................................................................... 5 5 结论和展望................................................................................................................ 6 参考文献...................................................................................... 错误!未定义书签。 杨红宇 要: 但是传统的交通信号灯不已经不能满足于现代日益增长的交通压力,这些缺点体现在:红绿 以及车流量检测装置来实现交通信号灯的自控制,随着车流量来改变红绿灯1 绪论 1.1 1.1.1 为现代生活中必不可少的一部分。

交通信号控制系统方案

交通信号控制系统 1.1项目概述 对当地的简单介绍及交通状况的分析。 1.1.1系统概述 城市交通的管理与控制是智能交通系统的重要组成部分,城市交叉口的通行能力是决定道路通行的关键。交通信号控制系统对城市交叉口进行系统化协调控制,能缓解拥堵区域的交通压力,使交通流量在整个城市范围内的分配趋于合理,能够降低或消除对道路的瓶颈影响,提高道路的通行能力和服务水平。 交通信号控制系统的发展经历了点控、线控和面控3个阶段: (1)每个交叉口的交通控制信号只按照该交叉口的交通情况独立运行,不与其邻近交叉口的控制信号有任何联系的,称为单个交叉口交通控制,也称为单点信号控制,俗称“点控制”。 (2)把干道上若干连续交叉口的交通信号通过一定的方式联结起来,同时对各交叉口设计一种相互协调的配时方案,各交叉口的信号灯按此协调方案联合运行,使车辆通过这些交叉口时,不致经常遇上红灯,称为干道信号联动控制,也叫“绿波”信号控制,俗称“线控制”。 (3)以某个区域中所有信号控制交叉口作为协调控制的对象,称为区域交通信号控制系统,俗称“面控制”。 1.1.2设计目标 交通信号控制系统目标如下: (1)降低交通延误,降低停车次数,提高车速,降低机动车油耗,减少交通污染,改善城市环境; (2)科学控制交通流,最大限度利用现有道路,提高道路的通行能力; (3)使交通有序运动,从而改善交通秩序,有利于交通安全; (4)节省警力,降低交警的劳动强度。 1.1.3设计原则 根据我公司多年来在城市智能交通领域的建设经验,对公安、交通行业业务需求的深入理解,结合我国交通发展的现状,根据信号控制系统设计理论,在设

计过程中秉承以下原则: 1.1.3.1标准化原则 交通信号控制系统严格按照公安部颁布的标准GA47-2002《道路交通信号控制机》和GB/T20999-2007《交通信号控制机与上位机间的数据通信协议》规定的技术要求进行设计,所有数据格式与接口均符合国家标准,并在此基础上加以完善,以适应各地的交通状况。 1.1.3.2先进性原则 采用科学的、主流的、符合发展方向的技术、设备和理念,系统集成化、高清化、网络化、模块化,使系统具有“国内领先,国际先进”的总体水平,能够适应交通控制未来发展的要求。 1.1.3.3实用性原则 系统提供清晰、简洁、友好的中文操作界面,操控简便灵活,易学易用,便于管理和维护,系统具有自动恢复功能,整个系统的操作简单、快捷、环节少,以保证不同的操作者都能熟练操作系统,具有高度友好的界面和使用性。 系统设计、选材、选型符合国家及行业的有关标准,与用户及其上级管理部门的有关规定要求相适应,与用户在经济能力方面实际情况相吻合。 1.1.3.4可靠性原则 交通信号控制系统选用集成度和稳定性高的设备,具有系统自诊断和维护管理功能、远程设备监控、数据备份等功能。室外设备具有耐高温、耐高湿、耐低温,防雷、防尘等特性,保证系统的正常可靠运行。 1.1.3.5安全性原则 交通信号控制系统具有防误操作特性,通过合理的硬件结构设计、有效的外场保护措施以及完善的内部管理机制有效避免系统遭到恶意攻击和数据被非法提取的现象出现,保障系统的信息安全。同时通过数据加密、备份、补录、恢复等措施,提高系统在传输链路故障时的数据完整性及安全性。 1.1.3.6经济性原则 交通信号控制系统的可靠性得到提升,因此系统的维护成本显著下降。采用技术先进的设备,通过最优化的系统集成,设备使用寿命长,系统经济性显著提高。

道路交通信号控制设计方案

道路交通信号控制设计方案 1.KITOZER_1.0简易信号机 1.1适用围: 适用畴为两相位控制的过街请求,广泛的使用于超市、学校、医院等人流较多的非十字路口。该产品具有成本低、产品稳定可靠、操作简单、调试方便等特点。 1.2技术指标: 交流输入:220(±20%)VAC,50±2HZ。 输入交流功耗≤50W (不包括信号灯功耗)。 额定电流:20A。 工作环境温度:-20℃~70℃ 1.3功能特点: 两相位过街请求运行模式。 可运行黄闪、全红、全灭等降级模式。 操作简单,使用方便的上位机界面控制。 兼容3.0以上的信号机组网协议。 2.KITOZER_1.1移动信号机 2.1适用围: 是路口停电或者其他紧急情况下信号机的替代产品,该产品使用太阳能提供电源,续航能力达到72小时。另外,该产品

具有两相位、四相位、黄闪等多种运行模式,完全满足目前十字路口信号灯车辆控制的需求。 2.2技术指标: 交流输入:220(±20%)VAC,50±2HZ。 输入交流功耗≤50W (不包括信号灯功耗)。 额定电流:20A。 工作环境温度:-20℃~70℃ 2.3功能特点: 太阳能信号灯是一种将太阳能转换成电能的环保信号灯。 可设置两相位、四相位、黄闪等多种运行模式。 绿灯时间可按路况需求任意调配。 蓄电池充电装置,一次充电最少可用72小时。 信号灯的高度可适度调节。 使用方便、操作简单,可随时工作。 3.KITOZER_1.2行人过街触发信号机 3.1适用围: 该产品是专门为学校、医院、商场等门口车流量稳定,只有车道和人行道的小型交通路口,方便行人安全过街而设计的设备。该产品具有成本低、安装方便、操作简单、在户外恶劣气候条件下运行稳定等诸多特点。 3.2技术指标:

相关主题
文本预览
相关文档 最新文档