当前位置:文档之家› 二维色散和各向异性磁化等离子体光子晶体色散特性研究

二维色散和各向异性磁化等离子体光子晶体色散特性研究

二维色散和各向异性磁化等离子体光子晶体色散特性研究
二维色散和各向异性磁化等离子体光子晶体色散特性研究

基于FDTD二维光子晶体器件设计软件的开发-图文(精)

第 23卷第 6期计算机应用与软件 Vo l 23, No . 6 2006年 6月 Co m puter Applicati o ns and Soft w are Jun . 2006 基于 FDTD 二维光子晶体器件设计软件的开发 彭小舟张冶金杨四刚陆洋陈向飞谢世钟 (清华大学电子工程系北京 100084 收稿日期 :2004-08-31。基金项目 :国家重点基础研究规划 973项目(2003CB314907 。彭小舟 , 硕士生 , 主研领域 :光子晶体平板类与 光纤类器件的研究。

摘要介绍了一个基于时域有限差分法 (FDTD 的二维光子晶体器件设计软件PCCAD, 所用的核心算法是时域有限差分法。 与同类 FDTD 商业软件相比 , 特点在于其具有多种光子晶体结构编辑模板 , 多种点源、线源 , 先进的边界吸收技术及多种参数优化扫描等功能。快速傅里叶变换及 P ade 算法在软件设计中的应用使模拟更加精确、快速。软件适用于各种平面光子晶体的仿真设计 , 探索新的器件结构。最后 , 利用此软件设计了直波导、 T 型波导等二维平面光子晶体器件。关键词时域有限差分法 (FDTD 光子晶体设计软件 THE DEVELOP M ENT OF 2D PHOTON I C CRYS TALS DEVI CE DESI GN S OFT WARE BAS ED ON FDTD Peng X iaozhou Zhang Y ejin Y ang S i g ang Lu Y ang Chen X iangfe i X ie Sh izhong (TheE lectron ics E ng i n ee ring D e part m ent , T sing hua Un i v e rsit y, B eijing 100084, Ch i na Abstrac t A 2D pho ton ic crysta l s dev ice desi gn so ft ware PCCAD, which is based on fi n ite d iffe rence ti m e do m a i n m ethod (FDTD , i s i n troduced i n this paper . T he key a l go rith m used i n t h i s so ft wa re is FDTD. Compared w i th t he ex isting comm erc i a l FDTD appli cations , PCCAD has t he fo llo w i ng advantage :p lenty of photonic crysta l s desi gn te m plates , po int and li ne i ncidentw ave sou rce , advanced abso rb bound conditi on and the facti on o f para m ete r opti m ize scann i ng . T he applica ti on o f FFT and P ade a l gor it hm bring m ore prec i s i on and save much ti m e from s i m u l ating . Th is so ft w are is s u itable for 2D photonic crystals dev ice design or l ook i ng f o r new structure . A t the l ast of this paper , so m e types o f pho t on i c c rystals w avegu i de i s designed usi ng t h is so ft w are . K eywords FDTD Pho ton ic crysta l Des i gn soft w are

等离子体特性实验

实验简介 等离子体是由大量的带电粒子组成的非束缚态体系,是继固体、液体、气体之后物质的第四种聚集状态。等离子体有别于其他物态的主要特点是其中长程的电磁相互作用起支配作用,等离子体中粒子与电磁场耦合会产生丰富的集体现象。气体放电是产生等离子体的一种常见形式,在低温等离子体材料表面改性、刻蚀、化学气相沉积、等离子体发光等方面有广泛的应用,同时也是实验室等离子体物态特性研究的重要对象。气体放电实现的方式可以千差万别,但产生放电的基本过程是利用外(电)场加速电子使之碰撞中性原子(分子)来电离气体。 本实验的目的是领会气体放电的基本原理和过程;掌握常规的静电探针诊断方法;了解等离子体中离子声波的激发、传播、阻尼等基本特性。 实验原理 ?气体放电原理与实验装置 ●利用电子对中性气体的轰击使气体电离是产生等离子体的一种 常见的方法。在直流放电情况下,当灯丝(钨、鉭)达到足够高 的温度时,许多电子会克服表面脱出功而被发射出来。这些初始 电子在外加的直流电场中加速,获得足够的能量与中性气体碰撞 并使之电离。室温下大多数常用气体的第一电离能在20eV左右, 故而施加于阴极(灯丝)与阳极(本实验中为真空室壁)之间的 电位差必须高于20V。遭轰击而被剥离的电子称为次级电子,与 初始电子相比,次级电子的能量较低。等离子体中大多数电子是 次级电子。电子碰撞电离截面在能量为几十电子伏左右达到最大, 通常在阴极与阳极之间施加30~100V电压就可以形成稳定的直流 放电。 ●有几种因素限制了电极间产生的放电电流的大小。首先是阴极的 电子发射能力的限制,阴极表面的发射电流密度由理查森 (Richardson)定律给出:

光子晶体简介及应用

光子晶体及其应用的研究 (程立锋物理电子学) 摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G £lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。的滤波特性,加以优化,则可以实现带通滤波器。迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。 关键词:光子晶体;算法;应用;

1光子晶体简介 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。人们感到了电子产业发展的极限,转而把目光投向了光子。与电子相比,以光子作为信息和能量的载体具有优越性。光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。近来大量的理论和实验表明确实存在这样一种材料,其典型的结构是一个折射率周期变化的三维物体,它的周期为光的波长,折射率变化比较大时,会出现类似于电子情况的光子能带和带隙。这种具有光子能带和带隙的材料被称为光子晶体。 在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在

光子晶体原理及应用

一、绪论 1.1光子晶体的基本概念 光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。人们又将光子晶体称为光子带隙材料。 与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。二维光子晶体是介电常数在二维空间呈周期性排列的结构。 光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。 1.2光子带隙 光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。 二、光子晶体的晶体结构和能带结构特性研究 2.1一维光子晶体的传输矩阵法 设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的

等离子体实验讲义

气体放电中等离子体的研究 一、 实验目的 1.了解气体放电中等离子体的特性。 2.利用等离子体诊断技术测定等离子体的一些基本参量。 二.实验原理 1.等离子体及其物理特性 等离子体(又称等离子区)定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。也就是说,其中正负电荷密度相等,整体上呈现电中性。等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。 (3)宏观上是电中性的。 虽然等离子体宏观上是电中性的,但是由于电子的热运动,等离子体局部会偏离电中性。电荷之间的库仑相互作用,使这种偏离电中性的范围不能无限扩大,最终使电中性得以恢复。偏离电中性的区域最大尺度称为德拜长度λD 。当系统尺度L >λD 时,系统呈现电中性,当L <λD 时,系统可能出现非电中性。 2.等离子体的主要参量 描述等离子体的一些主要参量为: (1)电子温度e T 。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为e n ,正离子密度为 i n ,在等离子体中 e i n n 。 (3)轴向电场强度 L E 。表征为维持等离子体的存在所需的能量。 (4)电子平均动能e E 。 (5)空间电位分布。 此外,由于等离子体中带电粒子间的相互作用是长程的库仑力,使它们在无规则的热运动之外,能产生某些类型的集体运动,如等离子振荡,其振荡频率Fp 称为朗缪尔频率或等离子体频率。电子振荡时辐射的电磁波称为等离子体电磁辐射。 3.稀薄气体产生的辉光放电 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10~102P a时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图2.3-1所示。8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)辉区(即正辉柱),(7)阳极暗区,(8)阳极辉

光子晶体及其器件的研究进展

深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩 专业 课程名称、代码 年级姓名 学号时间2016年12月 任课教师

子晶体及其器件的研究进展 摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由 于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。 关键词:光子晶体;光子晶体的应用;发展趋势 Research progress of photonic crystals and devices Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected. Key words:Photonic crystal; application of photonic crystal; development trend 1引言 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。 目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得

简单六方结构二维光子晶体能带的COMSOL模拟

简单六方结构二维光子晶 体能带的C O M S O L模拟 Prepared on 22 November 2020

简单六方结构二维光子晶体能带的COMSOL 模拟 北京东之星应用物理研究所 伍勇 1.引言 COMSOL 携带的案例库里,其中一篇 (以下简称)对砷化镓简单正方格子2D 光子能带进行了完整计算和研究。本文将程序用于简单六方结构,并将结果在此做一介绍。 2.关于Floquet (弗洛盖)波矢F k 这是入门COMSOL 光子晶体能带模拟的重要概念,在另一案例 中,在Floquet 周期性边界条件一段写明: )d k (i e )d x (p )x (p ?-+=由此我判断Floquet 波矢就是Bloch (布洛赫)波矢,但“帮助”文档中有:)sin a n cos a (sin k k 21211F ααα ?+=,以正格子基矢21a ,a 表示(其文没有任何几何插图和物理说明),使我决定必须 在六方格子中选择矩形单胞作为周期单元,以使计算机程序能够运行我的几何方案。 3.几何建模 图1作为试探选择的几何模型,圆形柱代表以GaAs 作为格点材料,在空气介质中周期性排列,形成二维六方结构人造晶体。a 是晶格常数。 z ? 是z 方向的单位矢量

以上根据倒格子基矢定义计算出1b ,2b 及其分量。由倒格子基矢1b ,2b ,构建长方格子的布里渊区也是长方结构如图2: 4.二维光子晶体主方程 COMSOL 在“模型开发器”[电磁波,频域]写出方程形式如下: 0)()(0 201=--????-E j k E r r ωεσεμ, 在中,下面目录[波方程,电]中直接简化为, 电磁波在光子晶体中的传播遵从麦克斯韦方程,上述方程可由麦克斯韦方程组出发导出 介质中的麦克斯韦方程组 E D ε=,H B μ=,E J σ= 在电介质中一般认为自由电荷,自由电流密度(电导率)为零。本文档不考虑 磁性质,0=ρ,0=J ,1=r μ 传播模态电场函数COMSOL 表达为: )(t i e z z ik e )y ,x (E )t ,z ,y ,x (E 5ω-= , 在周期结构中,它应具有Bloch 波的性质,不考虑衰减损耗。注意这里次上标的符号与我们习惯的教科书里正负符号相反。 由(2)两端取旋度,将(4)代入得: 22t E )E (??-=???? με,μεω22=k 绝缘介质,22020 20022n k c k r r r r ===μεωμμεεω,

尘埃粒子及物理特性

尘埃粒子及物理特性
尘埃粒子及物理特性 (一) 、尘埃等离子体简介 等离子体和尘埃是已知宇宙空间中最为常见的两种成分,而二者的共存以及相可 作用则开辟了一个近年来非常新兴的研究领域一一尘埃等离子体。它不仅出现在等离 子体物理领域,而且也常出现在空间物理、电波传播,半导体科学、材料科学等领加 工、磁约束核聚变、空间探测等领域的应用有着重要的参考价值,同时它能够揭示等 离子体物理学以及其它相关领域中新的物理现象。b5E2RGbCAP 1.什么是尘埃等离子体 尘埃等离子体是指在等离子体巾包含了大量带电的固态弥散微粒子。尘埃粒子厂 泛存在于自然界,尤其是在宇宙空间中,例如星际空间、太阳系、地球电离层以及暂 星尾和行星环中都存在着各种尺度和密度的尘埃粒子。另外,尘埃粒子也存在于
p1EanqFDPw
实验室等离子体和工业加工等离子体中。 2.尘埃粒子的来源 在太阳系中,人们已探测到各种形态和来源的尘埃粒子,如空间物质的碎片、陨 石微粒、月球的抛射物、人类对空间的”污染”物等。在星际云中,尘埃粒子可以是 电介质,如冰、硅粒等,也可能是类金属的物质,如石墨、磁铁矿等物质。尘埃颗粒 也普遍存在与实验室装置中,在电子学实验室中,尘埃粒子来源于电极、电介质的器 壁,或来源于充入的气体等。一般尘埃粒了的可能质量范围大约为 10-2~10-15g ,
1/5

尺寸可能范围从几十纳米到几十微米不等。在等离子体中,这些尘埃粒子凶与电子、 离子碰撞而携带电荷,携带 等离子体问题的研究比较复杂。DXDiTa9E3d 3.尘埃等离子体的特性 (1) .尘埃粒子具有大的荷电特性 由于球形尘埃粒子的半径 a 远小于等离子体的德拜长度 b ,因此尘埃小球具有的 电势将使其上的电子的温度与等离子体中的电子温度同量级,即 e ~kTe ,(k 为玻 尔兹曼常数) 。对应于这个电势,尘埃粒子上的电荷通常有很大的数值,一般尘埃粒 子带有 102—106 电子电荷。“浸”在等离子体中的尘埃粒子会受到屏蔽作用,即由等 离子体中的带电粒子形成尘埃粒子的屏蔽云.RTCrpUDGiT (2).尘埃离子荷电量的可变性 当尘埃粒子间的平均距离 d 远大于等离子体的德拜长度时,可不考虑尘埃粒子间 的相互作用,即孤立地研究单个尘埃粒子。尘埃颗粒所带的电荷是可变的,它由 尘埃粒子本身的特性(前一时刻的带电情况) 和它周围等离子体的性质(如电子离子充 电电流、二次电子发射、光电发射、尘埃粒子的速度等) 有关,同时等离子体中电荷 密度扰动、温度扰动,以及一些外界环境条件的改变都可以改变尘埃粒子的带电情 况。例如有以下几种方式:a 、等离子体中电子、离子的熟运动将形成对尘埃粒子的 充电电流。一个带负电的尘埃粒子,它将排斥电子,吸引离子,引起电子电流减小, 使离子电流增大。b 、当碰撞尘埃粒子的初次电子具有足够大的能量时,可能引起尘 埃粒子的二次电子发射,从而导致尘埃粒子电势升高。C 、在尘埃粒子处于强的紫外 辐射的环境时(如太阳系中的一些情况) ,尘埃粒子可辐射光电子,相当于存在一个正 的充电电流。d 、尘埃粒子表面的化学反应,激光或射频电磁场的作用等都可能影响 尘埃粒子的荷电状况。当尘埃粒子间的平均距离 d 远大于等离子体的德拜长度这个条
2/5

综述光子晶体的研究进展

光子晶体的最新研究进展 (学号:SA12231016 姓名:陈飞虎) 摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。 关键词:光子晶体研究进展 1 引言 自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领

域[3-4]有着广泛应用。当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。因此可调控的光子晶体成为各个应用领域的研究热点和方向。 2 光通信技术方向的研究进展 传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。 光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。PCF的

简单六方结构二维光子晶体能带的COMSOL模拟

简单六方结构二维光子晶体能带的COMSOL 模拟 北京东之星应用物理研究所 伍勇 1.引言 COMSOL 携带的案例库里,其中一篇(以下简称)对砷化镓简单正方格子2D 光子能带进行了完整计算和研究。本文将程序用于简单六方结构,并将结果在此做一介绍。 2.关于Floquet(弗洛盖)波矢F k 这是入门COMSOL 光子晶体能带模拟的重要概念,在另一案例中,在Floquet 周期性边界条件一段写明: )d k (i e )d x (p )x (p 由此我判断Floquet 波矢就是Bloch (布 洛赫)波矢,但“帮助”文档中有:)sin a n cos a (sin k k 21211F ,以正格子基矢21a ,a 表示(其文没有任何几何插图和物理说明),使我决定必须在六方格子中选择矩形单胞作为周期单元,以使计算机程序能够运行我的几何方案。 3.几何建模 图1作为试探选择的几何模型,圆形柱代表以GaAs 作为格点材料,在空气介质中周期性排列,形成二维六方结构人造晶体。a 是晶格常数。

z ? 是z 方向的单位矢量 以上根据倒格子基矢定义计算出1b ,2b 及其分量。由倒格子基矢1b ,2b ,构建长方格子的布里渊区也是长方结构如图2: 4.二维光子晶体主方程 COMSOL 在“模型开发器”[电磁波,频域]写出方程形式如下: 0)()(0 201 E j k E r r , 在中,下面目录[波方程,电]中直接简化为, 电磁波在光子晶体中的传播遵从麦克斯韦方程,上述方程可由麦克斯韦方程组出发导出 介质中的麦克斯韦方程组 E D ,H B ,E J 在电介质中一般认为自由电荷,自由电流密度(电导率)为零。本文档不考虑磁性质,0 ,0 J ,1 r 传播模态电场函数COMSOL 表达为:)(t i e z z ik e )y ,x (E )t ,z ,y ,x (E 5 , 在周期结构中,它应具有Bloch 波的性质,不考虑衰减损耗。注意这里次上标的符号与我们习惯的教科书里正负符号相反。 由(2)两端取旋度,将(4)代入得: 22t E )E ( , 22 k 绝缘介质,

光子晶体发展及种类

光子晶体及光子晶体光纤的研究现状与发展趋势 摘要:光子晶体光纤(PCF)由于具有传统光纤无法比拟的奇异特性,吸引了学术界和产业界的广泛关注,在短短的十年内PCF的研究取得了很大的进展。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF的发展以及最新成果。 关键词:光子晶体光子晶体光纤光子晶体光纤激光器 1、前言 光子晶体光纤(photoniccrystalfiber,PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具有许多奇异的特性,有效地扩展和增加了光纤的应用领域[1]。在光纤激光器这一领域内,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作[2]。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF的发展以及最新成果。 2、光子晶体光纤的导光原理 按导光机理来说,PCF可以分为两类:折射率导光机理和光子能隙导光机理。 2.1折射率导光机理 周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率(空气)之间有一定差别,从而使光能够在纤芯中传播,这种结构的PCF导光机理依然是全内反射,但与常规G.652光纤有所不同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF 中的小孔尺寸比传导光的波长还小的缘故[3]。 2.2光子能隙导光机理 理论上求解光波在光子晶体中的本征方程即可导出实芯和空芯PCF的传导条件,即光子能隙导光理论。如图2所示,光纤中心为空芯,虽然空芯折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。当小孔间距和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。最近有研究表明,这种PCF可传输99%以上的光能,而空间光衰减极低,光纤衰减只有标准光纤的1/2~1/4[4]。 空芯PCF光子能隙传光机理具体解释为:在空芯PCF中形成周期性的缺陷是空气,传光

光子晶体

光子晶体的制备及应用 王文瀚12S011029 1 引言 光子晶体(Photonic Crystals, PCs)是一种人工周期介质结构,由不同折射率材料周期性地交替排列而成,这种周期介质结构最早由Bykov于1972年提出。1987年,Yablonovitch和John分别在研究抑制原子的自发辐射和光子的局域化问题中也各自独立地提出了这种结构,并在后来的研究中将其命名为光子晶体。 实际上,在自然界中就存在着光子晶体结构,如蛋白石、孔雀羽毛、蝴蝶翅膀上的鳞状覆盖物、以及澳洲海老鼠的毛发。蝴蝶翅膀上的鳞状覆盖物是一种周期性结构。这种周期性结构可以限制光在其中的传输,让某些波长的光通过,而让另一些波长的光完全被反射。正因为如此,才形成了蝴蝶翅膀表面绚烂的花纹和色彩。这种周期性结构与Yablonovitch和John提出的光子晶体概念是相吻合的。 当然,自然界中这样的例子只是少数,目前更多的光子晶体是由人工加工制作而成。1990 年,Ho和Chan等人第一次从理论上论证了三维金刚石结构具有完全光子禁带。1991 年,Yablonovitch团队通过从一定角度对半导体介质进行钻孔,首次成功制作了具有完全禁带的三维金刚石结构光子晶体,禁带频率范围为13GHz~15GHz。[1] 2 光子晶体原理 最简单的的光子晶体是由A、B两种材料在一个方向上周期交替排列形成,这种结构叫一维光子晶体,如图1(a)所示。A、B交替的空间周期a叫做光子晶体的晶格常数,这与由原子构成的普通晶体中的晶格常数相对应。普通晶体的晶格常数通常都在埃的数量级,而光子晶体的晶格常数则通常与工作波段的电磁波波长在同一个数量级。比如,在可见光波段,一般为1μm量级或更小,而在微波段,则一般为1cm 左右。根据光子晶体中介质周期分布的维数,可以把光子晶体分为一维、二维和三维光子晶体,分别如图 1 (a)、(b)、(c)所示。 (a) 一维光子晶体结构(b) 二维光子晶体结构(c) 三维光子晶体结构 图1 光子晶体结构示意图

光子晶体的制备与应用研究_李会玲

光子晶体的制备与应用研究* 李会玲① 王京霞② 宋延林③ ①助理研究员,②副研究员,③研究员,中国科学院化学研究所,北京100190 *国家自然科学基金(50625312,U0634004,20421101) 关键词 光子晶体 胶体晶体 自组装 光学器件 光子晶体以其特殊的周期结构和可以对光子传播进行调控的特性被称为“光半导体”,被认为是未来光子工业的材料基础。光子晶体的制备和光学特性研究受到高度关注,并在各类光学器件、光导纤维通讯和光子计算等领域呈现广阔的应用前景。本文综述了光子晶体制备和应用研究方面近年来的主要进展。 1光子晶体简介 1987年,美国贝尔通讯研究所的Yablonovitch[1]在研究抑制自发辐射时提出“光子晶体”的概念。几乎同时,美国普林斯顿大学的John[2]在讨论光子局域时也独立地提出了这个概念。这一新的概念是与电子晶体相比较而提出的。在光子晶体中,不同介电常数的介电材料构成周期结构,介电常数在空间上的周期性将会对光子产生类似半导体的影响。由于布拉格散射,电磁波在其中传播时将会受到调制而形成能带结构,出现“光子带隙”(photonic band gap,PBG)。在光子带隙的频率范围的电磁波不能在结构中传播。这种具有光子带隙的周期性介电结构就是光子晶体(photonic crystals),或叫做光子带隙材料(photonic band gap mat erials),也有人称之为电磁晶体(electromagnetic cryst als)。随着研究的深入,人们发现了一系列光子晶体的光学性能如慢光效应[3]、超校准效应[4]、负折射现象[5]等等,这些独特的现象大大激发了科研工作者的研究热情。 2光子晶体制备 自然界中存在的光子晶体结构较少。目前,文献报道[6]自然界中存在的光子晶体结构主要有蛋白石、蝴蝶翅膀、孔雀羽毛和海鼠毛等。绝大多数光子晶体的周期性电介质结构还需要通过人为加工制备。光子晶体是在一维、二维或三维周期上高度有序排列的材料,一般所谓的光学多层膜即是一维结构的光子晶体,已被广泛地应用在光学镜片上。二维或三维的高度有序结构在光子晶体研究领域中受到广泛重视。本文主要针对二维和三维光子晶体的制备和应用进行综述。目前,光子晶体的制备方法主要包括微加工(钻孔和堆积方法)、激光全息和自组装方法等。 2.1微加工方法 微加工方法是最早报道的人工制备光子晶体的方法,具体是通过在基体材料上机械钻孔[7]、刻蚀[8,9]等方法,利用空气与基体材料的折射率差获得光子晶体。微加工方法通常采用半导体离子刻蚀技术如电子束刻蚀、激光刻蚀和化学刻蚀等制备光子晶体。这种方法由于工艺复杂,目前主要在有成熟工艺的硅(Si)和砷化镓(GaAs)基底上加工,成本昂贵,而且所制得结构层数少,质脆、性能易受环境影响,极大限制其应用。 2.2全息光刻 全息光刻技术是利用激光束干涉产生三维全息图案照射在感光树脂上,感光树脂因此产生聚合,随后通过显影除去未聚合感光树脂,留下由聚合物和空气构成的三维周期结构。Berger[10]最先证明全息光刻制备光子晶体非常简单快捷。2000年,Campbell等人[11]采用4束紫外激光进行全息干涉,在30μm厚的感光树脂上产生全息图案,这是激光全息技术在光子晶体研究中的一大进步。对于全息结构还有一些需要解决的问题,如通过全息技术得到的三维光子晶体的光学特性还不够理想,可以用于这些结构制备的光学反应还不多。这些问题在干涉光束数量增加以形成复杂结构(如金刚石结构或手性格子结构)时变得更为重要。最近有报道用高折光指数材料复型制备反相结构可以提高光学特性[12], · 153 ·  自然杂志 31卷3期科技进展

四种晶体类型的比较

物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。

B 、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO ,NaF>NaCl>NaBr>NaI 。 KF >KCl >KBr >KI ,CaO >KCl 。 C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na <Mg <Al ,Li>Na>K 。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH 4<SiH 4<GeH 4<SnH 4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸 点升高,如C 2H 6>CH 4, C 2H 5Cl >CH 3Cl ,CH 3COOH >HCOOH 。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如: CH 3(CH 2)3CH 3 (正)>CH 3CH 2CH(CH 3)2(异)>(CH 3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 针对性训练 一、选择题 1.下列性质中,可以证明某化合物内一定存在离子键的是( ) (A )溶于水 (B )有较高的熔点 (C )水溶液能导电 (D )熔融状态能导电 2.下列物质中,含有极性键的离子化合是( ) (A )CaCl 2 (B )Na 2O 2 (C )NaOH (D )K 2S 3.Cs 是IA 族元素,F 是VIIA 族元素,估计Cs 和F 形成的化合物可能是( ) (A )离子化合物 (B )化学式为CsF 2 (C )室温为固体 (D )室温为气体 4.某物质的晶体中含A 、B 、C 三种元素,其排列方式如图所示(其中前后两面心上的 B 原子未能画出),晶体中A 、B 、 C 的中原子个数之比依次为( ) (A )1:3:1 (B )2:3:1 (C )2:2:1 (D )1:3:3 6.在NaCl 晶体中与每个Na +距离等同且最近的几个Cl -所围成的空间几何构型为( ) (A )正四面体 (B )正六面体 (C )正八面体 (D )正十二面体 7.如图是氯化铯晶体的晶胞(晶体中最小的重复单元),已知晶体中2个最近的Cs +离子核间距为a cm ,氯化铯的式量为M ,NA 为阿伏加德罗常数,则氯化铯晶体的密度为( ) (A )3 8a N m A ?g·cm -3 (B )A N Ma 83g·cm -3 (C )3 a N M A ?g·cm -3 (D )A N Ma 3g·cm -3

等离子体物理

等离子体物理 等离子体物理学是研究等离子体形成及其各种性质和运动规律的学科。宇宙中的大部分物质都存在于等离子体中。例如,当太阳中心的温度超过1000万度时,太阳的大部分质量处于等离子体状态。地球上空的电离层也处于等离子体状态。19世纪以来对气体放电和20世纪初以来电离层的研究推动了等离子体的研究。自20世纪50年代以来,为了利用轻核聚变反应解决能源问题,等离子体物理的研究蓬勃发展。 1图书信息 书名: 等离子体物理 作者:郑春开 出版社:北京大学出版社 出版时间:2009-7-1 ISBN: 9787301154731 开本:16开 定价: 25.00元 2内容简介 本书比较系统地介绍了等离子体物理的基本概念、基本原理和描述问题及处理问题的方法。书中着重突出物理概念和物理原理,也有必要的数学描述和推导。全书共7章,内容包括:聚变能利用和研究进展、等离子体基本性质及相关概念、单粒子轨道理论、磁流体力学、等离子体波、库仑碰撞与输运过程和动理学方程简介。这些内容都是

从事核聚变和等离子体物理及相关学科研究人员所必需的,也是进一步学习核聚变与等离子体物理及相关学科专业课程的重要基础。为教学使用和学生学习方便,本书编有附录和习题,供查阅选用。 本书适合于核聚变、等离子体物理、空间物理以及基础和应用等离子体物理方向的高年级本科生、研究生和研究人员使用。 3图书目录 第1章聚变能利用和研究进展 1.1 聚变反应和聚变能 1.聚变反应的发现 2.聚变的燃料资源丰富 3.聚变反应是巨大太阳能的来源 1.2 聚变能利用原理 1.聚变能利用的困难 2.受控热核反应条件——劳森判据与点火条件 1.3 实现受控热核反应的途径 1.磁约束——利用磁场约束等离子体 2.惯性约束——激光核聚变 1.4 磁约束原理及其发展历史 1.磁镜装置 2.环形磁场装置 3.托卡马克装置进展 1.5 惯性约束——激光核聚变

光子晶体简介论文

光子晶体简述 吉林师范大学欧天吉 0908211 摘要:光子晶体是指具有光子带隙的周期性介电结构材料,按其空间分布分为一维、二维、 三维光子晶体,一维光于晶体已得到实际应用,三维光于晶体仍处于实验室实验阶段,由于其优良的性能,未来光子晶体材料必将得到大力开发,应用前景更广泛。本文简要的论述了光子晶体的原理,理论研究,材料制备以及相关的应用。光子晶体材料是本世纪最具潜力的材料之一,至从上世间八十年代后期提出这一概念后。光于材料的研究和应用得到了很太的发展,目前在光纤和半导体激光器中已得到应用,本文就光子材料的基本概念和研究现状综合评述并对其未来发展趋势作出相应预测。 关键字:光子晶体材料制备前景应用 光子晶体的原理 1、什么是光子晶体 光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。因其具有光子局域、抑制自发辐射等特性,故光子晶体也被认为是控制光子的光半导体。 1987年,E.Yallonovitch和S.John在研究抑制自发辐射和光子局域时分别,提出了光子晶体这一新概念1990年,Ho.K.M,等人从理论上计算了一种三维金刚石结构光子晶体的色散关系。 光子晶体即光子禁带材料,从材料结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体。与半导体晶格对电子波函数的调制相类似,光子带隙材料能够调制具有相应波长的电磁波---当电磁波在光子带隙材料中传播时,由于存在布拉格散射而受到调制,电磁波能量形成能带结构。能带与能带之间出现带隙,即光子带隙。所具能量处在光子带隙内的光子,不能进入该晶体。光子晶体和半导体在基本模型和研究思路上有许多相似之处,原则上人们可以通过设计和制造光子晶体及其器件,达到控制光子运动的目的。光子晶体(又称光子禁带材料)的出现,使人们操纵和控制光子的梦想成为可能。 2、光子晶体的性质 光子晶体的最根本性质是具有光子禁带,落在禁带中的光是被禁止传播的。Yablonovitch指出:光子晶体可以抑制自发辐射。因自发辐射的几率与光子所在频率的态的数目成正比,当原子被放在一个光子晶体里面,而它的自发辐射光的频率正好 落在光子禁带中时,由于该频率光子的态的数目为零,因此自发辐射几率为零,自发辐射被抑制。反之,光子晶体也可以增强自发辐射,只要增加该频率光子的态的数目便可以实现,如光子晶体中混有杂质时,光子禁带中会出现品质因子很高的杂质态,具有很大的态密度,这样就可以实现辐射增强。

相关主题
文本预览
相关文档 最新文档