当前位置:文档之家› 植物生理学第02章 植物的矿质营养

植物生理学第02章 植物的矿质营养

植物生理学第02章 植物的矿质营养
植物生理学第02章 植物的矿质营养

第二章植物的矿质营养

本章内容提要

植物对矿质元素的吸收、转运和利用(同化)是植物矿质营养的基本内容。通过溶液培养法,现已确定碳、氧、氢、氮、磷、钾、钙、镁、硫、铁、锰、硼、锌、铜、钼、氯、镍17种元素为植物的必需元素。除碳、氧、氢外,其余14种元素均为植物所必需的矿质元素。这些元素又可分为大量元素(≥0.1%DW)和微量元素(≤0.01%DW)。植物所必需的元素的标准有3个。除必需元素外,还有一些元素为有益元素和稀土元素。

植物必需的矿质元素在植物体内有三方面的生理作用:(1)是细胞结构物质的组成成分;(2)参与调节酶的活动;(3)起电化学作用和渗透调节作用。必需矿质元素功能各异,相互间一般不能代替,当缺乏某种必需元素时,植物会表现出特定的缺素症。

植物细胞对矿质元素的吸收有三种方式:被动吸收、主动吸收和胞饮作用。细胞的膜上有两种类型的传递蛋白:通道蛋白和载体蛋白。通道蛋白可协助离子的扩散。由载体进行的转运可以是被动的,也可以是主动的。饱和效应与离子竞争性抑制是载体参与离子转运的证据。载体又可分成单向传递体、同向传递体、反向传递体等类型。

根系是植物体吸收矿质元素的主要器官。根尖的根毛区是吸收离子最活跃的部位。根系对矿质元素吸收的特点是:对矿物质和水分的相对吸收;离子的选择性吸收;单盐毒害和离子对抗。植物地上部分吸收矿质的作用,即根外营养/叶面营养。

根系对矿质元素的吸收受土壤条件(温度、通气状况等)等的影响。

矿质元素运输的途径是木质部。

根据矿质元素在植物体内的循环情况将其分为可再利用元素(如氮、磷等)和不可再利用元素(如钙、铁、锰等)。可再利用元素的缺素症首先出现在幼嫩器官上,而不可再利用元素的缺素症则首先出现在较老器官上。

不同作物的需肥量不同,且需肥特点也有差异。合理施肥就是根据作物的需肥规律适时、适量地供肥。但矿质占植物干物质的量一般不超过10%,因此,合理施肥增产的效果是间接的,是通过改善光合性能而实现的。

第一节植物必需的矿质元素及其生理作用

一、植物必需元素及其分类

植物必需元素的标准:须同时具备以下三项条件:①若缺乏该元素,植物不能完成其生活史;

②缺少该元素,植物会表现出专一的病症(缺素症),提供该元素,则可消除或预防该病症;③该元素在植物营养生理中的作用是直接的,而不是因土壤、培养液或介质的物理、化学或微生物条件所引起的间接的结果。

目前公认的绝大多数植物的必需元素共17种:C、H、O、N、P、K、Ca、Mg、S、Fe、Mn、B、Zn、Cu、Mo、Cl、Ni。

植物必需的矿质元素:上述17种元素中,除C、H、O外,其余14种元素为植物必需的矿质元素。

植物的必需元素可分为大量元素(major element,marcoelement)和微量元素(minor element,microelement,trace element)。

大量元素(大量营养):植物需要量较大、含量通常为植物体干重0.1%以上的元素。共9种:即C、H、O等三种非矿质元素和N、P、K、Ca、Mg、S等6种矿质元素。

微量元素(微量营养):植物需要量极微、含量通常为植物体干重0.01%以下的元素。此类元素在植物体内稍多即可对植物产生毒害。共8种:即Fe、Mn、B、Zn、Cu、Mo、Cl、Ni等矿质元素。

二、植物必需矿质元素的生理作用

概括地讲,植物必需矿质元素在体内有三个方面的生理作用:

是细胞结构物质的组成成分。(2)作为酶、辅酶的成分或激活剂等,参与调节酶的活动。(3)起电化学作用,参与渗透调节、胶体的稳定和电荷的中和等。大量元素中有些同时具备上述二三个作用,而大多数微量元素只具有酶促功能。

植物缺素诊断—综合诊断:缺素症及其检索表;化学分析诊断;加入诊断;环境因素。

第二节植物细胞对矿质元素的吸收

细胞从环境中吸收矿质元素的实质即溶质的跨膜运转或跨膜传递(transport across membrane)。

植物细胞吸收矿质元素的方式:被动吸收(passive absorption)、主动吸收(active absorption)、胞饮作用(pinocytosi s)

一、电化学势梯度与离子转移

离子的选择性积累:

1)积累(accumulation):活细胞吸收某溶质(离子),最终使胞内该溶质(离子)的浓度(Ci)远远高于其胞外浓度(Co)的现象。积累的程度以积累率(Ci/Co)衡量。

2)选择性(selectivity):细胞吸收某溶质(离子)的量不与环境溶液中该溶质(离子)的量成比例,并且在溶液中存在其他溶质(离子)时其吸收相对独立。

3)竞争性抑制(competitive inhibition):细胞在吸收某些离子对(ion pair)中的离子时存在的相互抑制的现象。这些离子对如:K+-Rb+;Cl--Br-;Ca2+-Sr2+;SO42--SeO42-等。该现象说明细胞吸收这些离子对的机制相似,或这些离子对在膜上有相同的结合位置。

电化学势梯度:

1)化学势梯度(chemical potential gradient):膜两侧某溶质的浓度差构成该溶质的浓度梯度,此浓度梯度亦即该溶质的化学势梯度。

2)电势梯度(electrical potential gradient):膜两侧某溶质的电荷差构成该溶质的电势差,即电势梯度。

3)电化学势梯度(electrochemical potential gradient):膜两侧带电荷溶质既有电势梯度,同时又有化学势梯度。二者合称为电化学势梯度。

细胞吸收不带电荷的溶质与膜两侧该溶质的化学势梯度有关;细胞吸收带电荷的溶质则与膜两侧该溶质的电化学势梯度有关。

就某个离子而言,其跨膜电势梯度与其化学势梯度(或离子分布)之间的关系可用能斯特方程(Nernst equation)来表示:

Δen/j = -2.3R T/z F × lg C ij/C oj

上式表示离子j在膜内外被动转运(扩散)达到平衡时膜内外电势差与化学势差之间的关系。

二、扩散作用与被动吸收

扩散作用(diffusion):某物质从其电化学势较高的区域向其电化学势较低的区域发生净转移,即物质顺其电化学势梯度移动的现象。扩散作用可简称为扩散。扩散不会导致物质逆其电化学势的积累。

细胞与环境之间的物质转移可以通过扩散作用进行。植物细胞经扩散作用而吸收物质不消耗细胞代谢能量,属于被动吸收(非代谢性吸收)。

物质跨越细胞膜的扩散作用可分为单纯扩散与易化扩散。

单纯扩散:某物质(溶质)不需要其他物质辅助,而顺其电化学势梯度进行的跨膜转移。

非极性溶质(如O2、CO2、NH3)均可以单纯扩散方式较快地通过脂质双分子层。极性较强的水分子通过膜上的水通道蛋白—水孔蛋白(aquaporin)也可轻松地以扩散方式跨膜运送。

易化扩散:某物质(溶质)通过扩散作用跨膜转移时,需要膜上的某些特殊蛋白质(膜传递蛋白)的帮助。以此种方式进行的扩散即为易化扩散(facilitated diffusion)。

极性溶质以扩散方式跨膜转移时往往需要通过易化扩散进行。这将比其以单纯扩散转移快得多。非极性物质也可通过易化扩散来进行跨膜转移。

三、膜传递蛋白与离子运转

膜传递蛋白:细胞膜上具有转运功能的蛋白质。主要包括通道蛋白和载体蛋白两类。均为膜上的束缚蛋白。

(一)通道蛋白:简称通道(channel)或离子通道(ion channel)。通道蛋白的构象可随环境变化而变化。

通道蛋白在某种构象时中间会形成允许离子通过的孔道。

离子通过通道取决于两方面因素:1)从通道蛋白讲,通道孔的大小及孔内表面电荷使得通过通道的离子具有选择性(专一性);2)从将要通过通道的离子本身讲,离子带电情况与其水合规模是其通过通道转移时通透性的限定因素。

离子经通道蛋白进行扩散为易化扩散。

离子通过离子通道扩散的速率:106~108个/s。

离子通道的“门”现象:离子通道的“开”和“关”。已知该现象受跨膜电势梯度和外界理化信号的刺激并对其作出反应。

离子经离子通道跨膜转移可产生出pA级的电流,用特制的仪器可对此电流加以检测。并据此对通道特性及所通过的离子属性加以确定。

膜片-钳位技术(patch-clamp technique)与膜片-钳仪。

应用上述技术,已在植物质膜和液泡膜上发现了一系列离子通道。

(二)载体蛋白:

载体蛋白:载体(carrier)、传递体(transport)、透过酶(permease,penetrase)、运输酶(transport enzyme)。

溶质(离子)经载体运转的特点:选择性(专一性)、饱和效应。因此具有酶的属性:Km 及Vmax值的变化及其意义。

溶质(离子)经载体进行的转运既可以是主动的(逆电化学势梯度进行),也可以是被动的(易化扩散方式)。

溶质(离子)经载体进行的转运速率低于经通道进行的转运(约为104~105个/S)。

载体的种类:单向传递体(uniporter)、同向传递体(symporter)、反向传递体(antiporter)等。

(三)H+-ATP酶与主动转运:

1、ATP酶与主动转运

ATP酶即ATP磷酸水解酶(ATP phosphorhydrolase)。该酶为跨膜的多聚蛋白体复合物,系特殊的载体。该酶既可催化ATP水解为ADP和Pi,也可催化ADP与Pi合成为ATP。即可催化可逆反应:

ATP + H2O→A DP +Pi +32 kJ

ATP酶所催化的ATP水解为放能反应,其释放的能量可用于离子的主动转运。因此ATP酶具有“泵”的性质。由于依赖ATP酶的转运会导致膜两侧电势差的形成,因此ATP酶也被称为“电致泵(electrogenic pump)。

1)ATP酶与主动转运

溶质中的H+、K+、Na+、Ca2+等阳离子及Cl-等阴离子可利用ATP酶水解ATP时释放的能量直接进行主动转运。转运这些离子的ATP酶相应地被称为质子(H+)泵、钾泵、钠泵、钙泵等。其中的质子泵最为重要。

2)H+-ATP酶与主动转运

质子(H+)是通过ATP酶进行主动转运最主要的离子。这种主动转运H+的ATP酶即H+-ATP 酶或质子泵。

H+-ATP酶(或质子泵)与钾泵、钙泵等其他离子泵的最大区别是质子泵除完成主动转运质子(H+)的功能外,还伴随着对其他溶质(离子)的主动转运。前者为质子泵的初级主动转运(primary acative transport),后者则为质子泵的次级主动转运。

质子动力:H+-ATP酶利用ATP水解释放的能量将质子(H+)从膜的一侧运至另一侧,结果形成跨膜的电势梯度(ΔE )及化学势梯度(ΔpH),此二者则合称为质子电化学势梯度(Δμ H+)。

Δμ H+= FΔE-2.3RTΔpH

Δμ H+也被称为质子动力(proton motive force,pmf)。该动力将推动质子返回膜的原来一侧。

次级共转运:通过初级转运的质子在返回膜的原来一侧时,必须通过膜上的载体才能被动地扩散回去,与此同时通过同一载体转运其他溶质(离子)。这种质子伴随其他溶质通过同一载体进行的转运即为次级共转运或协同转运(cotransport)。这样,在初级主动转运中形成的质子动力即被用来进行其他溶质(离子)的主动转运。

次级共转运的类型:

同向转运(共向转运,symport)——被转运物质与H+同向越过膜的转运;阴离子与中性物质通常以此种方式进行跨膜转运。

反向转运(antiport)——被转运物质与H+反向越过膜的转运。一些阳离子可以此种方式转运。

单向转运(uniport)——仅与膜电势梯度(ΔE)相关联的转运,属于需要载体的易化扩散。参与单向转运的载体被称为单向传递体。

质子泵的主要类型

(1)质膜质子泵:即质膜H+-ATP酶,分子量约为200KD,水解ATP活性位点在质膜细胞质一侧。最适pH为6.5,底物为Mg2+-ATP。K+可刺激其活性。该酶以H3O+形式泵出H+,H+/ATP 计量近似1。正钒酸盐(ortho-vanadate)为质膜质子泵的专一抑制剂。己烯雌酚(DES)对该酶也有一定抑制效果。过量的Mg2+或ATP也会对该酶产生抑制效应。质膜质子泵与物质跨质膜转运关系密切。此外,质膜质子泵与许多生理过程有关,故又被称为主宰酶(master enzyme)。

(2)液泡膜质子泵:液泡膜质子泵由液泡膜H+-ATP酶及液泡膜焦磷酸酶组成。其中液泡膜H+-ATP酶有以下特点:分子量400KD,水解ATP的活性位点在液泡膜的细胞质一侧。H+/ATP 计量约为2~3。Cl-、Br-、I-等对该酶有激活作用。该酶可被硝酸盐抑制,但不被钒酸盐抑制。液泡膜H+-ATP酶与跨液泡膜的物质转运有密切关系。

液泡膜上的焦磷酸酶能够利用焦磷酸的水解而参与跨液泡膜Δμ H+的建立。

(3)线粒体膜与叶绿体膜上的H+-ATP酶:分子量约为450KD,H+/ATP计量约为3,酶活性受叠氮化钠(NaN3)的抑制。此类酶的生理作用已在呼吸作用、光合作用等章节论述。

四、胞饮作用

细胞通过质膜的内折而将物质转移到胞内的过程称为胞饮作用(简称为胞饮)。胞饮作用属于非选择性吸收方式,因此,包括各种盐类、大分子物质甚至病毒在内的多种物质都可能通过胞饮作用而被植物吸收。这就为细胞吸收大分子物质提供了可能。胞饮作用不是植物吸收矿质元素的主要方式。

第三节植物根系对矿质营养的吸收

一、植物根系吸收矿质元素的特点

1、对矿质元素和水分的相对吸收:植物对矿质元素的吸收和对水分的吸收不成正比例,二

者之间既相关联,又各自独立。根本原因:二者的吸收机制不同。

2、离子的选择性吸收:植物根系吸收离子的数量与溶液中离子的数量不成比例的现象。该现象的基础在于植物细胞吸收离子的选择性。

植物根系吸收离子的选择性主要表现在两个方面:①植物对同一溶液中的不同离子的吸收不同;②植物对同一种盐的正负离子的吸收不同。由此派生出三种类型的盐:生理酸性盐(physiologically acid salt),如(NH4)2SO4;生理碱性盐,如NaNO3、Ca(NO3)2等;生理中性盐,如NH4NO3。

3、单盐毒害和离子对抗:①单盐毒害:植物在单盐溶液中不能正常生长甚至死亡的现象被称为单盐毒害(toxicity of single salt)。所谓单盐溶液,是指只含有一种盐份(或一种金属离子)的盐溶液。单盐毒害的特点是:a.单盐毒害以阳离子的毒害明显,阴离子的毒害不明显;b.单盐毒害与单盐溶液中盐份是否为植物所必需无关。②离子对抗:在单盐溶液中加入少量含其他金属离子的盐类,单盐毒害现象就会减弱或消除。离子间的这种作用即被称作离子对抗或离子颉颃(ion antagonism)。离子对抗的特点:a.元素周期表中不同族的金属元素的离子之间一般有对抗作用;b.同价的离子之间一般不对抗。例如:Na+或K+可以对抗Ba2+和Ca2+。

单盐毒害和离子对抗的的实质:可能与不同金属离子对细胞质和质膜亲水胶体性质(或状态)的影响有关。

平衡溶液:由多种盐份组成的对植物生长无毒害作用的溶液。土壤溶液对陆生植物、海水对海藻等均为天然的平衡溶液。人工配制的Hoagland溶液也是平衡溶液。

二、吸收机理

1、将离子吸附在根部细胞表面:主要通过交换吸附进行。所谓交换吸附是指根部细胞表面的正负离子(主要是细胞呼吸形成的CO2和H2O生成H2CO3再解离出的H+和HCO3-)与土壤中的正负离子进行交换,从而将土壤中的离子吸附到根部细胞表面的过程。在根部细胞表面,这种吸附与解吸附的交换过程是不断在进行着的。具体又分成三种情形:

①土壤中的离子少部分存在于土壤溶液中,可迅速通过交换吸附被植物根部细胞表面吸附,该过程速度很快且与温度无关。根部细胞表面吸附层形成单分子层吸附即达极限。

②土壤中的大部分离子被土壤颗粒所吸附。根部细胞对这部分离子的交换吸附通过两种方式进行:一是通过土壤溶液间接进行。土壤溶液在此充当“媒介”作用;二是通过直接交换或接触交换(contact exchange)进行。这种方式要求根部与土壤颗粒的距离小于根部及土壤颗粒各自所吸附离子振动空间的直径的总和。在这种情况下,植物根部所吸附的正负离子即可与土壤颗粒所吸附的正负离子进行直接交换。

③有些矿物质为难溶性盐类,植物主要通过根系分泌的有机酸或碳酸对其逐步溶解而达到吸附和吸收目的的。

2、离子进入根部内部:

①通过质外体(非质体,apoplast)途径进入根部内部。

质外体:质外体或自由空间,指植物体内由细胞壁、细胞间隙、导管等所构成的允许矿物质、水分和气体自由扩散的非细胞质开放性连续体系。

表观自由空间(apparent free space,AFS):自由空间占组织总体积的百分比。AFS一般为5%~20%。由于真正的自由空间很难测定,通常即以AFS来代替衡量。AFS也可称为相对自由空间(relative free space,RFS)。

离子经质外体运送至内皮层时,由于有凯氏带的存在,离子(和水分)最终必须经共质体途径才能到达根部内部或导管。这使得根系能够通过共质体的主动转运及对离子的选择性吸收控制离子的运转。

另外,在内皮层中还有一种通道细胞可作为离子和水分转运的途径之一。

②通过共质体途径进入根部内部。

共质体(symplast):植物体内细胞原生质体通过胞间连丝和内质网等膜系统相联而成的连续体。溶质经共质体的运输以主动运输为主。

3、离子进入导管:离子经共质体途径最终从导管周围的薄壁细胞进入导管。其机理尚不甚明确。

二、影响植物根系吸收矿质元素的土壤因素

1. 土壤温度土壤温度过高或过低,都会使根系吸收矿物质的速率下降。

高温(如超过40℃)使酶钝化,影响根部代谢,也使细胞透性加大而引起矿物质被动外流。

温度过低,代谢减弱,主动吸收慢,细胞质粘性也增大,离子进入困难。同时,土壤中离子扩散速率降低。

2. 土壤通气状况根部吸收矿物质与呼吸作用密切有关。土壤通气好,增强呼吸作用和ATP 的供应,促进根系对矿物质的吸收。

3. 土壤溶液的浓度土壤溶液的浓度在一定范围内增大时,根部吸收离子的量也随之增加。但当土壤浓度高出此范围时,根部吸收离子的速率就不再与土壤浓度有密切关系。此乃根细胞膜上的传递蛋白数量有限所致。而且,土壤溶液浓度过高,土壤水势降低,还可能造成根系吸水困难。因此,农业生产上不宜一次施用化肥过多,否则,不仅造成浪费,还会导致“烧苗”发生。

4. 土壤溶液的pH值

(1)直接影响根系的生长。大多数植物的根系在微酸性(pH5.5~6.5)的环境中生长良好,也有些植物(如甘蔗、甜菜等)的根系适于在较为碱性的环境中生长。

(2)影响土壤微生物的活动而间接影响根系对矿质的吸收。当土壤偏酸(pH值较低)时,根瘤菌会死亡,固氮菌失去固氮能力。当土壤偏碱(pH值较高)时,反硝化细菌等对农业有害的细菌发育良好。这些都会对植物的氮素营养产生不利影响。

(3)影响土壤中矿质的可利用性。这方面的影响往往比前面两点的影响更大。土壤溶液中的pH值较低时有利于岩石的风化和K+、Mg2+、Ca2+、Mn2+等的释放,也有利于碳酸盐、磷酸盐、硫酸盐等的溶解,从而有利于根系对这些矿物质的吸收。但pH值较低时,易引起磷、钾、钙、镁等的淋失;同时引起铝、铁、锰等的溶解度增大,而造成毒害。相反,当土壤溶液中pH值增高时,铁、磷、钙、镁、铜、锌等会形成不溶物,有效性降低。

5. 土壤水分含量土壤中水分的多少影响土壤的通气状况、土壤温度、土壤pH值等,从而影响到根系对矿物质的吸收。

6. 土壤颗粒对离子的吸附土壤颗粒表面一般都带有负电荷,易吸附阳离子。

7. 土壤微生物菌根的形成可增强根系对矿物质和水的吸收。固氮菌、根瘤菌等有固氮能力。而反硝化细菌则引起NO3—N损失。

8. 土壤中离子间的相互作用溶液中某一离子的存在会影响另一离子的吸收。例如,溴的存在会使氯的吸收减少;钾、铷和铯三者之间互相竞争。

第四节矿物质在植物体内的运输与分配

一、矿物质在植物体内的运输

1、运输形式(以根部吸收的矿物质的运输为例)

氮素:根部吸收的氮素,大部分在根部转化为有机氮化合物(如天冬氨酸、丙氨酸、蛋氨酸、天冬酰胺、谷氨酰胺等)而向上运输,少部分以硝酸根形式向上运输。

磷素:大多以正磷酸盐形式运输,少部分在根部转化为有机磷化合物(如甘油磷酸胆碱、己糖磷酸酯等)而向上运输。

硫素:绝大部分以硫酸根形式向上运输,少数在根部形成蛋氨酸及谷胱甘肽等形式向上运输。

金属元素:一般以离子形式向上运输。

2、运输途径:分析方法--木质部-韧皮部隔离法结合放射性同位素示踪。结果证明:

根部吸收的矿物质通过木质部向上运输,也可从木质部横向运至韧皮部。进入韧皮部的矿物质还可再向下运输,从而参与植物体内的矿质离子循环。

叶片吸收的矿物质通过韧皮部向上或向下运输,也可从韧皮部横向运至木质部并参与植物体内的矿质离子循环。

3、运输速度:30~100 cm/h。

二、矿物质在植物体内的分配

可再利用元素:能够参与矿质离子循环的元素。主要有两类:一类是通常以不稳定化合物形式被运输或被利用的元素(如氮、磷、镁等);另一类是在植物体内始终呈离子状态的元素(如钾)。

可再利用元素优先分配至代谢旺盛的部位。植物缺乏这些元素时,缺素症首先表现在较老的组织或器官中。参见缺素症检索表。

不可再利用元素:通常是一些不能够参与矿质离子循环的元素。如:钙、铁、锰、硼等。其中尤以钙最为典型。

不可再利用元素被分配至植物所需部位后即被固定。植物缺乏这些元素时,缺素症首先表现在较幼嫩的组织或器官中。参见缺素症检索表。

第五节植物矿质营养的同化

一、氮素的同化

氮素循环:自然界中土壤、水体、大气层以及动植物及人类活动中氮素的转变过程。

氮素同化:在氮素循环过程中,无机态的氮素(N2、NO3-、NH4+等)逐步转变为有机态氮的过程。因此,氮素同化可包括固氮、硝酸盐和铵盐的同化等过程。

1)生物固氮:由固氮微生物将大气中的游离氮(N2)转化为含氮化合物(NH3或NH4+)的过程。生物固氮是地球上固氮过程中最重要的组成部分。约占总固氮量的75%。

2)硝酸盐的代谢还原:

[1]硝酸盐还原为亚硝酸盐:

NO3- + NA D(P)H + H+ + 2e- → NO2- + NAD(P)+ + H2O

该过程由硝酸还原酶(nitrate reductase,NR)催化。光照有利于该过程进行。

NR定位于细胞质,为同型二聚体(homodimer)结构,相对分子质量为200~500KD。每个亚基各含一个FAD、Cytb557、钼复合体等辅基。NR为适应酶(adaptive enzyme)或诱导酶(induced enzyme)。由核DNA编码。

[2] 亚硝酸盐还原为氨(或铵):

NO2- + 8H+ + 6e-→NH4+ + 2H2O

该过程由亚硝酸还原酶(nitrite reductase,NiR)催化。

NiR定位于叶绿体(chloroplast)或根中的前质体(proplastid)。已知叶绿体中的NiR有两个亚基,相对分子质量为60~70KD。其辅基由一铁硫原子簇(4Fe-4S)及一个西罗血红素(sirohaem)组成,NO2-即在此部位被还原为NH4+。NiR由核DNA编码,可被硝酸盐诱导产生。

在叶绿体中,NO2-还原所需的电子来自于还原态的铁氧还蛋白(Fdred)。由NO2-到NH4+的中间产物及其变化机制尚不甚清楚。有人认为可能是NiR还原过程中产生的硝酰基(NOH)和羟胺(NH2OH)与NiR结合为复合物而未能显示出来。

光照有利于NO2-还原,可能与照光时植物生成较多Fdred有关。NO2-的还原也需要氧,故缺氧时该过程受阻。

非绿色组织(如根)中,NO2-还原所需的电子供体也尚不清楚。

3)氨态氮的同化:

①形成谷氨酰胺。由谷氨酰胺合成酶(glutamine synthetase,GS)催化氨态氮与谷氨酸形成。

该步反应实质上已完成了氨态氮的同化,故最为重要。

②谷氨酰胺的进一步转变:

a.转变为谷氨酸:谷氨酰胺在谷氨酸合成酶(glutamate synthetase)(又称为谷氨酰胺-α-酮戊二酸转氨酶,glutamine α-ketoglutarate aminotransferase,GOGAT)催化下与α-酮戊二酸转变为二分子谷氨酸(其中一分子相当于原来的那一分子谷氨酸)。

b.转变为天冬酰胺:谷氨酰胺在天冬酰胺合成酶的催化下将氨基转移至天冬氨酸而成。

③谷氨酸的转变:通过转氨酶催化,谷氨酸与草酰乙酸转变为天冬氨酸和α-酮戊二酸。该反应即转氨作用或氨基交换作用。转氨反应中的草酰乙酸由PEP羧化而来。

④氨态氮也可与α-酮戊二酸经由谷氨酸脱氢酶(glutamate dehydrogenase,GDH)催化而形成谷氨酸。但有研究表明,GDH与氨态氮亲和力很低,被认为在氨态氮的同化中并不重要。

第六节合理施肥的生理基础

所谓合理施肥,就是根据矿质元素在作物中的生理功能,结合作物的需肥特点进行施肥。具体讲,即作物施什么肥、施多少肥、何时施、怎样施,均应合理安排,做到适时适量,少肥高效。

一、作物的需肥特点

1、不同作物对矿质元素的需要量和比例不同。因此要结合作物的不同生物学特性(生长习性)以及人们的生产目的而选择所施肥料的种类、形态、用量及施用方式和时间。

2、同一作物在不同生育期对矿质元素的吸收情况不同。应注意需肥临界期(植物营养临界期)--作物对缺乏矿质元素最敏感的时期,还应注意营养最大效率期(最高生产效率期)。只有充分注意这些方面,才能做到适时适量,用肥少而效率高。

二、合理施肥的指标

1、土壤肥力指标

2、作物营养指标

1)形态指标:作物外形及长势。如株形、叶形、叶色等。形态指标直观,便于掌握。但因受环境因素影响,不易判断准确,且往往滞后于生理反应,因此只可作为参考指标。

2)生理指标:①叶中元素含量(通过叶片营养分析得出)。注意找出临界浓度,即作物获得最高产量时组织中营养元素的最低浓度值。这样,当组织中元素浓度低于这一浓度,即应施肥。

②酰胺含量。为氮素营养的很好的指标。③酶活性。有许多酶的活性受某些元素的影响。因此可通过酶活性的变化反映出矿质元素的含量。④淀粉含量。氮肥不足往往会使某些作物(如稻、麦)积累淀粉,故淀粉含量可作为这些作物追施氮肥的依据。

三、合理施肥与作物增产

1、合理施肥使作物增产的原因

合理施肥促进作物增产的原因主要有两方面:一是通过改善作物光合性能而实现;二是通过调节作物生长的环境(栽培环境特别是土壤条件)而实现。

2、合理施肥的配套措施

合理施肥首先要针对作物的需肥规律进行安排,并结合各种指标的分析确定施肥的具体方案。这些当然是根本的途径。但要充分发挥肥效,以达到增产效果,还必须重视以下施肥措施,即:肥水结合;适当深耕;改善光照条件;调控土壤微生物的活动;改进施肥方式;注意平衡施肥。

思考题:

(一)名词解释:

矿质营养;溶液培养法;植物必需元素;有益元素;稀土元素;选择性吸收;跨膜传递;

电化学势梯度;协助扩散;主动吸收;被动吸收;胞饮作用;膜传递蛋白;离子通道;载体蛋白;质子泵;质子动力势;共转运;生理酸性盐;单盐毒害;离子对抗;平衡溶液;交换吸附;共质体;质外体;表观自由空间;根外营养;生物固氮;硝化作用;反硝化作用;诱导酶;营养最大效率期

(二)将以下外文符号或缩写译成中文:

ΔμH+;pmf;AFS;NR;NiR;GS;GOGAT;GDH;H+-ATPase

(三)问答题:

1. 溶液培养法有哪些类型?用溶液培养植物时应注意哪些事项?

2. 如何确定植物必需的矿质元素?植物必需的矿质元素有哪些生理作用?

3. 植物细胞通过哪几种方式吸收矿质元素?

4. 楞斯特方程有何意义?

5. 为什么说主动转运与被动转运都有膜传递蛋白的参与?

6. H+-ATP酶是如何与主动转运相关的?H+-ATP酶还有哪些生理作用?

7. 试解释两种类型的共转运及单向转运。

8. 试述根系吸收矿质元素的特点、主要过程及其影响因素。

9. 为什么植物缺钙、铁等元素时,缺素症最先表现在幼叶上?

10. 植物的氮素同化包括哪几个方面?

11. 合理施肥为何能够增产?要充分发挥肥效应采取哪些措施?

参考文献

王忠主编。植物生理学,北京:中国农业出版社,2000

王沙生,高荣孚,吴贯明编。植物生理学(第二版),北京:中国林业出版社,1991

余叔文,汤章城主编。植物生理与分子生物学,北京:科学出版社,1998

宋松泉,傅家瑞。植物质膜H+-ATP酶的研究进展,植物生理学通讯,1993,29(2):130~136 曹仪植,宋占午主编。植物生理学,兰州:兰州大学出版社,1998

焦新之。高等植物细胞膜传递蛋白和与其有关的渗透调节作用, 植物生理学通讯, 1993, 29 (1):3~9

潘瑞炽,董愚得编著。植物生理学(第三版),北京:高等教育出版社,1995

扶惠华,王煜,田廷亮。镍在植物生命活动中的利用,植物生理学通讯,1996,32(1):45~49

Clarkson DT, Lüttge U. Mineral nutrition: inducible and repressible nutrient transport systems. Progress in Botany, 1991,52: 61~83

Hopkins WG. Introduction to Plant Physiology (2nd edition). John Wiley ? Sons, Inc. ,1999

Marschner, H. Mineral Nutrition of Higher Plants. London: Academic Press,1986

Salisbury FB, Ross CW. Plant Physiology (4th edition). Belmont, California: Wadsworth Inc. ,1992

Sze H. H+-translocating ATPases of the plasma membrane and tonoplast of plant cells. Physiol Plantarum, 1984, 61: 683~691

14.Sze H. H+-translocating ATPase: advances using membrane vesicles. Annual Review of Plant

植物生理学第二章 植物的矿质营养新选.

第二章植物的矿质营养 一、名词解释 1. 矿质营养 2. 必需元素 3. 大量元素 4. 微量元素 5. 水培法 6. 叶片营养 7. 可再利用元素8. 易化扩散9. 通道蛋白 10. 载体蛋白11. 转运蛋白12. 植物营养最大效率期 13. 反向运输器14. 同向运输器15. 单向运输器 二、填空题 1.植物细胞中钙主要分布在中。 2.土壤溶液的pH对于植物根系吸收盐分有显著影响。一般来说,pH增大易于吸收;pH 降低易于吸收。 3.生产上所谓肥料三要素是指、和三种营养元素。 4.参与光合作用水光解反应的矿质元素是、和。 5.在植物体内促进糖运输的矿质元素是、和。 6.离子跨膜转移是由膜两侧的梯度和梯度共同决定的。 7.促进植物授粉、受精作用的矿质元素是。 8.驱动离子跨膜主动转运的能量形式是和。 9.植物必需元素的确定是通过法才得以解决的。 10.华北地区果树的小叶病是因为缺元素的缘故。 11.缺氮的生理病症首先出现在叶上。 12.缺钙的生理病症首先出现在叶上。 13.根部吸收的矿质元素主要通过向上运输的。 14.一般作物的营养最大效率期是时期。 15.植物地上部分对矿质元素吸收的主要器官是。 16.植物体内可再利用的元素中以和最典型;不可再利用的元素中以最典型。17.追肥的形态指标有和等;追肥的生理指标有和。 18.油菜“花而不实”症是土壤当中缺乏营养元素引起的。 19. 引起大白菜干心病、菠菜黑心病矿质元素是。 20. 被称为植物生命元素的是。 21. 一般作物生育的最适pH是。 22.诊断作物缺乏矿质元素的方法有、和。 23.影响根部吸收矿质元素的因素有、、和。 三、选择题 1.在下列元素中不属于矿质元素的是()。 A.铁 B.钙 C.氮 D.磷 2.植物缺铁时会产生缺绿症,表现为()。 A.叶脉仍绿 B.叶脉失绿C.全叶失绿 D.全叶不缺绿 3.影响植物根细胞主动吸收无机离子最重要的因素是()。

第二章 矿质营养习题及答案

第二章植物的矿质营养 一、英译中(Translate) 1、mineral element 2、pinocytosis 3、passive absorption 4、essential element 5、macroelement 6、ash element 7、fluid mosaic model 8、phospholipid bilayer 9、extrinsic protein 10、intrinsic protein 11、integral protein 12、ion channel transport 13、membrane potential gradient 14、electrochemical potential gradient 15、passive transport 16、uniport carrier 17、symporter 18、antiporter 19、ion pump 20、proton pump transport 21、active transport 22、calcium pump 23、selective absorption 24、physiologically acid salt 25、physiologically alkaline salt 26、physiologically neutral salt 27、toxicity of single salt 28、ion antagonism 29、balanced solution 30、exchange adorption 31、ectodesma 32、induced enzyme 33、transamination

植物的矿质营养

《植物的矿质营养》教案 教学目标 一、知识方面 1、使学生理解矿质元素的概念,了解植物必需的矿质元素的种类和来源 2、使学生理解根对矿质元素离子的吸收过程及其与植物根细胞呼吸作用之间的密切关系 3、使学生理解根吸收矿质元素离子与根吸水的联系和区别 4、使学生了解矿质元素在植物体内的存在形式、运输方式和利用特点 5、使学生了解合理施肥、无土栽培原理和实用。 二、能力方面 通过引导学生分析根对矿质元素离子的吸收过程与呼吸作用的关系以及分析影响根吸收矿质离子的环境因素,训练学生分析实验和实际问题的能力。 三、情感、态度、价值观方面 通过在教学中介绍合理施肥、无土栽培原理和实用,增加学生学以致用的意识;培养学生关注科学、技术在现代农业生产中的应用,对学生进行生命科学价值观的教育。 【教学重点】植物必需的矿质元素及其种类;根对矿质元素离子的吸收过程。 【教学难点】根对矿质元素离子的吸收和对水分的吸收是两个相对独立的过程。 【课时安排】实验、授课一共两课时。 【教学手段】挂图、多媒体课件、实验 【教学过程】 1、引言 课前指导生物小组的同学用完全培养液和缺素培养液培养出一些植物体,以便课上展示给学生,引发他们对矿质元素对植物生活的作用的思考,以此引入本节内容。 也可以从分析植物体内化学物质的元素组成入手引入课题。例如,植物体内的物质中,蛋白质通常含有N,S、叶绿素含有Mg,核酸含有P,但植物体通过光合作用可从二氧化碳获得C和O,通过根的吸水中获得H和O。以此引导学生分析出植物体内含有的元素种类与植物吸收的元素种类之间的矛盾,从而很自然地引入植物还可从土壤吸收矿质元素这一事实。

也可以从根的渗透吸水直接引入,因为学生都知道土壤溶液中还溶解有各种矿质元素离子,这时可引发学生思考:溶于水的这些矿质元素离子是否是和水一起被吸收的?从而引入矿质元素离子的吸收。 2、矿质元素的概念 和根对水分的吸收情况一样,学生在初中已学过有关无机盐吸收有关的初步知识,因此,教师可提出一些问题,以了解学生对矿质代谢的理解程度,找出学生对矿质代谢理解上的偏差和不足,从而进行有针对性的教学。比如,教师可提出以下问题: ①植物收矿质元素离子的主要器官是什么? ②植物矿质元素离子的主要部位是什么? ③矿质元素在植物体主要以什么存在? ④植物体运输水和矿质元素离子的通道是什么?知道这些通道在植物体的哪个部位吗? ⑤矿质元素离子在植物体内都可以参与哪些生理功能? ⑥植物体内矿质元素离子是如何散失的?等等。 在讨论了上述问题的基础上,引导学生分析矿质元素的概念、必需元素的概念、植物体内哪些元素是大量元素、哪些元素是微量元素。 可把学生讨论的重点放在“如何确定某种元素是植物必需的矿质元素的方法?”鼓励学生提出自己的观点和设计方案,以便渗透研究方法,对于激发学生学习兴趣,丰富学生研究问题的思路有重要作用。 3、根对矿质元素离子的吸收过程,是本节教学的重点,也是难点 (1)根细胞对矿质元素的交换吸附 这是根细胞吸收矿质元素离子的第一步 可先让学生做《根对矿质元素离子的离子交换吸附》实验,在实验过程中或实验结束后,教师通过下面的问题串引发学生对交换吸附的思考和理解: ①通过《观察根对矿质元素离子的交换吸附现象》的实验,如何理解设置对照实验的重要性。 《观察根对矿质元素离子的交换吸附现象》实验是一个简单的单因子对照实验。在单因子对照实验中,有一个非常重要的要求,即,除了要研究的那个因素设置为可变外,其它所有条件都尽量保证一致。

植物生理学的习题集及答案第二章植物矿质营养.doc

第二章植物的矿质营养一、英译中(Translate) 1、mineral element 2、pinocytosis 3、passive absorption 4、essential element 5、macroelement 6、ash element 7、fluid mosaic model 8、phospholipid bilayer 9、extrinsic protein 10、intrinsic protein 11、integral protein 12、ion channel transport 13、membrane potential gradient 14、electrochemical potential gradient 15、passive transport 16、uniport carrier 17、symporter 18、antiporter 19、ion pump 20、proton pump transport 21、active transport 22、calcium pump 23、selective absorption 24、physiologically acid salt 25、physiologically alkaline salt 26、physiologically neutral salt 27、toxicity of single salt 28、ion antagonism 29、balanced solution 30、exchange adorption 31、ectodesma 32、induced enzyme 33、transamination 34、biological nitrogen fixation 35、nitrogenase 36、transport protein 37、nitrate reductase 38、critical concentration 二、中译英(Translate) 1.矿质营养 2.胞饮作用 3.被动吸收 4.必需元素 5.大量元素 6.灰分元素 7.流动镶嵌模型8.磷脂双分子层 9.外在蛋白 10.内在蛋白 11.整合蛋白 12.离子通道运输 13.膜电位差 14.电化学势梯度

3植物的矿质营养(精)

第三章植物的矿质营养 知识要点 矿质元素和水分一样,主要存在于土壤中,由根系吸收进入植物体内,运输到需要的部位加以同化,以满足植物生命活动的需要。植物对矿物质的吸收、转运和同化,通称为矿质营养。 植物体内的化学元素并非全部是植物生命活动所必需的,只有其中一部分为植物生命活动所不可缺少。要确定植物体内各种元素是否为植物所必需,只根据灰分分析得到的数据是不够的。通过溶液培养或砂基培养,并按照Arnon & Stout 于1939 年提出的植物必须元素的标准: (1)如缺乏该元素,植物生育发生障碍,不能完成生活史; (2)除去该元素,则表现出专一的病症,而且这种缺乏症是可以预防和恢复的; ( 3 )该元素在植物营养生理上应表现直接的效果,绝不是因土壤或培养基的物理、化学、微生物条件的改变而产生的间接效果。 目前已经明确碳、氢、氧、氮、磷、钾、钙、镁、硫、铁、锰、铜、锌、硼、钼、氯、镍17 种元素为大多数高等植物所必需的,其中碳、氢、氧、氮、磷、钾、钙、镁、硫9 种元素植物需要量相对较大,称为大量元素;其余铁、锰、铜、锌、硼、钼、氯、镍8 种元素植物需要量极微,稍多即发生毒害,故称为微量元素。 必需的矿质元素在植物体内的生理作用有3 个方面:⑴是细胞结构物质的组成成分,如N ,P ,S 等;⑵是植物生命活动的调节者,参与酶的活动,如Mn ,Mg ,Fe 等;⑶起电化学作用,即离子浓度的平衡、胶体的稳定和电荷中和等,如K + 。 可被植物吸收的氮素形态主要是铵态氮和硝态氮。氮是构成蛋白质的主要成分,占蛋白质含量的16% ~18% 。此外,核酸、核苷酸、辅酶、磷脂、叶绿素等化合物中都含有氮,而某些植物激素、维生素和生物碱等也含有氮。因此,氮在植物生命活动中占有首要的地位,故又称为生命元素。 磷是以正磷酸盐(H 2 P0 4 - ) 形式被植物吸收。当磷进入植物体后,大部分成为有机物,有一部分仍保持无机物形式。磷存在于磷脂、核酸和核蛋白中,磷是核苷酸衍生物( 如ATP、FMN、NAD+、NADP和COA 等) 的组成成分,其在糖类代谢、蛋白质代谢和脂肪代谢中起着极其重要的作用。 K+既是植物的吸收形态又是在植物体内的存在形态,与氮、磷相反,钾不参与重要有机物的组成。钾主要集中在植物生命活动最活跃的部位,如生长点、幼叶、形成层等。钾对于参与活体内各种重要反应的酶起着活化剂的作用,是40多种酶的辅助因子。钾促进呼吸进程及核酸和蛋白质的形成。钾对糖类的合成和运输有影响。 植物体内的钙有呈离子状态的,有呈盐形式的,还有与有机物结合的。钙主要存在于叶子或老的器官和组织中。它是一个比较不易移动的元素。钙在生物膜中可作为磷脂的磷酸根和蛋白质的羧基间联系的桥梁,因而可以维持膜结构的稳定性。钙是构成细胞壁的一种元素,细胞壁的胞间层是由果胶酸钙组成的。胞质溶胶中的钙与可溶性的蛋白质形成钙调素( 简称CaM) 。CaM和Ca2+结合,形成有活性的Ca-CaM 复合体,在代谢调节中起“第二信使”的作用。 镁主要存在于幼嫩器官和组织中,植物成熟时则集中于种子。镁是叶绿素的组成成分之一。在光合和呼吸过程中,镁可以活化各种磷酸变位酶和磷酸激酶。同样,镁也可以活化DNA 和RNA 的合成过程。SO 4 2- 进入植物体后,一部分保持不变,大部分被还原成硫,进一步同化为含硫氨基酸,如胱氨酸、半胱氨酸和蛋氨酸等,而这些氨基酸几乎是所有蛋白质的构成分子。硫也是CoA 的成分之一,氨基酸、脂肪、糖类等的合成等都和CoA 有密切关系。 铁进入植物体内处于被固定状态,不易转移。铁是许多重要氧化还原酶的组成成分。铁在呼吸、光合等氧化还原过程中(Fe3+≒Fe2+ ) 都起着重要的作用。铁影响叶绿体构造形成,和叶绿素的合成。 锰是糖酵解和三羧酸循环中某些酶的活化剂,所以锰能提高呼吸速率。锰是硝酸还原酶的活化剂。在光合作用方面,水的裂解需要锰参与。 铜是某些氧化酶的成分,影响氧化还原过程。铜又存在于叶绿体的质体蓝素中,后者是光合作用电子传递体系的一员。 缺锌植物失去合成色氨酸的能力,而色氨酸是吲哚乙酸的前身,因此缺锌植物的吲哚乙酸含量低。 硼能与游离状态的糖结合,使糖带有极性,从而使糖容易通过质膜,促进运输。硼对植物生殖过程有影响。

高考生物知识点:植物的矿质营养(最新)

高考生物知识点:植物的矿质营养 名词: 1、植物的矿质营养:是指植物对矿质元素的吸收、运输和利用。 2、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。植物必需的矿质元素有13种.其中大量元素7种N、S、P、Ca、Mg、K(Mg是合成叶绿素所必需的一种矿质元素)巧记:丹留人盖美家。Fe、Mn、B、Zn、Cu、Mo、Cl属于微量元素,巧记:铁门碰醒铜母(驴)。 3、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。 4、选择吸收:指植物对外界环境中各种离子的吸收所具有的选择性。它表现为植物吸收的离子与溶液中的离子数量不成比例。 5、合理施肥:根据植物的需肥规律,适时地施肥,适量地施肥。 词语: 1、根对矿质元素的吸收:①吸收的状态:离子状态②吸收的部位:根尖成熟区表皮细胞。③、细胞吸收矿质元素离子可以分为两个过程:一是根细胞表面的阴、阳离子与土壤溶液中的离子进行交换吸附;二是离子被主动运输进入根细胞内部,根进行离子的交换需要的HCO3-和H+是根细胞呼吸作用产生的CO2与水结合后理解成的,根细胞主动运输吸收离子要消耗能量。④影响根对矿质元素吸收的因素:a、呼吸作用:为交换吸附提供HCO3-和H+,为主动运输供能,因此生产上需要疏松土壤;b、载体的种类是决定是否吸收某种离子,载体的数量是决定吸收某种离子的多少,因此,根对吸收离子有选择性。氧气和温度(影响酶的活性)都能影响呼吸作用。 2、植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。 ①吸收部位:都为成熟区表皮细胞。②吸收方式:根对水分的吸收---渗透吸水,根对矿质元素的吸收----主动运输。③、所需条件:根对水分的吸收----半透膜和半透膜两侧的浓度差,根对矿质元素的吸收----能量和载体。④联系:矿质离子在土壤中溶于水,进入植物体后,随水运到各个器官,植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。 3、矿质元素的运输和利用:①运输:随水分的运输到达植物体的各部分。 ②利用形式:矿质运输的利用,取决于各种元素在植物体内的存在形式。K在植物体内以离子状态的形式存在,很容易转移,能反复利用,如果植物体缺乏这类元素,首先在老的部位出现病态;N、P、Mg在植物体内以不稳定化合物的形式存在,能转移,能多次利用,如果植物体缺乏这类元素,首先在老的部位出现病

第二章植物的矿质营养单元自测题

第二章植物的矿质营养 单元自测参考题 一、填空 1.矿质元素中植物必需的大量元素包 括、、、、、。(N,P,K,Ca,Mg,S) 2.植物必需的微量元素 有、、、、、、、。(Fe,Cl,Cu,Zn,Mn,B,Mo,Ni) 3.植物体中,碳和氧元素的含量大致都为干重的%。(45) 4.除了碳、氢、氧三种元素以外,植物体内含量最高的元素是。(氮) 5.植物体干重0.01%为铁元素,与铁元素含量大致相等的是。(氯) 6.必需元素在植物体内的生理作用可以概括为三方面:(1) 物质的组成成分,(2) 活动的调节者,(3)起作用。(细胞结构,植物生命,电化学) 7.氮是构成蛋白质的主要成分,占蛋白质含量的。(16%~18%)。 8.可被植物吸收的氮素形态主要是和。(铵态氮,硝态氮)。 9.N、P、K的缺素症从叶开始,因为这些元素在体内可以。(老叶,移动)。 10.通常磷以形式被植物吸收。(H2P04-) 11.K+在植物体内总是以形式存在。(离子) 12.氮肥施用过多时,抗逆能力,成熟期。(减弱,延迟) 13.植物叶片缺铁黄化和缺氮黄化的区别是,前者症状首先表现在叶而后者则出现 在叶。(新,老) 14.白菜的“干心病”、西红柿“脐腐病”是由于缺引起。(钙) 15.缺时,花药和花丝萎缩,绒毡层组织破坏,花粉发育不良,会出现“花而不实”的现象。(B) 16.必需元素中可以与CaM结合,形成有活性的复合体,在代谢调节中起“第二信使”的作用。(Ca2+) 17.植物老叶出现黄化,而叶脉仍保持绿色是典型的缺症。是叶绿素组成成分中的金属元素。(Mg,Mg) 18.植株各器官间硼的含量以器官中最高。硼与花粉形成、花粉管萌发和过程有密切关系。(花,受精) 19.以叶片为材料来分析病株的化学成分,并与正常植株化学成分进行比较从而判断植物是否缺素的诊断方法称为诊断法。(化学) 20.植物体内的离子跨膜运输根据其是否消耗能量可以分为运输和运输两种。(主动,被动) 21.简单扩散是离子进出植物细胞的一种方式,其动力为跨膜差。(电化学势) 22.离子通道是质膜上构成的圆形孔道,横跨膜的两侧,负责离子的跨膜运输,根据其运输方向可分为、两种类型。(内在蛋白,单向,内向,外向)23.载体蛋白有3种类型分别为、和。(单向运输载体、同向运输器,反向运输器) 24.质子泵又称为酶。(H+-ATP酶) 25.研究植物对矿质元素的吸收,不能只用含一种盐分的营养液培养植物,因为当溶液中只有一种盐类时即使浓度较低,植物也会发生。(单盐毒害) 26.营养物质可以通过叶片表面的进入叶内,也可以经过角质层孔道到达表皮细胞,进一

第2章植物的矿质营养(精)

第2章植物的矿质营养答案 一、名词解释 1. 灰分元素:除C、H、O、N等元素分别以CO2、H2O、N和S的氧化物等形式挥发外,植物体所含的不能挥发的残余物质称为灰分,占干物质的5-10%。灰分中存在的元素称为灰分元素,又称为矿质元素。 2. 溶液培养法:用纯化的化合物配制成水溶液来培养植物以确定植物必需的矿质元素种类和数量,也称水培方法。 3. 大量元素:在植物体内含量较多,占植物体干重达万分之一的元素,称为大量元素。植物必需的大量元素是:钾、钙、镁、硫、磷、氮、碳、氢、氧等九种元素。 4. 微量元素:植物体内含量甚微,约占植物体干重的、600.001—0.00001%的元素,植物必需的微量元素是铁、锰、硼、锌、铜、钼和氯等七种元素,植物对这些元素的需要量极微,稍多既发生毒害,故称为微量元素。 5. 协助扩散:一些非脂溶性或低脂溶性物质能依赖镶嵌在细胞膜上的特殊蛋白质分子的功能活动来实现跨膜转运,称为易化扩散或协助扩散。 6. 离子泵:是细胞膜上逆电化学势梯度,利用代谢能量转运离子的跨膜载体蛋白。 7. 生理酸性盐:对于(NH4)2SO4一类盐,植物吸收NH4+较SO4-多而快,这种选择吸收导致溶液变酸,故称这种盐类为生理酸性盐。 8. 生理碱性盐:对于NaNO3一类盐,植物吸收NO3-较Na+快而多,选择吸收的结果使溶液变碱,因而称为生理碱性盐。 9. 生理中性盐:对于NH4NO3一类的盐,植物吸收其阴离子NO3-与阳离子NH4+的量很相近,不改变周围介质的pH值,因而,称之为生理中性盐。 10. 单盐毒害:植物被培养在某种单一的盐溶液中,不久即呈现不正常状态,最后死亡。这种现象叫单盐毒害。 11. 离子对抗:在发生单盐毒害的溶液中加入少量不同化合价的金属离子,就可解除单盐毒害,这种现象称为离子对抗。 12. 平衡溶液:在含有适当比例的多种盐溶液中,各种离子的毒害作用被消除,植物可以正常生长发育,这种溶液称为平衡溶液。 13. 电化学势梯度:离子的化学势梯度质和电势梯度合称为电化学势梯度。 14. 根外施肥:植物除了根部吸收矿质元素外,地上部分主要是叶面部分吸收矿质营养的过程叫根外施肥。 15. NR:硝酸还原酶,催化NO3-还原成NO2-的过程,是一种钼黄素蛋白,由黄素腺嘌呤二核苷酸(FAD)、细胞色素b557(Cyt b557)和钼复合体(Mo-Co)组成,不供给硝酸盐的植物中,硝酸还原酶的活性很低,硝酸盐可诱导该酶活性的增加。 16. 固氮酶:固氮微生物中具有还原分子氮为氨态氮功能的酶。该酶由铁蛋白和钼铁蛋白组成,两种蛋白质同时存在才能起固氮酶的作用。 17. 需肥临界期:作物生长发育对养分的缺乏最敏感、最易受伤害的时期叫需肥临界期。 二、填空题 1. C、H、O、N、P、K、Ca、Mg、S;Fe、Mn、B、Zn、Cu、Mo、Cl 2. C、H、O、N 3. N、P、K;植物对其需量较大,而土壤中往往又供应不足。 4. 老叶失绿;缺N全叶失绿,缺K叶尖叶缘失绿。 5. 脉间失绿;缺Mg老叶先表现症状,缺Fe新叶先表现症状。 6. Ca;B。 7. 细胞结构物质的组成成分;生命活动的调节者;作为电子的载体;参与渗透调节、胶体

第五节植物的矿质营养

第五节植物的矿质营养 教学目的 1.植物必需的矿质元素及其种类(B:识记)。 2.植物对矿质元素吸收和利用的特点(B:识记)。 3.合理施肥的基础知识(B:识记)。 教学重点 1.植物必需的矿质元素及其种类。 2.根对矿质元素的吸收过程。 教学难点 根对矿质元素的吸收和对水分的吸收是两个相对独立的过程。 教学用具 小麦等植物体内主要元素含量表的投影片、小麦在不同生长发育时期对K、对P需要量的投影片、试管、玉米幼苗、营养液、实物投影仪 等。 教学方法 教师讲述、启发与学生观察、讨论相结合。 课时安排1课时。 板书教学过程 第五节 植物的矿质营养引言:同学们,现在让我们来观察一下小麦等植物体内的主要元素的 含量。 (教师活动:用投影仪把小麦等植物体内主要元素含量表投到大 屏幕上。) 提问:在植物体内哪些元素含量最多? (回答:C、H、O三种元素。)

_、植物必需 的矿质元素 (一)必需的 矿质元素 1.大量元素:N 、P、K、S.Ca、 Mg。 2.微量元素:Fe、Mn、B、Zn、Cu、Mo、CI。 (二)非必需 的矿质元素 (三)溶液培 养法 二、根对矿质 元素的吸收 提问:这三种元素是怎么进入植物体内的呢? (回答:绿色植物通过光合作用从大气中的二氧化碳获得C和O, 从根的吸水中获得H和O。) 讲述:植物体内的其它元素是怎么进入植物体内的呢?它们主要是由植物的根系从土壤中吸收的。那么,除了C、H、O以外,主要由根系从土壤中吸收的元素,我们就叫它为矿质元素。植物是怎样吸收、运输和利用这些矿质元素的呢?这就是我们今天要学习的第五节内 容:植物的矿质营养。 讲述:我们先来学习第一个问题,植物必需的矿质元素。土壤中矿质元素有许多种,这些元素是否都是植物生活所必需的呢?我们来 看课外小组的同学做的一组实验。 [同学活动:课外小组同学展示并讲解他们用溶液培养法培养玉米幼苗的过程和结果。一号试管是用含有全部矿质元素的营养液培养的玉米幼苗(该幼苗生长正常);二号试管是用缺少氮元素的营养液培养的玉米幼苗(该幼苗矮小瘦弱,叶片发黄,叶脉呈淡棕色);三号试管是用缺少氮元素的营养液培养的玉米幼苗,在幼苗出现不正常生长后,又补充了氮元素后培养的玉米幼苗(该幼苗又恢复了正常生长);四号试管是用缺少铝元素的营养液培养的玉米幼苗(该幼苗正常生 长)。] (教师活动:用实物投影仪把同学们实验的结果依次投到大屏幕 上。) 讲述:从同学们的实验中我们可以看出,氮元素是植物必需的矿质元素,因为缺少了氮,植物就不能正常生长发育,而补充了氮。植物的生长发育就能恢复正常状态。铝元素则不是植物必需的矿质元策,因为缺少了铝,植物仍能正常生长发育。我们把课外小组同学采用的实验方法叫溶液培养法,即用含有全部或部分矿质元素的营养液培养植物的方法。目前,科学家们已确定必需的矿质元素有13种.其中N、P、K、S、Ca、Mg属于大量大素;Fe、Mn、B、Zn 、Cu 、Mo 、Cl 属于微量 元素。 讲述:植物是怎样吸收这些矿质元素的呢?下面我们来学习第二 个问题:根对矿质元素的吸收。 提问:矿质元素都存在于哪里? (回答:土壤里。)

第三章 植物的矿质营养

第三章植物的矿质营养 教学目的和要求 学习植物矿质和氮素营养的生理作用及其吸收与利用的目的,在于通过控制植物的矿质及氮素营养,调节植物的代谢,促进生长发育,增加产量及改善品质。 本章重点 1.必需矿质元素的主要生理作用及其缺素症状 2.细胞吸收矿质元素的机理 3.根系吸收矿质元素的特点 4.矿质元素的运输途径 5.硝酸盐的还原与氨的同化 6.合理施肥的生理指标 本章难点 1.细胞吸收矿质元素的机理 2.必需矿质元素的主要生理作用及其缺素症状 学时数:5 教学方法和手段 采用多媒体教学,元素生理作用和缺素症状主要展示大量缺素图片和播放电视教学片(视频),增加感性认识。矿质元素吸收机理主要采用动画,增加直观性。

第一节植物必需元素及其作用 一、植物体内的元素及其含量 二、植物必需元素的标准与确定方法 (一)植物必需元素的标准 (二)植物必需元素的确定方法:水培法(solution culture method);砂培法(sand culture methoe)。至今已发现17种植物必需元素。 大量元素(macroelement或major element):C、H、O、N、P、K、Ca、Mg、S、微量元素(microcelement 或trace element):Fe、Mn、B、Zn、Cl、Mo、Cu、Ni。 有益元素:对某些植物生长发育必需的元素,如Si对水稻,Al对茶树,Na对甜菜等。自从1859年Sachs和Knop创立水培法以来,到20世纪80年代配合电脑的应用,已经有能力达到生产花卉和蔬菜,有的部门正试用于作物生产上。它预示着随着人口的增加,土地面积越来越少,农业产量必须提高,农业生产有必要向工业化方向转变。 三、植物必需元素的作用及其主要缺素症状和发病部位。 第二节植物对矿质的吸收与运转 一、植物细胞对矿质元素的吸收 离子通道运输(ion channel transport)(通道蛋白);载体运输(carrier transprot)(载体蛋白蛋白);离子泵运输(H+-ATP酶);胞饮作用(Pinocytosis) 二、植物根系对矿物质元素的吸收 (一)根系吸收矿质元素的特点:1.根系吸盐与吸水的相对性;2.根系吸盐的选择性;3.单盐毒害与离子间的桔抗性(ion antagonism) (二)根系吸收矿质元素的过程 (三)土壤状况对根系吸收矿质元素的影响 1.温度;2.通气;3.PH;4.离子相互作用;5.土壤溶液浓度 三、植物叶片对矿质元素的吸收:优点和注意事项 四、矿质元素在植物体内的运转与分配:运输的形式;运输的途径 第三节植物体内氮的同化 一、硝酸盐的还原 二、氨的同化:还原氨基化;谷酰氨-----谷氨酸合成酶途径 第四节作物合理施肥的生理基础 一、作物需肥的规律 二、合理施肥的指标:形态指标;生理指标(叶绿素,酶类活性,营养元素含量,酰胺与淀粉含量) 三、合理施肥增产的原因:生理基础,生态基础

高考生物知识点:植物的矿质营养

2019高考生物知识点:植物的矿质营养 2019高考生物知识点:植物的矿质营养 (一) 1、植物的矿质营养:是指植物对矿质元素的吸收、运输和利用。 2、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。植物必需的矿质元素有13种.其中大量元素7种N、S、P、Ca、Mg、K(Mg是合成叶绿素所必需的一种矿质元素)巧记:丹留人盖美家。Fe、Mn、B、Zn、Cu、Mo、Cl属于微量元素,巧记:铁门碰醒铜母(驴)。 3、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。 4、选择吸收:指植物对外界环境中各种离子的吸收所具有的选择性。它表现为植物吸收的离子与溶液中的离子数量不成比例。 5、合理施肥:根据植物的需肥规律,适时地施肥,适量地施肥。 (二) 1、根对矿质元素的吸收①吸收的状态:离子状态②吸收的部位:根尖成熟区表皮细胞。③、细胞吸收矿质元素离子可以分为两个过程:一是根细胞表面的阴、阳离子与土壤溶液中的离子进行交换吸附;二是离子被主动运输进入根细胞内

部,根进行离子的交换需要的HCO-和H+是根细胞呼吸作用产生的CO2与水结合后理解成的,根细胞主动运输吸收离子要消耗能量。④影响根对矿质元素吸收的因素:a、呼吸作用:为交换吸附提供HCO-和H+,为主动运输供能,因此生产上需要疏松土壤;b、载体的种类是决定是否吸收某种离子,载体的数量是决定吸收某种离子的多少,因此,根对吸收离子有选择性。氧气和温度(影响酶的活性)都能影响呼吸作用。 2、植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。①吸收部位:都为成熟区表皮细胞。②吸收方式:根对水分的吸收---渗透吸水,根对矿质元素的吸收----主动运输。③、所需条件:根对水分的吸收----半透膜和半透膜两侧的浓度差,根对矿质元素的吸收----能量和载体。④联系:矿质离子在土壤中溶于水,进入植物体后,随水运到各个器官,植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。 3、矿质元素的运输和利用:①运输:随水分的运输到达植物体的各部分。②利用形式:矿质运输的利用,取决于各种元素在植物体内的存在形式。K在植物体内以离子状态的形式存在,很容易转移,能反复利用,如果植物体缺乏这类元素,首先在老的部位出现病态;N、P、Mg在植物体内以不稳定化合物的形式存在,能转移,能多次利用,如果植物体缺乏这类元素,首先在老的部位出现病态;Ca、Fe在植物体

植物矿质营养学说

1.植物矿质营养学说:腐殖质是在地球上有了植物才出现的,而不是在植物出现以前,因 此植物的原始养分只能是矿物质 2.养分归还学说:由于作物的收获必然要从土壤中带走某些养分物质,土壤养分将越来越 少,如果不把这些矿质养分归还土壤,土壤将变得十分贫瘠。因此必须把作物带走的养分全部归还给土壤。 3.最小养分律:作物产量受土壤中相对含量最少的养分因子所控制,产量高低随最小养分 补充量的多少而变化,如果这个因子得不到满足,即使增加其他的养分因子,作物产量也不可能提高。 4.拮抗作用:溶液中某一离子存在能抑制另一离子吸收的现象 5.协助作用:溶液中某一离子存在有利于根系对另一些离子的吸收 6.“维茨效应”:Ca2+有稳定细胞膜结构的功能,因而有助于质膜的选择性吸收 7.磷酸退化作用:当过磷酸钙吸湿后,除易结块外,其中的磷酸钙还与制造时生成的硫酸 铁、硫酸铝等杂质起化学反应,形成溶解度低的铁、铝磷酸盐的作用 钾的晶格固定:干湿交替情况下,吸附在颗粒表面的交替性钾能进入2:1型粘土矿物晶片层进而被固定 8.根际:受植物根系活动的影响,在物理、化学和生物学性质上不同于土体的那部分微域 土区 9.硝化作用:铵态氮在微生物等作用下被氧化成硝态氮的过程 10.反硝化作用:硝态氮在微生物等作用下被还原成氮气或氮氧化物的过程 11.激发效应:投入新鲜有机质或含氮物质而使土壤中原有机质的分解速率改变的现象。使 分解速率增加的称正激发效应;降低的称负激发效应。 12.有机肥料:定义:有机肥料是指含有较多有机质和多种营养元素、来源于动植物残体及 人畜粪便等废弃物的肥料之统称。来源:人畜粪尿、作物秸秆、绿肥、泥炭、城市废弃

植物的矿质营养

植物的矿质营养 1、植物的矿质营养:是指植物对矿质元素的吸收、运输和利用。 2、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。植物必需的矿质元素有13种.其中大量元素7种N、S、P、Ca、Mg、K(Mg是合成叶绿素所必需的一种矿质元素)巧记:丹留人盖美家。Fe、Mn、B、Zn、Cu、Mo、Cl属于微量元素,巧记:铁门碰醒铜母(驴)。 3、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。 4、选择吸收:指植物对外界环境中各种离子的吸收所具有的选择性。它表现为植物吸收的离子与溶液中的离子数量不成比例。 5、合理施肥:根据植物的需肥规律,适时地施肥,适量地施肥。 语句:1、根对矿质元素的吸收①吸收的状态:离子状态②吸收的部位:根尖成熟区表皮细胞。③、细胞吸收矿质元素离

子可以分为两个过程:一是根细胞表面的阴、阳离子与土壤溶液中的离子进行交换吸附;二是离子被主动运输进入根细胞内部,根进行离子的交换需要的HCO-和H+是根细胞呼吸作用产生的CO2与水结合后理解成的,根细胞主动运输吸收离子要消耗能量。 ④影响根对矿质元素吸收的因素:a、呼吸作用:为交换吸附提供HCO-和H+,为主动运输供能,因此生产上需要疏松土壤;b、载体的种类是决定是否吸收某种离子,载体的数量是决定吸收某种离子的多少,因此,根对吸收离子有选择性。氧气和温度(影响酶的活性)都能影响呼吸作用。 2、植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。①吸收部位:都为成熟区表皮细胞。②吸收方式:根对水分的吸收---渗透吸水,根对矿质元素的吸收----主动运输。③、所需条件:根对水分的吸收----半透膜和半透膜两侧的浓度差,根对矿质元素的吸收----能量和载体。④联系:矿质离子在土壤中溶于水,进入植物体后,随水运到各个器官,植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的 过程。

植物的矿质营养 自测题及参考答案

第 3 章 植物的矿质营养 自测题: 一、名词解释 1.矿质营养 2.灰分元素 3.必需元素 4.大量元素 5.微量元素 6.有利元素 7.水培法 8.砂培法 9.气栽法 10.营养膜技术 11.离子的被动吸收 12.离子的主动吸收 13.单盐毒害 14.离子对抗 15.平衡溶液 16.生理酸性盐 17.生理碱性盐 18.生理中性盐 19.胞饮作用 20.叶片营养 21.诱导酶 22.可再利用元素 23.生物固氮 24.易化扩散 25.通道蛋白 26.载体蛋白 27.转运蛋白 28.植物营养临界期 29.植物营养最大效率期 30.缺素症 二、缩写符号翻译 1.AFS 2.Fd 3.Fe-EDTA 4.NiR 5.NR 6.WFP 7.GOGAT 8.GS 9.GDH 10..NFT 11.PCT 12.FAD 二、填空题 1.在植物细胞内钙主要分布在 中。 2.土壤溶液的pH对于植物根系吸收盐分有显著影响。一般来说,阳离子的吸收随pH的增大而 ;阴离子的 吸收则随pH的增大而 。 3.所谓肥料三要素是指 、 和 三种营养元素。 4.参与光合作用水的光解反应的矿质元素是 、 和 。 5.参与吲哚乙酸代谢的两个矿质元素是 和 。 6.在植物体内充当氨的解毒形式、运输形式、临时贮藏形式的两种化合物是 和 。 7.在植物体内促进糖运输的矿质元素是 、 和 。 8.亚硝酸还原酶的两个辅基分别是 和 。 9.硝酸还原酶的三个辅基分别是 、 和 。 10.植物体缺钼往往同时还出现缺 症状。 11.对硝酸还原酶而言,NO3 - 既是 又是 。 12.应用膜片-钳位技术现已了解到质膜上存在的离子通道有 、 和 等离子通道。 13.作为固氮酶结构组成的两个金属元素为 和 。 14.离子跨膜转移是由膜两侧的 梯度和 梯度共同决定的。 15.促进植物授粉、受精作用的矿质元素是 。 16.以镍为金属辅基的酶是 。 17.驱动离子跨膜主动转运的能量形式是 和 。 18.盐生植物的灰分含量最高,可达植物干重的 。 19.植物体内的元素种类很多,已发现 种,其中植物必需矿质元素有 种。 20.植物生长发育所必需的元素共有 种。 21.植物生长发育所必需的大量元素有 种、微量元素有 种。 22.植物必需元素的确定是通过 法才得以解决的。 23.植物细胞吸收矿质元素的方式有 、 和 。 24.解释离子主动吸收的有关机理假说有 和 。 25.关于离子主动吸收有载体存在的证据有 和 。 26.诊断作物缺乏矿质元素的方法有 、 和 。 27.华北地区果树的小叶病是因为缺 元素的缘故。 28.缺氮的生理病症首先出现在 叶上。 29.缺钙的生理病症首先出现在 叶上。 30.根系从土壤吸收矿质元素的方式有 , 和 。 31.(NH4)2SO4是属于生理 性盐;KNO3是属于生理 性盐;而NH4NO3则属于生理 性盐。 32.多年大量施入NaNO3 会使土壤溶液pH值 。 33.多年大量施入(NH4)2SO4会使土壤溶液pH值 。 34.植物对水分和盐分的吸收关系是 。

矿质营养习题及答案

第二章植物的矿质营养 一、英译中( Translate ) 1、mineral element 2、pinocytosis 3、passive absorption 4、essential element 5、macroelement 6、ash element 7、fluid mosaic model 8、phospholipid bilayer 9、extrinsic protein 10、intrinsic protein 11、integral protein 12、ion channel transport 13、membrane potential gradient 14、electrochemical potential gradient 15、passive transport 16、uniport carrier 17、symporter 18、antiporter 19、ion pump 20、proton pump transport 21、active transport 22、calcium pump 23、selective absorption 24、physiologically acid salt 25、physiologically alkaline salt 26、physiologically neutral salt 27、toxicity of single salt 28、ion antagonism 29、balanced solution 30、exchange adorption 31、ectodesma

第二章植物的矿质营养 32、induced enzyme 33、transamination

7植物的矿质营养

考点7:植物的矿质营养 一.选择题(1―23为单项选择题,24―25为多项选择题) 1.用完全培养液在相同的容器内分别培养水稻和番茄幼Array苗,一段时间后,测定培养液中各种离子,与实验开 始时各种离子浓度之比如右图所示。该实验的结果 不能说明 A.植物根对水分的吸收和对矿质元素的吸收是两个 相对独立的过程 B.植物对离子的吸收有选择性 C.植物对离子的吸收与溶液中离子的浓度有关 D.水稻吸收Si的载体多 2.甲状腺激素、血红蛋白和叶绿体中含有的重要元素依次是 A.Cu、Mg、I B.I、Fe、Mg C.Ca、Mg、 Fe D.Fe、Mg、I 3.农作物施用农家肥比施用单一的化肥生长好,原因是 A.农家肥的肥效低 B.农家肥见效快 C.农家肥含有多种植物必需的矿质元素 D.农家肥含有植物需要的有机养料 4.将浸泡过的大豆种子去皮,放在红墨水中染色15~20min,下列现象中表明种子完全丧失生命力的是 A.胚根、子叶未着色B.胚根、子叶略带红色 C.胚全部被染上红色D.子叶出现红色斑点 5.植物叶片从幼到老的整个生命活动过程中 A.有机物输出也输入,矿质元素只输入 B.有机物只输出,矿质元素只输入 C.有机物只输出,矿质元素输入也输出 D.有机物与矿质元素都既输入,又输出 6 7.右图中的曲线表示生物学中某些现象,有关的解释不合理的是A.该曲 线可用来表示叶片年龄与其叶绿素含量的关系 B.若曲线表示一个生态系统的生产力随时间发生的变 化,则b点表示环境出现剧烈变化 C.若曲线表示青霉菌生长曲线,则c点是提取青霉素 的最佳时间 D.若曲线表示一个国家人口数量随时间的变化,则 a一b段该国老年人数量比例较小 8.对植物嫩叶所必需的矿质元素Fe和Mg来源的叙述,正确的是 A.Fe和Mg既来源于土壤,又来源于老叶 B.Fe和Mg来源于土壤,Mg又可来源于老叶 C.Fe和Mg只来源于土壤,不来源于老叶 D.Fe和Mg来源于老叶,Mg又可来源于土壤 9.保健品黄金搭档组合维生素片中含钙、铁、锌、硒等矿质元素,其中属于组成生物体的

植物生理学第二章 植物的矿质营养教学文案

植物生理学第二章植物的矿质营养

第二章植物的矿质营养 一、名词解释 1. 矿质营养 2. 必需元素 3. 大量元素 4. 微量元素 5. 水培法 6. 叶片营养 7. 可再利用元素 8. 易化扩散 9. 通道蛋白 10. 载体蛋白 11. 转运蛋白 12. 植物营养最大效率期 13. 反向运输器 14. 同向运输器 15. 单向运输器 二、填空题 1.植物细胞中钙主要分布在中。 2.土壤溶液的pH对于植物根系吸收盐分有显著影响。一般来说,pH增大易于吸收;pH降低易于吸收。 3.生产上所谓肥料三要素是指、和三种营养元素。 4.参与光合作用水光解反应的矿质元素是、和。 5.在植物体内促进糖运输的矿质元素是、和。 6.离子跨膜转移是由膜两侧的梯度和梯度共同决定的。 7.促进植物授粉、受精作用的矿质元素是。 8.驱动离子跨膜主动转运的能量形式是和。 9.植物必需元素的确定是通过法才得以解决的。 10.华北地区果树的小叶病是因为缺元素的缘故。 11.缺氮的生理病症首先出现在叶上。 12.缺钙的生理病症首先出现在叶上。 13.根部吸收的矿质元素主要通过向上运输的。 14.一般作物的营养最大效率期是时期。 15.植物地上部分对矿质元素吸收的主要器官是。 16.植物体内可再利用的元素中以和最典型;不可再利用的元素中以最典型。 17.追肥的形态指标有和等;追肥的生理指标 有和。 18.油菜“花而不实”症是土壤当中缺乏营养元素引起的。 19. 引起大白菜干心病、菠菜黑心病矿质元素是。 20. 被称为植物生命元素的是。 21. 一般作物生育的最适pH是。 22.诊断作物缺乏矿质元素的方法有、和。 23.影响根部吸收矿质元素的因素有、、和。 三、选择题 1.在下列元素中不属于矿质元素的是()。 A.铁 B.钙 C.氮 D.磷

相关主题
文本预览
相关文档 最新文档