当前位置:文档之家› 稀土发光材料的特点及应用

稀土发光材料的特点及应用

稀土发光材料的特点及应用
稀土发光材料的特点及应用

论文题目:稀土发光材料的特点及应用课程名称:材料化学

专业名称:应用化学

学号:1109341028

姓名:王海鱼

成绩:

2013年11月18日

稀土发光材料的特点及应用

摘要:发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外

加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。

关键字:光至发光材料荧光应用

Abstract: light is the object to absorb energy into the process of optical radiation. When the material is light, such as the applied electric field or electron beam bombardment, excited, absorb energy, in the excited state, the transition to the ground state of the process,to absorb the energy released by the form of light or heat. If this part of the energy is radiated electromagnetic wave in the form of light, is light. Keywords: photoluminescence material fluorescence application

前言:

在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂。发光材料分永久性发光材料(放射性辐射激发)和外加能量激发而发光如光激发、电场激发、阴极射线激发、X射线激发等的材料。光致发光材料又称超余辉的蓄光材料。它是一种性能优良,无需任何电源就能自行发光的材料。

1.稀土发光材料的发展

1960 年首次发现用掺衫的氟化物 CaF

2

: Sm2+可以输出激光脉冲,这是稀土发光材的问世?在 1964 年,国际上稀土分离技术得到突破,导致了高效红色荧光粉

YVO

4: Eu3+和 Y

2

O

3

: Eu3+的发明,同年美国用 YVO

4

: Eu3+作红色荧光材料的新型彩色

电视机问世?紧接着,1968 年又发明另一种高效的 Y

2O

2

S: Eu3+红色荧光粉?尽管

它们昂贵,但很快被应用于 CTR 彩色电视中,使彩电发生了质的变化?与此同时,科学家们还进行着三价稀土离子的 4f - 4f 能级跃迁?4f 和 5d 能态及电荷转移态的基础研究工作:完成了三价稀土离子位于5000 cm-1以下的4f电子组态能级的能量位置的基础研究工作,所有三价稀土离子的发光和激光均起源于这些能级?因此可以说上世纪是 60 年代是稀土离子发光及其发光材料基础研究和应用发展的划时代和转折点?有了 60 年代的研究基础和工业基础,步入 70 年代,无论是基础研究还是新材料研制及其开发应用多进入了百花齐放的时期?如 70 年代初,由 Koedam M等人通过对人眼色觉的研究,从理论上推出: 如果将蓝?绿?红(波长分别为 440nm?545 nm?610 nm)三种窄波长范围发射的荧光粉按一定比例混合,可制成高效率?高显色性荧光灯?1974 年,荷兰菲利蒲公司的 Jversgetn JM

等先后合成了稀土绿粉(Ce,Tb)MgAl

11O

9

?蓝粉(Ba,Mg,Eu)

3

Al

16

O27和红粉 YO3:

Eu3+,并将它们按一定比例混合,制成了三基色粉,首次研制成了稀土三基色荧光灯随后投放市场?

2. 稀土发光材料的发光机理

以无机和有机两大系统来了解发光现象已有 100 多年的历史,但到目前为止,还没有一个普遍而完整的发光作用机理,对于稀土发光材料的发光机理而言同样如此?稀土发光材料的发光机理是指稀土固体发光材料受到紫外线?X 射线?电子轰击等激发方式的作用时,产生辐射的一种物理过程,即是发光物质去激活的一种方式?不论采用哪一种形式的发光,都包含了激发?能量传递和发光三个过程?其中发光过程又把它分为激活剂发光和非辐射回到基态,后一过程常会降低物质的发光效率?能量传递方式一般可分为两类,即辐射传递过程和无辐射传递过程,辐射传递是一个离子的辐射光被另一个离子再吸收的过程,要求发射的能量谱带和吸收带相重益,在稀土离子间这种方式不是主要的,因为 f - f 跃迁较弱,无论是发射和吸收都不会很强?而无辐射传递过程是稀土离子的主要过程?激发是通过激活剂?敏化剂或基质吸收能量的过程,而发光则是处于高能量的激发态跃迁回到基态,并把吸收的一部分能量以光辐射的形式释放出来的过程?因此其发光过程可以描述如下: 激活剂吸收激发光的能量(或其它形式的能量)变为激发态,然后又回到基态(以辐射和非辐射方式)并发出光?对于稀土发光材料而言重要的是稀土离子,使较高能量的相反宇称的组态混入到 4fn组态,引起 J 混效应导致组态状态的混合,这种禁戒会被部分解除或完全解除,使电子跃迁有可能实现,通常把这种跃迁称为诱导电偶极跃迁或强迫电偶极跃迁,它比 fn组态内的磁偶极跃迁强 1 ~ 2 个数量极?对磁偶极子而言,其宇称选择定则正好相反,磁偶极跃迁的选择定则为: △l= 0,△ S = O,△ L = 0,△J = 0, 士 1 ( J= 0 一 J = 0),即只有基态光谱项的 J 能级之间的跃迁才是允许的,或者说跃迁只能发生在宇称性相同的状态之间,4f能级间的跃迁就是磁偶极子的跃迁?这类跃迁虽然可能,但都很弱,和电偶极子相比有几个数量级的差别?在稀土三价离子中存在较强的自旋一轨道偶合,使按L 和 S 的选择定则不再是很严格的?由于 f 能级受外层电子轨道的屏蔽,使 f - f跃迁的光谱受外界晶体场影响较小,谱线表现为尖锐的吸收峰?f - d 跃迁是因为 4f 激发态能级的下限高于 5d 能级的下限而使电子跃迁到较高的 5d 能级而产生的电子跃迁,根据光谱选择定则,f - d 电子跃迁是允许跃迁,吸收强度比 f - f 跃迁大四个数量级?由于 d 电子因裸

露与离子表面,其能级分裂受到外在晶体场强烈影响,因而其电子跃迁往往表现为一定的宽带吸收峰?在稀土离子中,Ce3+?Tb3+?Pr+?Eu3+和 Eu2+都存在 5d 能级,其中 Tb3+?Pr+?Eu3+的能级位置较高,难以实现 f - d 跃迁,Ce3+和 Eu3+则由于 5d 能级位置相对较低,因而可观察到由 f - d 跃迁所引起的宽带发射光谱

3.稀土发光材料的发光特性

稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。

物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。

因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。

稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。

4.稀土发光材料的合成方法

稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。

4.1 水热合成法

在水热合成中水的作用是:作为反应物直接参加反应;作为矿化剂或溶媒促进反应的进行;压力的传递介质,促进原子、离子的再分配和结晶化等[1]。由于在高温高压下,水热法为各种前驱物的反应和结晶提供了一个在常压条件下无法得到的特殊的物理、化学环境,使得前驱物在反应系统中得到充分的溶解,并

达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶生成粉末或

纳米晶[2]。

1990年, Kutty等[3~6]首次报道了用水热法合成硼铝酸盐荧光体,蔡少华等[7]又用水热法合成了CaWO

4

Pb荧光体,结果表明,产物具有实用价值。冯守华等[8]

在温和的条件下合成了Sm3+离子激活的BaBeF

4

磷光体,产物的晶粒形状规则,不

含水,不易发生钐离子的价态变化。于亚勤等[9]合成了La1-x Prx P

5O

14

晶体,具

有很高的红色发射强度。

大量的实验表明,反应过程及产物的组成、结构等都会受到多种因素的影响。尤其是原料的摩尔比,它会影响到产物的基本结构,主要是影响固溶体的晶格,导致晶胞大小的改变[10];而且也常常会影响到产物的结晶度从而改变物相;它也是能够合成出纯相的关键因素[11]。因此往往要通过实验来确定起始原料的摩尔比,但是在稀土发光材料的合成中,掺杂离子的引入对合成影响不大[8]。

水热法合成稀土发光材料具有反应条件温和,可以创造平衡缺陷浓度和生成新物相;制得的粉体晶粒发育完整,结晶度良好,粒径很小且分布均匀,有利于改善材料性能;团聚程度很轻,可以得到理想化学计量组成的材料;无需煅烧和研磨,避免了晶粒团聚、长大以及杂质和结构缺陷,减少了发光损失等优点。

目前工业生产荧光粉的方法均为传统的高温固相合成法,主要优点是微晶的晶体质量优良,表面缺陷少、发光效率高,缺点是合成清晰度高,颗粒尺寸大且分布不均匀,难以获得球形颗粒。

4.2 溶胶——凝胶法

R.Morimo[12]通过对比实验证明了溶胶——凝胶法在降低烧结温度、均匀掺杂等方面均优于固相反应法。国内亦有许多学者探索了用该法合成稀土掺杂的荧光体的发光性能[13~17],表明了溶胶- 凝胶法在稀土发光材料合成领域中异常活跃。文献[18]评述了稀土离子及其配合物掺杂于溶胶——凝胶基质中的发展,预测了今后的发展方向:溶胶——凝胶过程对最终材料性质有重大影响,基质特性与稀土发光材料的相关性研究对提高稀土的发光性能具有指导作用;合成透明的稀土无机/有机杂化薄膜,以提高材料的力学性质;缩短整个溶胶——凝胶过程的周期,是材料走向实用化的重要一步。

溶胶- 凝胶法的优点是:反应温度一般为室温或稍高一点,大多数有机活性

分子可以引入此体系中并保持其物理性质和化学性质;反应从溶液开始,易控制各组分的比例,且达到分子水平上的均匀,所以产品组成均匀;缺点是反应的原料价格高,且有时较难制得,反应操作也较复杂,周期长。尽管如此,溶胶——凝胶法还是以其温和的反应条件和灵活多样的操作方式,在制备多功能光学材料方面显示出巨大的潜力。

4.3 微波辐射法

微波合成的产品具有物相纯,稀土掺杂浓度高,发光强度大等特点。因而在化学合成领域受到的高度的重视,在稀土发光材料的合成中也有了较广泛的应用。国内主要是张迈生、杨燕生等[19~21]研究较多,合成了多种荧光体并分析了它们的发光性质。但微波辐射法仍存在一些问题,有待于进一步的探讨和深入研究。例如,其反应机理仍不是很清楚,反应温度的控制,大规模的生产应用方式等。

微波合成法是近10年来迅速发展的新兴制备技术,是利用微波辐射代替传统的加热以进行无机固相反应的一种方法。它是将微波炉发射出来的微波,通过吸收介质传递给反应物体系,从而快速升温到所需温度,并使反应在较短时间内完成。该法由于使组分内部整体同时发热,故升温速度极快,是一种快速高效、省电节能和环境污染少的绿色合成法。因而研究人员广泛采用微波法以取代高温固相法合成固体发光材料。

4.4 燃烧合成法

燃烧法合成发光材料具有快速(3min~5min)和反应温度低,节能效果明显的特点。用该法制得的荧光粉粒度小,比表面积大,磨细后发光亮度下降不大。在反应过程中如果有低价稀土离子存在的话,不需要还原气氛的保护。用燃烧法成功地合成稀土掺杂的发光材料的报道很多[22~26]。但体系中的水在瞬间的反应过程中来不及完全排除,而且大量的尿素在加热快速分解时会产生大量的氨气,导致体系环境呈碱性,致使产物中会含有“OH-”;另外产物中有少量杂相;从用的角度来看,尿素用量增大后导致粒径增大的问题也需要解决。

4.5 共沉淀法

共沉淀法是利用金属离子与沉淀剂在溶液中进行共沉淀反应,然后在高温下煅烧得到所需产物。在实际中已有许多应用[29, 30],表明该法合成的荧光体具有良好的发光性能。

在用共沉淀法合成稀土发光材料的操作过程中,对产品有影响的主要因素有:沉淀剂溶液体系和金属盐溶液体系的选择及其浓度;原料配比的选择;稀土溶液总浓度;尿素浓度;沉淀过程的pH值;分散剂和表面活性剂的选择;沉淀剂溶液和金属盐溶液的混合方式;洗涤条件和干燥条件;煅烧的温度和时间等等。

共沉淀法的优势在于它不仅可以将原料提纯与细化,而且可以在制备过程中完成反应及掺杂过程。这种方法具有工艺简单、经济,反应物混合均匀,焙烧温度较低、时间较短,产品性能良好等优点。但制备过程中仍有不少问题有待解决,例如过程中易引入杂质,形成的沉淀呈胶体状态导致洗涤和过滤方面的问题,如何选择适宜的沉淀剂和控制制备条件。这些问题正在通过原料的适当选取、完善工艺条件等手段来突破。

此外还有高温高压合成法[29],不等价离子取代法[30]及碱金属热还原法[31]等,而且可以联合使用两种合成方法来制备稀土发光材料。

5.稀土发光材料的应用

阴极射线发光材料是应用最为广泛的发光材料之一,主要用于电视、示波器、雷达、计算机等各种荧光屏和显示器,荧光粉产量经济效益大,其中尤其以彩色电视机荧光粉发展最快。

5.1稀土红色荧光粉

Y 2O

2

S:Eu3+性质:为白色晶体,具有六方晶体结构,不溶于水,熔点高(℃以

上),化学性质稳定。Y

2O

3

:Eu3+优点:耐受大功率轰击,用于高分辨彩色投影电视

和计算机终端显示,有良好的温度猝灭性能和电流饱和特性。使彩色电视机显示发生一次巨大飞跃。

5.2稀土绿色荧光粉

在全色视频显示中,绿光亮度的贡献最大,约占60%左右,因此对绿粉的选

择尤为重要。曾经出现过几种绿粉,都不同程度地存在不足,例如Y

2O

2

S:Tb3+和

Gd

2O

2

S:Tb3+的温度特性不好、Y

2

SiO

4

:Tb的色纯度不高、Zn

2

SiO

4

:Mn2+和InBO

3

:Tb3+

的余辉太长、LaOCl:Tb3+化学稳定性欠佳。只有钇铝石榴石体系的绿色荧光体在彩色电视电子束管和投影管中表现出较好的性能,具有实际应用价值。

Y 3Al

5

O

12

:Tb3+(YAG:Tb):彩色投影电视普遍使用,表现出良好的温度猝灭特性,

电流饱和特性和老化特性。

Y 3(Al,Ga)

5

O

12

:Tb3+(YAGG:Tb):这是一种新型的绿色发光材料,其主要性能(如

老化特性、亮度、电流饱和特性和γ系数等)都得到改善。

其他稀土绿色荧光粉:LaOBr:Tb3+;InBO

3:Tb3+;Y

2

SiO

5

:Tb;LaOBr:Tb3+等。

5.3稀土蓝色荧光粉

在全色视频显示中,绿光亮度的贡献最大,约占60%左右,因此对绿粉的选择尤为重要。曾经出现过几种绿粉,都不同程度地存在不足,例如Y2O2S:Tb3+和Gd2O2S:Tb3+的温度特性不好、Y2SiO4:Tb的色纯度不高、Zn2SiO4:Mn2+和InBO3:Tb3+的余辉太长、LaOCl:Tb3+化学稳定性欠佳。只有钇铝石榴石体系的绿

色荧光体在彩色电视电子束管和投影管中表现出较好的性能,具有实际应用价值。

Y3Al5O12:Tb3+(YAG:Tb):彩色投影电视普遍使用,表现出良好的温度猝灭特性,电流饱和特性和老化特性。

Y3(Al,Ga)5O12:Tb3+(YAGG:Tb):这是一种新型的绿色发光材料,其主要性能(如老化特性、亮度、电流饱和特性和γ系数等)都得到改善。

其他稀土绿色荧光粉:LaOBr:Tb3+;InBO3:Tb3+;Y2SiO5:Tb;LaOBr:Tb3+等。

5.4终端显示器用稀土荧光粉

随着人机对话工程和计算机终端显示技术的飞速发展,近年来又出现了许多不同性能和用途的新型阴极射线发光材料,以满足显示器件对高亮度、高对比度和高清晰度及彩色化和大信息容量的要求。这些显示器用荧光粉与彩电用荧光粉相比具有如下特点:

①发光亮度高;

②色彩重现性好;

③对比度好,可缓解眼睛疲劳;

④具有良好的化学和热稳定性,能耐长时间大功率电子束轰击;

⑤加工性能好;

⑥分体粒径小,中心粒径d

50

在4.0μm左右。

用于终端显示技术中与稀土发光材料有关的主要是Tb3+、Eu3+激活的硼酸铟等体系。

5.5稀土飞点扫描荧光体

飞点扫描荧光体是一类超短余辉发光材料,这类材料几乎全都是利用Ce3+离子荧光寿命短的特性而合成。此类荧光体的余辉数量级为10-7s左右。典型的稀

土飞点扫描荧光体有Ga

2MgSi

2

O

2

:Ce(主峰约385nm,光谱范围350~450nm,蓝色,

余辉0.5μs),Y

3Al

5

O

12

:Ce(主峰约530nm,黄绿色,余辉为0.16μs),Y

2

SiO

5

:Ce

(主峰约410nm,蓝色,余辉0.08μs),Y

2(Al,Ga)

5

O

12

:Ce(主峰约515nm,绿色,

余辉<0.2μs)以及70%的Y

3Al

5

O

12

:Ce与30%的Y

2

SiO

5

:Ce混合荧光体,用它们制

成的飞点扫描管可用于电视台播放电视、高速传真、电子计算机终端显示系统等方面。

5.6稀土光致发光材料

用紫外光、可见光或红外光激发发光材料而产生的发光现象称为光致发光。具有这种发光性能的材料则称为光致发光发光材料。光致发光材料又可分为荧光灯用发光材料、长余辉发光材料和上转换发光材料等。

5.6.1紧凑型荧光灯用稀土三基色荧光粉

目前,灯用稀土三基色荧光粉的主要成分是:发蓝光(峰值450nm)的铕激

活的多铝酸钡镁(BaMg

2Al

16

O

27

:Eu2+)、发绿光(峰值543nm)的铈、铽激活的多铝

酸镁(MgAl

11O

16

:Ce3+,Tb3+)和发红光(峰值611nm)的铕激活的氧化钇(Y

2

O

3

:Eu3+)。

(错误!未找到引用源。)

与普通荧光灯使用的卤粉(Mn2+、Sb3+激活的卤磷酸钙)相比,稀土三基色荧光粉具有如下优异性能:

①耐受185nm短波紫外光辐射能力强;

②粉层表面可抵挡汞原子层的形成,减少光衰;

③耐高温性能好,猝灭温度高于800℃,而且在高温下发射强度的维持率好,在120℃工作仍能保持高的亮度;

④量子效率提高15%,达80%以上;

⑤发射峰带窄,色纯度高;

⑥三种发射光谱相对集中于人眼比较灵敏的区域,视觉函数值高,在相同条件下,与发射连续光谱的荧光粉相比,可见光辐射的光效率提高约50%;

⑦稀土离子具有丰富的光谱跃迁能级,在254nm紫外线辐照下能发出不同颜色的光。

主要缺点:稀土三基色荧光粉价格昂贵,特别是红粉用量占60%,使用宝贵的钇。但性能极佳,目前尚无法取代。蓝粉和绿粉的调整和改善是降低成本的有效途径。

5.6.2高压汞灯用稀土荧光粉

高压汞灯具有高效率、长寿命和高亮度等优点,广泛应用于道路、工业厂房、场地及室内照明。其不足之处是缺乏红色辐射,因此需要用荧光粉来矫正高压汞

灯的颜色。灯中可涂上铕激活的钒酸钇(YVO

4:Eu3+)或钒磷酸钇[Y(V,P)O

4

:Eu3+]

红色荧光体,不仅可提高光效,更重要的是改善显色性,提高了灯中的红色比和显色指数。

5.6.3稀土金属卤化物灯荧光粉

目前应用的稀土金属卤化物灯主要有充入钪、钠碘化合物的钪钠灯和充入镝、铊铟碘化物的镝铊灯两个系列。这两种灯在500nm~600nm波长范围内都有较大的光输出,而这一波段光谱的光效率最高,所以这两种灯有较高的发光效率,一般都高于高压汞灯,接近或略高于荧光灯,镝灯有较多的连续光谱,显色指数较高,是一种极好的电影、电视拍摄光源。我国和美国等国家广泛使用钪钠灯作为大面积照明用灯。

5.6.4稀土长余辉发光材料

长余辉发光材料简称长余辉材料,又称夜光材料。它是一类吸收了激发光能并储存起来,光激停止后再把储存的能量以光的形式慢慢释放出来,并可持续几个甚至十几个小时的发光材料。它是一种储能、节能的发光材料,它不消耗电能,但能把吸收的天然光等储存起来,在夜晚或较暗的环境中呈现,明亮可辨的可见光,具有照明功能,可以起到指示照明和装饰照明的作用,是一种绿色光源材料。

5.6.5稀土激活的硫化物长余辉材料

优点:体色鲜艳,弱光下吸收光速度快,且发光颜色多样。可覆盖从蓝色到红色的发光区域;它们的亮度和余辉时间为传统硫化物材料的几倍。

缺点:化学性质不稳定,耐候性差,在日光照射下,会和空气中的水反应,释放H

2

S等,而且与后来迅速发展起来的稀土激活的碱土金属铝酸盐相比,发光强度低,余辉时间短。

5.6.6稀土激活的铝酸盐长余辉材料

优点:

①发光效率高,余辉时间长,在日光或紫外光照射10min后,移开光源,在黑暗中可持续发光30h以上;

②化学性质稳定(耐酸、耐碱、耐候、耐辐射),抗氧化性及温度猝灭特性好,可以在空气中和某些特殊环境中长期使用;

③无放射性污染,在硫化物体系中需要通过添加放射性元素提高材料的发光强度和延长其余辉时间,因而可能对人体和环境遭造成危害,在铝酸盐体系中不需要添加这类物质;

④生产工艺简单,生产成本低。

缺点:发光颜色单调,发射光谱主要集中在440~520nm范围内,遇水不稳定,对材料表面进行包膜处理,可提高其耐水性。

应用:可将其制成发光涂料、发光油墨、发光塑料、发光纤维、发光纸张、发光玻璃、发光陶瓷和发光搪瓷等,还可以用于建筑装潢、道路交通标志、军事设施、消防应急、仪器仪表、电器开关、日用消费品装饰等并已扩展到信息存储、高能射线探测等领域。

5.6.7稀土激活的硅酸盐长余辉材料

以硅酸盐为基质的长余辉发光材料由于具有良好的化学稳定性和热稳定性,且其原料高纯二氧化硅价廉、易得,长期以来一直受到人们的重视。近年来我国学者肖志国等针对铝酸盐体系长余辉材料的缺点,另辟蹊径,相继开发了一系列耐水性强、耐紫外线辐照性好、余辉性能强、发光颜色多样的稀土激活的硅酸盐长余辉发光材料.

5.6.8稀土长余辉发光材料的应用

(1)安全应急方面

(2)用作指示标志

(3)建筑装潢方面

(4)仪器仪表方面

目前,长余辉材料主要作为夜光材料使用,其应用领域尚有待进一步拓宽。可以预料稀土长余辉发光材料将会广泛应用于储能显示材料、太阳能光电转换材料以及光电子信息材料。

5.7稀土电致发光材

发光材料在电场作用下的发光称为电致发光,也叫场致发光,它是直接将电能转换为光能的一种发光形式,不产生热,为主动发光。

优点:全固体化、体积小、质量轻、响应速度快、视角大、适用温度宽、工作电压低、功耗小、制作工艺简单。

分类:稀土无机薄膜电致发光材料主要用于显示器件,由于具有主动发光、全固体化、耐冲击、视角宽、适应温度宽、工艺简单等优点使其成为平板显示的最佳发光材料。

有机电致发光材料的应用领域很广,其驱动电压(5~30V)可与集成电路匹配,有机材料具有广泛的选择性和高荧光效率,可通过对化合物进行化学修饰改变发射波长,能够协调发光颜色,也可通过“掺杂”,提供各种颜色的发光。5.8稀土X射线发光材料

利用X射线激发而发光的材料称为X射线发光材料,特点是作用在发光材料上的光子能量非常大,此时发光材料的发光不是直接由X射线本身引起的,而是由于X射线从发光材料机制的原子或离子中脱出的次级电子直接或间接地激发发光中心,转变为可见光辐射而产生的。主要有两种类型:一类是X射线透使用

的荧光粉,主要是非稀土的(Zn,Cd)S:Ag荧光粉,它的主峰为530nm,位于人眼灵敏度较高的光谱区;另一类是X射线拍照用的增感屏荧光粉,只要有传统的

和目前迅速发展的稀土增感屏荧光粉。

非稀土增感屏荧光粉CaWO

4

5.9稀土离子发光材料的在能源领域的应用

太阳能电池方面的潜在应用在当今能源紧张的年代,因太阳能电池的绿色经济环保等特点而被广泛应用;但人们一直关心的太阳能电池的转化效率仅有15%,即大部分的太阳能损失掉了?人们正在尝试解决这一难题,比如通过量子剪裁等手段来提高太阳能电池的转化率?人们可通过在太阳能电池表面附上含稀土的光转换材料来拓宽太阳能电池对太阳光谱的响应范围,从而提高硅太阳能电池的整体转换效率?Yb3+的能级结构较简单,对应的发射在1000nm附近?此激发态可发出一个约1000nm的光子,它正好被硅太阳能电池所吸收?如实下转换的组合Yb3+-Pr3+[14]?Pr2+-Pr3+[15]等,对组合Pr3+-Yb3+来说,Pr3+吸收一个光子处于3P0(约处在20 000cm-1),当它把一部分能量交给邻近的Yb3+时自己则处于中间态1 G4(约处于10 000cm-1),而使Yb3+处于激发态;处于中间态的Pr3+回到基态的过程将能量传给另一个邻近的Yb3+,同样可使Yb3+处于激发态?此时位于激发态的Yb3+回到基态时可放出2个约1 000nm的光子被硅太阳能电池吸收,产生2个电子空穴对,从而达到了提高太阳能电池的能量转换效率这一目的?

6.结论:

无可否认,稀土由于其在光电磁各方面的优异性能,在从军事到民用,从科技到商业的诸多领域都有良好的应用,具有广阔的发展前景,而关于稀土的研究更是近几十年才发展起来的,还存在许多未曾探明的机理,其研究价值也十分巨大。

近年来,有关稀土发光材料的应用得到了迅猛发展,但在稀土新材料的研究开发及

产业化方面与国外相比仍存在~定的差距。将发光材料作为太阳光的转光剂,加入到农

用塑料薄膜中制成农用光转换膜,改善光合作用的光质,提高光能利用率,促进农作物、

主要使蔬菜的早熟和增产。这~新技术于20世纪90年代在我国迅速发展,我国处于领

先水平。面对高新技术的快速发展和国际经济全球化的发展趋势,我们急需提高技术创

新能力,加快稀土新材料的开发及应用研究,逐步用深加工、高附加值产品替代中低档

产品,从而提高我国稀土行业的国际竞争能力,使我国的稀土宝贵资源得到有效

的、合理的利用。

参考文献:

[ 1] 方芳. 氧化物、复合氧化物的制备[ J ]. 河北化工,1994, (47) : 45 - 48.

[ 2] 周海牛,庄志强, 王歆. BaTiO3 粉体的水热合成[ J ]. 中国陶瓷, 2001, 37 (3) : 44 - 47.

[ 3] 蔡少华,党华,李沅英,等. 水热法合成CaWO4 荧光体的研究[ J ]. 高等学校化学学报, 1998, 19 ( 5 ) :693.

[ 4] 赵春燕,朱连杰,冯守华. BaBeF4∶Sm3+的温和水热合成与光谱性质研究[ J ]. 高等学校化学学报,1998, 19 (7) : 1023 - 1025.

[ 5] 于亚勤,周誓红,张思远. La1- x Prx P5O14晶体的研究[ J ]. 人工晶体学报, 2002, 31 (6) : 529 - 532.

[ 6] 程虎民. 水热条件下形成的PLZT固溶体的X射线分析[ J ]. 高等学校化学学报, 1996, 17 ( 8 ) :1253 - 1257.

[ 7] 施展,冯守华. 复合氟化物Li2BeF4的水热合成、晶化动力学研究及结构表征[ J ].

高等学校化学学报, 1999, 20 (2) : 172 - 175.

[ 8] 刘丰袆,符连社,王俊,等. 溶胶- 凝胶法制备稀土铽配合物掺杂的发光薄膜[ J ].

中国稀土学报,2002, 20 (6) : 650 - 651.

[ 9] 蒋洪川, 杨仕清, 张文旭. 溶胶- 凝胶法合成Y3Al5O12∶Ce3+ , Tb3+稀土荧光粉的研究[ J ]. 无机材料学报, 2001, 16 (4) : 720 - 722.

[10] 周誓红, 师进生, 张静筠, 等. Tb4O7 的纯度对Tb3Al5O12发光性质的影响[ J ]. 中

国稀土学报,2002, 20 (6) : 641 - 642.

[11] 周誓红,张思远,张静筠. Tb3+在YAG中的发光及Tb3与Tm3+间的能量传递[ J ]. 化学

研究, 2000, 11(1) : 16 - 17, 37 - 40.

[12] 符连社,张洪杰. 溶胶——凝胶法稀土光学材料研究进展[ J ]. 稀土, 1998, 19

(2) : 49 - 53.

[13] 张迈生,李君君,严纯华. 微波场下CaS∶Eu2+的快速合成及荧光光谱特性[ J ]. 光

谱学与光谱分析, 2001, 21 (3) : 304 - 307.

[14] 张迈生,臧李纳. Ce3+ , Sb3+供激活的亚超细磷光体的微波快速合成和发光特性

[ J ].稀有金属材料与工程, 2002, 31 (1) : 69 - 72.

[15] 张秀凤,张迈生,涂华民. 低价铈复盐微波辐射化学氧化还原合成法[ J ]. 中国稀

土学报, 2002, 20(专辑) : 122 - 124.

[16] 徐光宪主编,稀土(上册)。第二版。北京:冶金工业出版社,1995(1) : 59 - 61.

[20] 刘光华主编,稀土材料学。第一版。北京:化学工业出版社,2007.8

[21] 李建宇编,稀土发光材料及其应用。第一版。北京:化学工业出版社,2003.9

[22] 张希艳,卢利平等编著,稀土发光材料。第一版。北京:国防工业出版社,2005.3

[23] 倪嘉缵,洪广言.稀土新材料及新流程进展[M]北京:科学出版社,1998,

105.

[24] 周立亚, 黄君丽, 易灵红, 等. 白光LED 用荧光材料Ba3Gd( BO3 ) 3

Eu3+ 的发光性能研究[ J] . 中国稀土学报, 2009, 27( 1) : 31 35.

[ 25] 刘光华. 稀土材料与应用技术[ M ] . 北京: 化学工业出版社, 2005.

稀土发光材料的研究和应用 摘要:介绍了稀土发光材料的发光特性与发光机理。综述了我国在稀土发光材料的化学合成方法。总结了稀土发光材料的应用。最后对我国存在问题和发展前景进行了叙述。关键字:稀土发光材料;发光特性;发光机理;合成;应用;问题和展望。 Abstract:Introduces the luminescence properties of rare earth luminescent material and luminescence mechanism. Rare-earth luminescence materials in China, the paper summarized the chemical synthesis method. The application of rare earth luminescence materials is summarized. Finally, the existing problems and development prospect of the narrative in our country. Keywords:Rare earth luminescent material; Luminescence properties; Light-emitting mechanism; Synthesis; Application; Problems and its prospect. 化学元素周期表中镧系元素———镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素称为稀土元素。稀土化合物包含至少一种稀土元素的化合物。它是一种重要的战略资源,特别是高新技术工业的重要原料,如军事装备方面一些精确打击武器、一些汽车零部件和高科技产品,都依赖用稀土金属制造的组件。据了解,中国是唯一能有效提供全部17种稀土金属的国家,且储量远远超过世界其他国家的总和,是名副其实的“稀土大国”。由于稀土元素的离子具有特别的电子层结构和丰富的能级数量,使它成为了一个巨大的发光材料宝库。在人类开发的各种发光材料中,稀土元素发挥着重要作用,稀土发光几乎覆盖了整个固体发光的范畴。稀土发光材料具有发光谱带窄,色纯度高,色彩鲜艳;光吸收能力强,转换效率高;发射波长分布区域宽;荧光寿命从纳秒跨越到毫秒达6个数量级;物理和化学性质稳定,耐高温,可承受大功率电子束、高能辐射和强紫外光的作用等。目前稀土材料已广泛用于照明、显示、信息、显像、医学放射学图像和辐射场的探测等领域,并形成很大的工业生产和消费市场规模;同时也正在向着其他新型技术领域扩展,成为人类生活中不可缺少的重要组成部分。本文将介绍掺稀土离子发光材料的发光机理、节能灯、白光LED用荧光粉、PDP显示用荧光粉,以及对在上转换发光、生物荧光标记和下转换提升太阳能效率等方面的应用前景进行总结和展望。

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

前言 当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。我国丰富的稀土资源,约占世界已探明储量的80%以上。稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。 由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。 纳米稀土发光材料是指基质粒子尺寸在1~100 纳米的发光材料。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学和和特性,从

一、荧光材料的种类与特性 总的说来,荧光材料分有机荧光材料和无机荧光材料。 有机荧光材料又有有机小分子发光材料和有机高分子光学材料之分。有机小分子荧光材料种类繁多,它们多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭长度,从而使化合物光电性质发生变化。如恶二唑及其衍生物类,三唑及其衍生物类,罗丹明及其衍生物类,香豆素类衍生物,1,8-萘酰亚胺类衍生物,吡唑啉衍生物,三苯胺类衍生物,卟啉类化合物,咔唑、吡嗪、噻唑类衍生物,苝类衍生物等。它们广泛应用于光学电子器件、DNA诊断、光化学传感器、染料、荧光增白剂、荧光涂料、激光染料[7]、有机电致发光器件(ELD)等方面。但是小分子发光材料在固态下易发生荧光猝灭现象,一般掺杂方法制成的器件又容易聚集结晶,器件寿命下降。因此众多的科研工作者一方面致力于小分子的研究,另一方面寻找性能更好的发光材料,高分子发光材料就应运而生了。 有机高分子光学材料通常分为三类:(1) 侧链型:小分子发光基团挂接在高分子侧链上,(2) 全共轭主链型:整个分子均为一个大的共轭高分子体系,(3) 部分共轭主链型:发光中心在主链上,但发光中心之间相互隔开没有形成一个共轭体系。目前所研究的高分子发光材料主要是共轭聚合物,如聚苯、聚噻吩、聚芴、聚三苯基胺及其衍生物等。还有聚三苯基胺,聚咔唑,聚吡咯,聚卟啉[8]及其衍生物、共聚物等,目前研究得也比较多。 常见的无机荧光材料有硫化物系荧光材料、铝酸盐系荧光材料、氧化

物系荧光材料及稀土荧光材料等。 碱土金属硫化物体系是一类用途广泛的发光基质材料[8211 ] 。二价铕掺杂的CaS 及SrS 可以被蓝光有效激发而发射出红光,因而可用作蓝光L ED 晶片的白光L ED 的红色成分,可制造较低色温的白光L ED ,其显色性明显得到改善,目前使用的红粉硫化物体系主要是(Ca1-X ,SrX ) S : Eu2+ 体系,在蓝区宽带激发,红区宽带发射。通过改变Ca2+ 的掺杂量,可使发射峰在609~647 nm 间移动。共掺杂Er3 + , Tb3 + ,Ce3 +等可增强红光发射。 铝酸盐系荧光材料中SrAl2O4, CaAl2O4, BaAl2O4为常用的发光基质。例如,Sr3A12O6 是一种新型红色荧光粉,它的激发峰位于460~470nm 范围内,是与主峰为465nm 的蓝光L ED 晶片相匹配的红色荧光材料。刘阁等[31 ] 利用水热沉淀法合成了Sr3A12O6 。通过对其纯相粉末的荧光性质的研究,发现该荧光粉样品的最大激发峰位于459nm 波长处且在415nm 波长处有一小的激发峰。而样品的发射带落在615~683nm 的波长范围内, 其中最大发射峰的波长位于655nm 处, 表明在459nm 波长的光激发下,样品能够发出红色光。 氧化物荧光材料在荧光粉中的应用较多。如,以ZnO 作为基质合成的红色荧光材料稳定性很好。红色荧光材料ZnO : Eu ,Li 和ZnO :Li + 的最大激发峰范围都在340~370nm 范围内,与365~370nm 紫光L ED 晶片的发射峰大部分相交,因而适用于三基色白光L ED 制造。 稀土离子因其具有特殊的电子结构和成键特征,故能表现出独特的荧光性质,而通过与配体的作用,又可以在很大程度上增强它的荧光强度,因此稀土配合物的研究为荧光材料分子的设计提供了广阔的前景。近些年

稀土发光材料 来源:本站原创日期:2009-01-16 加入收藏 1 稀土发光材料发展年表 稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。30多年来,我国稀土发光及材料科学技术的研发在各级领导和部门关心下从起步和跟踪走向自主发展;稀土荧光体(粉)生产从零开始,已形成一个新的产业。 20世纪60年代是稀土离子发光及其发光材料基础研究和应用发展的划时代和转折点。三价稀土离子发光的光学光谱学、晶体场理论等基础研究日益深入和完善。1964年,高效YVO4∶Eu和Y2O3∶Eu红色荧光粉和1968年Y2O2S∶Eu红色荧光粉的发明,并很快被应用于彩色电视显象管(CRT)中。步入70年代,无论是基础研究,还是新材料研制及其开发应用进入迅速发展时期。 在20世纪70年代以前,我国稀土发光及材料科学和技术并没有形成,仅中科院物理所对CaS和SrS体系中掺Eu、Sm、Ce离子的红外磷光体的光致发光性能,以及在ZnS∶Cu或Mn的电致发光材料中某些稀土离子作为掺杂剂对性能影响进行少量的研究。所用稀土材料全部进口,价格比黄金还贵。 20世纪70年代中科院长春物理所抓住机遇,将这一时期国际上大量的新科研成果引入翻译出版向全国介绍,起"催化剂"作用;同时有一批从事稀土分离的化学科技工作者也纷纷转入从事稀土发光及材料科研和开发工作,加之彩电荧光粉会战,使这一新兴学科在我国正式起步并不断发展。 20世纪60和70年代国际稀土发光材料发展和我国稀土冶炼及分离工业崛起,许多单位跟踪国际上已有成效的工作,纷纷开展稀土离子发光性能研究,以及许多不同用途、不同体系的稀土发光功能材料的研发工作,这里特别应指出的彩电荧光粉成为全国会战任务。 根据当时国内外发展,1973年国家计委下达彩电荧光粉全国会战任务,由中科院长春物理所任组长单位,组织北京大学、北京有色金属研究总院、南京华东电子管厂、北京化工

万方数据

万方数据

万方数据

万方数据

万方数据

稀土发光材料的发光机理及其应用 作者:谢国亚, 张友, XIE Guoya, ZHANG You 作者单位:谢国亚,XIE Guoya(重庆邮电大学移通学院,重庆,401520), 张友,ZHANG You(重庆邮电大学数理学院,重庆,400065) 刊名: 压电与声光 英文刊名:Piezoelectrics & Acoustooptics 年,卷(期):2012,34(1) 被引用次数:2次 参考文献(19条) 1.周贤菊;赵亮;罗斌过渡金属敏化稀土化合物近红外发光性能研究进展[期刊论文]-重庆邮电大学学报(自然科学版) 2007(06) 2.段昌奎;王广川稀土光谱参量的第一性原理研究[期刊论文]-重庆邮电大学学报(自然科学版) 2011(01) 3.周世杰;张喜燕;姜峰轻稀土掺杂对TbFeCo材料磁光性能的影响[期刊论文]-重庆工学院学报 2004(05) 4.CARNALL W T;GOODMAN G;RAJNAK K A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 1989(07) 5.LIU Guokui;BERNARD J Spectroscopic properties of rare earths in optical materials 2005 6.DUAN Changkui;TANNER P A What use are crystal field parameters? A chemist's viewpoint[外文期刊] 2010(19) 7.蒋大鹏;赵成久;侯凤勤白光发光二极管的制备技术及主要特性[期刊论文]-发光学报 2003(04) 8.黄京根节能灯用稀土三基色荧光粉 1990(05) 9.VERSTEGEN J M P J A survey of a group of phosphors,based on hexagonal aluminate and gallate host lattices 1974(12) 10.PAN Yuexiao;WU Mingmei;SU Qiang Tailored photoluminescence of YAG:Ce phosphor through various methods 2004(05) 11.KIM J S;JEON P E;CHOI J C Warm-whitelight emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor[外文期刊] 2004(15) 12.苏锵;梁宏斌;王静稀土发光材料的进展与新兴技术产业[期刊论文]-稀土信息 2010(09) 13.SIVAKUMAR S;BOYER J C;BOVERO E Upconversion of 980 nm light into white light from SolGel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles[外文期刊] 2009(16) 14.WANG Jiwei;TANNER P A Upconversion for white light generation by a single compound[外文期刊] 2010(03) 15.QUIRINO W G;LEGNANI C;CREMONA M White OLED using β-diketones rare earth binuclear complex as emitting layer[外文期刊] 2006(1/2) 16.BUNZLI J C G;PIGUET C Taking advantage of luminescent lanthanide ions 2005 17.WANG Leyu;LI Yadong Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[外文期刊] 2007(04) 18.LINDA A;BRYAN V E;MICHAEL F Downcoversion for solar cell in YF3:Pr3+,Yb3+ 2010(05) 19.TENG Yu;ZHOU Jiajia;LIU Jianrong Efficient broadband near-infrared quantum cutting for solar cells 2010(09) 引证文献(2条) 1.杨志平.梁晓双.赵引红.侯春彩.王灿.董宏岩橙红色荧光粉Ca3Y2(Si3O9)2:Eu3+的制备及发光性能[期刊论文]-硅酸盐学报 2013(12) 2.严回.孙晓刚.王栋.吕萍.郑长征C24H16N7O9Sm 的晶体合成、结构与性质研究[期刊论文]-江苏师范大学学报(自然科学版) 2013(3) 本文链接:https://www.doczj.com/doc/eb17951651.html,/Periodical_ydysg201201028.aspx

稀土发光材料的特点及应用介绍 专业:有机化学姓名:杨娟学号:201002121343 发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛。 1稀土发光材料的发光特性 稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。 因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。 稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。 2稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法

关于稀土发光材料的认识(孙三大) 绪论 稀土元素由于具有未充满的4f电子壳层和4f电子被外层的5s,5p电子屏蔽的特性,使稀土元素具有极复杂的类线性光谱。吸收光谱使稀土离子大多有色,发射光谱使许多稀土化合物产生荧光和激光。镧系原子的组态为1S22S22P63S23P63d104S24P64d105S25P6(4f n6S2或4f n-15d6S2),其中n=1-15,La,Ce,Gd,Lu为4f n-15d6S2(镧系稀土元素电子层结构的特点是电子在外数第三层的4f轨道上填充,4f轨道的角量子数l=3,磁量子数m可取0、±1、±2、±3等7个值,故4f亚层具有7个轨道。根据Pauli不相容原理,在同一原子中不存在4个量子数完全相同的两个电子,即一个原子轨道上只能容纳自旋相反的两个电子,4f 亚层只能容纳14个电子,从La到Lu,4f电子依次从0增加到14),其余的元素4f n6S2[1-3]。 大部分无机固体致发光材料遵守斯托克斯定律,即发射光的光谱能量低于激发光的光谱能量,这样发光的现象叫做下转换发光。对于下转换发光由外界光源直接作用于稀土离子。1)使稀土离子中的电子由基态跃迁到激发态,完成高能级电子的排布,如图(1)所示,2)由某基团或离子等吸收高能光子后通过非福射他豫将能量传递给较低能级的稀土离子,使稀土离子中的电子由基态跃迁到激发态,如图(2)所示;另外,在1966年,在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。这一小部分光致发光材料违背了斯托克斯定律,即上转换发光,它通过吸收低光子能量的长波福射转换为高光子能量的短波福射。稀土离子可以通过激发态吸收或能量传递过程被激发至高能级而发射上转换发光,如图(3)所示。 Gound state (1)(2)(3) 图中所示(1)和(2)为下转换发光过程,图(3)为上转换发光过程。 稀土上转换/下转换发光材料在众多领域具有巨大的应用价值,对其进行理论和实验的深入

#专题论述# 稀土发光材料研究与发展方向 李 洁1,张哲夫2 (1.中国轻工总会电光源材料研究所,江苏南京210015;21南京林业大学化学工程学院,江苏南京210037) 摘 要:对稀土发光材料稀土三基色荧光粉、计算机显示器和投影电视用粉、PD P 用荧光粉的物化性能、合成方法、材料回收以及纳米材料的研制等作了简要论述。 关键词:稀土;发光材料;荧光粉;纳米技术 中图分类号:TG 146145 文献标识码:A 文章编号:1004-0536(2002)02-0037-04 稀土元素具有独特的4f 电子结构,大的原子磁矩,很强的自旋轨道耦合等,与其他元素形成稀土配位化合物时,配位数可在3~12之间变化,且其稀土化合物的晶体结构也呈多样化,稀土元素独特的物理化学特性决定了其广泛的用途。 稀土的发光性能是由于稀土的4f 电子在不同能级之间的跃迁而产生的。当稀土离子吸收光子或X 射线等能量以后,4f 电子可从能量低的能级跃迁至能量高的能级;当4f 电子从高的能级以辐射弛豫的方式跃迁至低能级时发出不同波长的光。两个能级之间的能量差越大,发射的波长越短。由于很多稀土离子具有丰富的能级和它们的4f 电子的跃迁特性,使稀土发光材料在彩电、显像管、计算机显示器、照明、医学、核物理和辐射场、军事等领域都得到广泛的应用[1]。科研人员和生产厂家为了得到更多更好的发光材料,对稀土发光材料的化合特性、物化特性、制造方法、新型配方等都进行了大量的研究和试验。 1 稀土三基色荧光粉 制造高品质的节能灯一般要求荧光粉具有:(1)化学稳定性好;(2)制灯后光效高,9W 灯的光视效能在65lm/W 以上;(3)使用寿命长和光衰低,如国外要求灯的使用寿命在10000h 以上,3000h 的光衰不超过8%;(4)有高的显色指数,R a \80;(5)对 制灯工艺的适宜性。现时我国的节能灯与国外相比,质量上有很大的差距,显色指数较低,100h 光衰 一般为25%,好的也在15%~18%,使用寿命不到2000h 。其原因除了制灯工艺外,荧光粉的质量也有很大的影响。 稀土三基色荧光粉主要组成部分为红粉Y 2O 3B Eu 3+,约占60%~70%(质量分数,下同),绿粉为Ce 0.67M g 0.33Al 11O 19B Tb 3+(~30%),蓝粉为Ba M gAl 16O 27B Eu 2+(少量)。 我国的灯用红粉,质量已达国际先进水平[2]。因为氧化钇很贵,所以主要是降低成本的研究。而一般绿粉的量子效率只有80%,故主要是关于提高发光效率的研究。探索合成不同体系的发光材料具有很大的实际意义。由于Tb 3+离子具有特征的绿色发射,所以围绕铽来合成不同体系的绿粉一直是人们所感兴趣的课题。而铝酸盐绿粉因为烧成温度高,合成周期长,烧成后的粉末硬,后处理困难,收率低等缺点,其替代物Ce 、Tb 共激活的正磷酸盐近年来得到较多的研究,在工业上也得到越来越多的应用。如北京化工大学、复旦大学等对此都进行了报道,对稀土磷酸盐绿粉的合成工艺,发光特性,Ce 3+、Tb 3+、Gd 3+的不同掺杂体系的能量传递等都进行了研究,得到了一些新的结果。 我国的灯用蓝粉与国际先进水平有较大差距,显色指数较低,100h 光衰一般为25%,好的蓝粉也 收稿日期:2001-10-08 作者简介:李 洁(1957-),女,大学本科毕业,工程师,从事金属材料和电光源研究工作。 第30卷第2期2002年6月 稀有金属与硬质合金Rare Metals and Cemented Carbides V ol.30 l .2 Jun. 2002

目录 1 引言 (2) 1.1 稀土荧光材料的概述 (2) 1.2 稀土离子的发光颜色 (3) 1.3 荧光材料发光的主要原理 (3) 1.4稀土荧光材料的制备方法 (3) 1.4.1水热合成法 (3) 1.4.2高温固相反应法 (3) 1.4.3燃烧法 (3) 1.4.4共沉淀法 (3) 2 实验部分 (4) 2.1 实验仪器、药品 (4) 2.2 实验过程 (4) 2.2.1 溶液的配置 (4) 2.2.2 实验步骤 (4) 3 结果与讨论 (5) 3.1 水热合成制备稀土荧光材料 (5) 3.2燃烧法制备稀土荧光材料 (6) 4 实验结论 (8) 参考文献 (8) 致谢 (9)

稀土掺杂铝酸锶荧光材料的制备 陈晓娟指导老师:陈志胜 摘要目的:制备稀土掺杂铝酸锶荧光材料方法:采用水热合成与共沉淀法结 合法和燃烧法。水热合成与共沉淀结合法:硝酸铝和铝酸锶的混合溶液中加入不 同的两种或两种以上的稀土元素硝酸盐溶液,以氨水为沉淀剂调节溶液的pH值, 将产物沉淀后放入水热反应釜中140 ℃反应12 h,使反应充分并沉淀完全。燃烧 法:硝酸铝和硝酸锶的混合液加入不同的稀土元素的硝酸盐溶液,再加入适量的 助溶剂硼酸和尿素,在600 ℃的马弗炉中点燃3 ~ 5 min后,得到粉体。本实验 利用镧(La)、钕(Nd)、钐(Sm)、钇(Y)作为激活剂和辅助激活剂。结论:不同 稀土元素制备的荧光材料发光的颜色不同,焙烧温度对荧光材料发光有较大影响,不同方法制备的荧光材料发光有所不同。 关键词共沉淀法;燃烧法;稀土;荧光材料 1 引言 1.1 稀土荧光材料的概述 一种能吸收光的能量,并且吸收后可以将光能转化为光辐射的材料,这种材料称做荧光材料。无机固体荧光材料分为掺杂材料和纯材料两种。基质本身就可以发光的材料荧光材料叫做纯材料,但是此种纯材料在自然界存量稀少。掺杂稀土的荧光材料是生活中比较常见的,必需掺杂一些必须的“杂质”,掺杂的这些“杂质”会形成发光中心存在基质的晶格中,进而可使材料发光。稀土离子具有极其丰富的电子能级,尤其存在4f轨道的电子构型[2],该轨道可为不同能级的跃迁提供便利的条件,产生多种特征的发光能力。采用稀土及其化合物作为激活剂、基质、敏化剂、共激活剂与掺杂剂的荧光材料,一般都叫做稀土发光材料[2]。通常人们把发光材料分为一下几类见表1 表1 按激发方式分类发光材料 种类名称激发方式 电致发光光致发光X射线发光阴极射线发光放射线发光核化学发光生物发光摩擦发光气体放电或固体受电场作用 光的照射 X射线的照射 高能电子束的轰击 辐射的照射 化学反应 生物过程 机械压力 稀土荧光材料优点有:. 1)发光谱带较窄,发光颜色较纯。 2)吸收光能的力相对来说很强,对于光能的转换效率很高 3)发射波长分布区域宽 4)性质稳定,对于功率较大的高能辐射、电子束和都有极强的承受能力[3]。 正是由于稀土荧光材料具有以上优点,使得稀土荧光材料在生产、生活中应

稀土发光材料的研究进展 XX (XXXXXXXXXXX,XX,XXXXXX) 摘要:稀土发光材料是信息显示、照明、光源、光电器件不可缺少的原料。 目前我国传统显像管CRT,节能灯用稀土荧光粉的产量居全球首位。白光、LED、也在发展,这些已经逼近了国外的水平。我国拥有巨大的照明工业和照明市场,LED技术的快速进步和新的运用,不仅代表照明革命性的变化,而且代表原材料装备信息、汽车等相关行业的发展,改善了人民生活环境与质量[1]。本文主要论述了稀土发光材料的兴起发展、发光性能、制备工艺、产业优势以及进惠普的发展动向、发展趋势。 关键字:稀土;发光;发光材料;纳米;制备方法 一、稀土发光材料的兴起与发展 发光现象是指物体内部以某种方式吸收能量后转化为光辐射的过程,或者物质在各种类型激发作用下能发光的现象,其可以分为如白炽灯、火焰等的物质受热产生热辐射而发光,“夜明珠”、LED等的受外界激发吸收能力而跃迁至激发态再返回基态时,以光形式释放能量发光以及固体化合物受到光子、带电粒子、电场或电离辐射点激发,发生的能量吸收、存储、传递和转换而进行的固体发光[2]。发光材料发光属于第二种发光方式,辐射的光能取决于电子跃迁前后电子所在能级的能量差,两个能级之间的能量差越大,发射的波长越短,稀土离子具有4f能级,吸收能量的能力强,转换效率高而且具有发射可见光能力强而且稳定等优点,受到人们的青睐。 上世纪六十年代是稀土离子发光及其发光材料基础研究和应用发展的划时代转折点。国外学者进行二价稀土离子的4f-4f能级跃迁、4f5d能态及电荷转移态的基础研究,发现上转换现象,完成二价稀土离子位于5000cm-1以下的4f电子组态能级的能量位置基础工作,所有二价稀土离子的发光和激光均起源十这些能级,这些能级间的跃迁产生从紫外至近红外荧光光谱。稀土离子的光学光谱学、晶体场理论及能量传递机理等研究口益深入和完善,新的现象和新概念不断被揭示和提出,新材料不断被研制。1964年,在国际上由十稀土分离技术的突破,导致高效YVO4:Eu和Y203:Eu红色荧光粉的发明,紧接着,1968年又发明另一种高效的Y2O2S:Eu3+红色荧光粉。尽管它们昂贵,但很快被应用十电子射线管(CRT)彩色电视中,使彩电发生质的变化,同时导致现代高纯稀土分离和高纯氧化物工业生产的兴起。

稀土发光材料的综述 一.前言 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛 稀土元素在发光材料的研究与实际应用中占有重要地位。全球稀土荧光粉占全部荧光粉市场的份额正在逐年增加。由于稀土发光材料具有优异的性能,甚至在某些领域具有不可替代的作用,故稀土发光材料正在逐渐取代部分非稀土发光材料。目前,彩色阴极射线管用红粉、三基色荧光灯用蓝粉、绿粉和红粉,等离子显示屏用红粉、蓝粉,投影电视用绿粉与红粉,以及近几年问世的发光二极管照明的黄粉和三基色粉,全是稀土荧光粉。稀土发光材料已成为信息显示和高效照明器具的关键基础材料之一。 我国是世界稀土资源最丰富的国家,尤其是南方离子型稀土资源(氧化钇)为我国稀土发光材料的发展提供了重要资源保障。但多年来,我国虽是稀土资源大国,但不是稀土强国。国家领导人非常重视我国稀土的开发利用工作,明确提出要把我国的稀土资源优势转化为经济优势。稀土发光材料作为高新材料的一部分,为某些高纯稀土氧化物提供了一个巨大市场,而且其本身具有较高附加值,尤其是辐射价值更是不可估量,故发展稀土发光材料是把我国稀土资源优势向经济优势转化的具体体现。 二.稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法 在水热合成中水的作用是:作为反应物直接参加反应;作为矿化剂或溶媒促进反应的进行;压力的传递介质,促进原子、离子的再分配和结晶化等[1]。由于在高温高压下,水热法为各种前驱物的反应和结晶提供了一个在常压条件下无法得到的特殊的物理、化学环境,使得前驱物在反应系统中得到充分的溶解,并达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶生成粉末或纳米晶[2]。 大量的实验表明,反应过程及产物的组成、结构等都会受到多种因素的影响。尤其是原料的摩尔比,它会影响到产物的基本结构,主要是影响固溶体的晶格,导致晶胞大小的改变 [10];而且也常常会影响到产物的结晶度从而改变物相;它也是能够合成出纯相的关键因素 [11]。因此往往要通过实验来确定起始原料的摩尔比,但是在稀土发光材料的合成中,掺杂

稀土发光材料的发展 姓名:杜浩学号:09432206 班级:材化二班 摘要: 综述了光致发光材料的大致研究进展,阐述了光致发光材料的发光原理,常见的发光材料,并对未来光致发光材料发展趋势作了展望。荧光稀土是我国的重要战略资源,稀土发光材料在一些方面已得到普遍应用并在 关键字光至发光材料荧光 【Abstract】It is summarize the investigation of photoluminescence material. And tell us about the theory of photoluminescence material. And familiar photoluminescence material. Future development aspects of researches and applications about the material are proposed Keyword photoluminescence material fluorescence 前言 在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂。发光材料分永久性发光材料(放射性辐射激发)和外加能量激发而发光如光激发、电场激发、阴极射线激发、X射线激发等的材料。 光致发光材料又称超余辉的蓄光材料。它是一种性能优良,无需任何电源就能自行发光的材料。 1发展历史 光致发光材料的研究历史非常悠久。最早可追溯到1866 年法国人Sidot 制备的ZnS :Cu 上,它是第一个具有实际应用意义的长余辉蓄光材料。20 世纪初,Lenard 制备出了ZnS :M (M = Cu ,Ag ,Bi ,Mg 等) 发光材料,并研究了荧光衰减曲线,提出了“中心论”。但该类发光材料由于发光亮度不高,寿命短等缺点,人们往其中引入了放射性物质,虽然能解决以上问题,但又会危害人体安全、损害环境,因而人们将目光又投向了其他基质的发光材料领域。1934 年,Haberlandt 在研究天然CaF2 结构时发现,痕量Eu2+ 占据矿石中Ca2+ 的位置时,引起矿石发出蓝光。1964 年, Y2O3 : Eu , Y2O2S : Eu3+发光材料的研制发明,使彩色电视机得到迅速的推广。20 世纪80年代,石春山等对复合氟化物中的光谱特性进行研究,得出Eu2+ 的f - f 跃迁出现的若干判据,推进了我国发光材料的发展。20 世纪80 年代以后,一些制备发光材料的新工艺及一系列超长余辉发光材料的研究成功,为发光材料的应用开辟了广阔的领域。 2发光机理 2.1.反光与发光的区别 在生活中人眼睛能看看到的发光的材料分成两大类。1. 反光材料这种材料 可以将照在其表面上的光迅速地反射回来。材料不同,反射的光的波长范围也就不同。反射光的颜色取决于材料吸收何种波长的光并反射何种波长的光,,因此 必须要有光照在材料表面,材料表面才能反射光,如各种执照牌、交通标志牌等。

第二章稀土发光材料的制备及应用 近几十年来,稀土发光材料在国内外得到惊人的发展,形成了相当大的生产规模和客观的市场,其产值和经济效益都很高[1-3]。到90 年代,依然以一定的速度增长。国内外在稀土新材料方面几乎每隔3~5 年就有一次突破,而稀土发光材料则是这宝库中五光十色的瑰宝。据美国商业信息公司最近统计,在美国稀土各应用高技术领域中,光存储器的年增长率达50%,灯用稀土荧光粉20%,名列第二位,电视荧光粉为 3.4%,仅电视用荧光粉1998 年在美国的消费量居稀土消费量第五位,为104.3 吨,价值2700 万美元,到1995 年达131.5 吨。我国彩电荧光粉及紧凑型荧光灯用稀土荧光粉在80年代增长速率更快,工业生产规模相当可观,且有部分出口。这表明,稀土发光材料的发展及在稀土各应用领域中占有举足轻重地位。随着新型平板显示器、固态照明光源的发展,对新型高效发光粉体的需求日益增多。由于纳米材料具有其他大颗粒材料所不具有的结构及各种性质如电性质、光性质等,研究纳米稀土发光材料已成为目前引人注目的课题。以钒酸盐、磷酸盐为基质的纳米稀土发光材料都是很具有研究意义及应用价值的稀土荧光粉,比如纳米级YVO4:Eu,作为一种很好的红光粉体,已经广泛应用于荧光灯以及彩色显像管(CRT)中[4-6]。另外,近来的研究表明纳米级Y(V,P)O4:Eu,YPO4:Tb在真空紫外区(VUV)有较好的吸收,是很有前途的等离子体平板显示器(PDPs)用的发光材料[7-11]。在纳米尺度的YBO3:Eu3+中,由于表面Eu3+对称性低,使得5D0-7F2的跃迁几率增加,这改善了YBO3:Eu3+体材料中色纯度低的问题[12 ]。总之,随着科技的发展和人们生活的需要,稀土发光材料的研究面临着新的挑战:这主要包括激发波长的变化,如PDP用荧光粉需真空紫外激发,固态照明用荧光粉需近紫外激发;材料尺寸形态的变化等。这就要求人们改善材料的发光性质或开发新的发光体系。 §2-1影响发光的主要因素 目前,稀土掺杂发光体系主要包括:稀土氧化物、硼酸盐、钒酸盐、磷酸盐、铝酸盐等体系,不同的体系有着不同的应用背景。比如说,Eu3+、Tb3+掺杂的硼酸盐、磷酸盐体系可用作PDP荧光材料[13,14];Eu2+、Dy3+共掺的铝酸盐体系可用作长余辉材料[15]。 影响稀土掺杂发光材料发光性质的因素有很多,主要包括基质晶格、发光中

照明用稀土发光材料的发展现状与趋势(之一) 发光(荧光)是物质将其内部以某种方式吸收的能量转化为物体热辐射之外的一种非平 衡辐射的过程,又称为“冷光”,这种辐射的持续时间要超过光的振动周期。在一定的激发 条件下能发光的材料称为发光材料。无论是基质,还是激活剂或敏化剂中,只要含有稀土元素,这些发光材料都统称为稀土发光材料。 自从1964年高效稀土红色荧光粉问世以来,稀土发光材料经过近40年的快速发展,己成为信息显示、照明光源、光电器件等领域的支撑材料之一,为社会发展和技术进步发挥着日 益重要的作用。 现在我国的电视机、显示器和照明光源的年生产量均列世界第一,这些产业均成为拉动我国国民经济持续、快速、健康成长的重要产业,也是国家外贸出口的重要产业。而这些产业的发展都离不开稀土发光材料在其中发挥的重要作用。2001年12月11日,我国正式加入世界贸易组织(WTO),成为其第143个成员。加入世界贸易组织,对我国的信息和照明 产业,以及稀土发光材料的发展将产生深远的影响,既带来机遇,也使我们面临挑战。 1、显示用稀土发光材料的发展现状与趋势 20世纪60年代,由于稀土分离技术的突破,高纯单一稀土氧化物被制备出来,稀土元素在发光上的优异特性逐渐得到了开发利用。1964年,YVO4:Eu和Y2O3:Eu红色荧光粉被研制出来,使彩电的质量发生了质的飞跃,彩色电视机从而进入了千家万户。1968年又发明了Y2O2S:Eu红色荧光粉。直到今天,阴极射线管(CRT)彩电和显示器上的红色荧光粉主 要还是Y2O2S:Eu或Y2O3:Eu。 我国比较集中的稀土发光材料的研究和开发起始于70年代。北京有色金属研究总院等单位从1970年就开始了彩电荧光粉的研制。1973年国家开始组织全国的彩电大会战,参 加单位包括中国科学院长春物理研究所,北京大学,北京有色金属研究总院,华东电子管厂等国内主要的研究院所、高校和工厂。 1980年我国从日本日立公司引进彩电显像管生产线,并配套从日本化成公司引进彩电 荧光粉生产线,在咸阳成立了我国第一家彩电显像管总厂和彩电荧光粉分厂。90年代初,北京化工厂和上海跃龙有色金属有限公司也分别建成了彩电荧光粉厂。三大彩电荧光粉厂的产量正在逐年递增,2001年产量约1000t,2002年产量约1200t。除了配套满足咸阳彩虹集团、北京松下显像管厂及上海水新显像管厂外,还逐渐应用到其他外资、合资企业中。 2002年我国共生产彩电5000多万台,需用荧光粉约1500t。因此,国内的荧光粉还是

2009届应用化工技术专业毕业设计(论文) 题目:稀土配合物发光材料的制备班级:化工0 9 0 2 姓名:汤孟波 学号: 200900232028 指导老师:邢静 完成时间: 2012 年 6 月

前言 由于稀土离子具有特殊的4f电子组态能级、4f5d能级及电荷转移带结构,使稀土发光材料已经成为信息显示、绿色照明工程光电子等领域的支柱材料。稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴级射线发光(以电子束激发)、X射线发光(以X射线激发)以及电致发光(以电场激发)材料等。与非稀土荧光材料相比,稀土荧光材料其发光效率及光色等性能都更胜一筹。近年来,稀土发光材料的应用得到了迅猛发展,被广泛用于终端显示、光电子器件及激光技术领域。基于稀土离子4f电子跃迁的电子学、光学等充满前景的独特性质与纳米材料特性相结合,使具有表面特性和量子尺寸效应的稀土纳米复合发光材料是很有前景的一类功能材料[1]。本文将以氧化钇稀土制备为例,介绍稀土发光材料的制备过程。 摘要 稀土发光材料在照明、阴极射线光管和场发射等领域已得到广泛的应用;在节能灯、三基色、荧光粉、发光二极管灯、平面无汞荧光灯节能照明领域拥有无限广阔前景。文章重点论述了稀土——氧化钇用离子交换法和萃取法的制备和其各自特点与稀土的应用。 关键字:稀土氧化钇萃取离子交换

目录 第一章氧化钇的生产方法 1.1萃取法 (3) 1.1.1萃取法的工艺体系分类 (3) 1.1.2萃取法的工艺流程图 (5) 1.1.3有机相准备 (5) 1.1.4除杂 (7) 1.1.5萃取 (7) 1.1.6二步萃取 (8) 1.2离子交换法 (8) 1.2.1准备 (9) 1.2.2交换 (10) 1.2.3淋洗 (10) 1.2.4沉淀 (11) 1.2.5树脂再生 (11) 第二章产品质量标准 2.1产品质量标准(参考标准) (12) 第三章氧化钇的应用 3.2氧化钇的应用 (13) 参考文献 (15)

相关主题
文本预览
相关文档 最新文档