当前位置:文档之家› 2019_2020年高中数学第一章计数原理课时跟踪训练2两个计数原理的综合应用新人教A版选修2_3

2019_2020年高中数学第一章计数原理课时跟踪训练2两个计数原理的综合应用新人教A版选修2_3

2019_2020年高中数学第一章计数原理课时跟踪训练2两个计数原理的综合应用新人教A版选修2_3
2019_2020年高中数学第一章计数原理课时跟踪训练2两个计数原理的综合应用新人教A版选修2_3

课时跟踪训练(二) 两个计数原理的综合应用

(时间45分钟)

题型对点练(时间20分钟)

题组一选(抽)取与分配问题

1.某年级要从3名男生,2名女生中选派3人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方法有( )

A.6种 B.7种 C.8种 D.9种

[解析] 可按女生人数分类:若选派一名女生,有2×3=6种不同的选派方法;若选派2名女生,则有3种不同的选派方法.由分类加法计数原理,共有9种不同的选派方法.[答案] D

2.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有( ) A.4种B.5种

C.6种D.7种

[解析] 共有4种方法.列举如下:1,4,5;2,4,4;2,3,5;3,3,4.

[答案] A

3.有4位教师在同一年级的4个班中各教1个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )

A.8种B.9种

C.10种D.11种

[解析] 设4位监考教师分别为A,B,C,D,4个班级分别为a,b,c,d,假设A监考b,则余下3人监考剩下的3个班,共有3种不同方法.同理A监考c或d时,也分别有3种不同方法.根据分类加法计数原理,监考的方法共有3+3+3=9(种).[答案] B

题组二用计数原理解决组数问题

4.由数字1,2,3,4组成的三位数中,各位数字按严格递增(如“134”)或严格递减(如“421”)顺序排列的数的个数是( )

A.4 B.8 C.16 D.24

[解析] 由题意分析知,严格递增的三位数只要从4个数中任取3个,共有4种取法;同理严格递减的三位数也有4个,所以符合条件的数的个数为4+4=8.

[答案] B

5.现有某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为________.

[解析] 因为正整数m,n满足m≤7,n≤9,所以(m,n)所有可能的取值有7×9=63(种),

其中m ,n 都取到奇数的情况有4×5=20(种),因此所求概率为2063

. [答案] 2063

6.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字回答)

[解析] 用数字2,3可以组成24

=16个四位数.其中,只由2可构成1个四位数,只由3可构成1个四位数,故数字2,3至少都出现一次的四位数的个数为16-1-1=14.

[答案] 14

题组三 用计数原理解决涂色(种植)问题

7.如图所示,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则栽种方案最多有( )

A .180种

B .240种

C .360种

D .420种

[解析] 区域2,3,4,5地位相同(都与其他4个区域中的3个区域相邻),故应先种区域1,有5种种法,再种区域2,有4种种法,接着种区域3,有3种种法,种区域4时应注意:区域4与区域2同色时区域4有1种种法,此时区域5有3种种法;区域4与区域2不同色时区域4有2种种法,此时区域5有2种种法,故共有5×4×3×(3+2×2)=420种栽种方案.故选D.

[答案] D

8.湖北省(鄂)分别与湖南(湘)、安徽(皖)、陕西(陕)三省交界(如图),且湘、皖、陕互不交界,在地图上分别给各省地域涂色,要求相邻省涂不同色,现有五种不同颜色可供选用,则不同的涂色方法有________种.

[解析] 由题意知本题是一个分步乘法计数问题,第一步涂陕西,有5种结果,再涂湖北,有4种结果,第二步涂安徽,有4种结果,再涂湖南有4种,即5×4×4×4=320(种).[答案] 320

9.用6种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔.问:该板报有多少种书写方案?

[解] 第一步,选英语角用的彩色粉笔,有6种不同的选法;第二步,选语文学苑用的彩色粉笔,不能与英语角用的颜色相同,有5种不同的选法;第三步,选理综视界用的彩色粉笔,与英语角和语文学苑用的颜色都不能相同,有4种不同的选法;第四步,选数学天地用的彩色粉笔,只需与理综视界的颜色不同即可,有5种不同的选法,共有6×5×4×5=600种不同的书写方案.

综合提升练(时间25分钟)

一、选择题

1.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )

A.40 B.16 C.13 D.10

[解析] 分两类:第1类,直线a与直线b上8个点可以确定8个不同的平面;第2类,直线b与直线a上5个点可以确定5个不同的平面.故可以确定8+5=13个不同的平面.

2.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有( )

A.6种B.8种

C.12种D.48种

[解析] 每个景区都有2条线路,所以游览第一个景点有6种选法,游览第二个景点有4种选法,游览第三个景点有2种选法,故共有6×4×2=48种不同的游览线路.[答案] D

3.用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3542大的四位数的个数是( )

A.360 B.240 C.120 D.60

[解析] 因为3542是能排出的四位数中千位为3的最大的数,所以比3542大的四位数的千位只能是4或5,所以共有2×5×4×3=120个比3542大的四位数.[答案] C

二、填空题

4.5只不同的球,放入2个不同的箱子中,每箱不空,共有________种不同的放法.[解析] 第1只球有2种放法,第2只球有2种放法,…,第5只球有2种放法,总共有25=32种放法,但要每箱不空,故有2种情况不合要求,因此,符合要求的共有25-2=30种不同的放法.

[答案] 30

5.直线方程Ax+By=0,若从0,1,2,3,5,7这六个数字中每次取两个不同的数作为系数A、B的值,则方程表示不同直线的条数是________.

[解析] 若A=0,则B从1、2、3、5、7中任取一个,均表示直线y=0;同理,当B =0时,表示直线x=0;当A≠0且B≠0时,能表示5×4=20条不同的直线.故方程表示直线的条数是1+1+20=22.

三、解答题

6.如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,如果只有5种颜色可供使用,求不同的染色方法总数.

[解] 解法一:由题意,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S,A,B染色确定时,不妨设其颜色分别为1,2,3.若C 染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C 染5,则D可染3或4,有2种染法.

由分类加法计数原理,当S,A,B已染确定时,C,D有7种染法.

由分步乘法计数原理得,不同的染色方法有60×7=420(种).

解法二:第一步,S点染色,有5种方法.第二步,A点染色,由于A与S在同一条棱上,所以有4种方法.第三步,B点染色,由于B与S,A分别在同一条棱上,所以有3种方法.第四步,C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C 是否同色进行分类.当A与C同色时,D点有3种染色方法,由分步乘法计数原理,有5×4×3×1×3=180(种)方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法,再由分步乘法计数原理,有5×4×3×2×2=240(种)方法.由分类加法计数原理得,不同的染色方法共有180+240=420(种).解法三:第一类,5种颜色全用,有5×4×3×2×1=120(种)不同的染色方法;第二类,只有4种颜色,则必有某两个顶点同色(A与C或B与D),共有5×4×3×2+5×4×3×2=240(种)不同的染色方法;第三类,只用3种颜色,则A与C、B与D必定同色,有5×4×3=60(种)不同的染色方法.

由分类加法计数原理得,不同的染色方法共有120+240+60=420(种).

7.用1,2,3,4四个数字组成可有重复数字的三位数,这些数从小到大构成数列{a n}.

(1)这个数列共有多少项?

(2)若a n=341,求n的值.

[解] (1)由题意,知这个数列的项数就是由1,2,3,4四个数字组成的可有重复数字的三位数的个数.

由于每个数位上的数都有4种取法,

由分步乘法计数原理,得满足条件的三位数的个数为4×4×4=64,

即数列{a n}共有64项.

(2)比341小的数分为两类:

第一类,百位上的数是1或2,有2×4×4=32个三位数;

第二类,百位上的数是3,十位上的数可以是1,2,3中的任一个,个位上的数可以是1,2,3,4中的任一个,有3×4=12个三位数.

所以比341小的三位数的个数为32+12=44,

因此341是这个数列的第45项,即n=45.

人教版高中数学选修2-3第一章计数原理单元测试(一)及参考答案

2018-2019学年选修2-3第一章训练卷 计数原理(一) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( ) A.8种 B.12种 C.16种 D.20种 2.已知() 7781C C C n n n n +-=∈* N ,则n 等于( ) A.14 B.12 C.13 D.15 3.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是( ) A.8 B.12 C.16 D.24 4.()7 1x +的展开式中x 2的系数是( ) A.42 B.35 C.28 D.21 5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!) 3 C.(3!)4 D.9! 6.某校园有一椭圆型花坛,分成如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有( ) A.48种 B.36种 C.30种 D.24种 7.若多项式x 2+x 10=a 0+a 1(x +1)++a 9(x +1)9+a 10(x +1)10,则a 9=( ) A.9 B.10 C.-9 D.-10 8.从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A.48种 B.36种 C.18种 D.12种 9.已知()1n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.212 B.211 C.210 D.29 10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) A.12种 B.18种 C.36种 D.54种 11.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的 偶数共有( ) A.144个 B.120个 C.96个 D.72个 12.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 ( ) A.24对 B.30对 C.48对 D.60对 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选法有________种(用数值表示) 14.()()4 1a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =________. 15.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有________种(用数字作答). 16.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,能被3整除的数有________个. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 此 卷 只 装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

高考数学 计数原理 知识汇总

计数原理 课表要求 1、会用两个计数原理分析解决简单的实际问题; 2、理解排列概念,会推导排列数公式并能简单应用; 3、理解组合概念,会推导组合数公式并能解决简单问题; 4、综合应用排列组合知识解决简单的实际问题; 5、会用二项式定理解决与二项展开式有关的简单问题; 6、会用二项式定理求某项的二项式系数或展开式系数,会用赋值法求系数之和。突破方法 1.加强对基础知识的复习,深刻理解分类计数原理、分步计数原理、排列组合等基本概念,牢固掌握二项式定理、二项展开式的通项、二项式系数的性质。2.加强对数学方法的掌握和应用,特别是解决排列组合应用性问题时,注重方法的选取。比如:直接法、间接法等;几何问题、涂色问题、数字问题、其他实际问题等;把握每种方法使用特点及使用范围等。 3.重视数学思维的训练,注重数学思想的应用,在解题过程中注重化归与转化思想的应用,将不同背景的问题归结为同一个数学模型求解;注重数形结合、分类讨论思想、整体思想等,使问题化难为易。 知识点 1、分类加法计数原理 完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类办法中有m2种不同的方法,……在第n类办法中有m n种不同的方法。那么完成这件事共有:N=m1+m2+……+m n种不同的方法。 注意:(1)分类加法计数原理的使用关键是分类,分类必须明确标准,要求每一种方法必须属于某一类方法,不同类的任意两种方法是不同的方法,这时分类问题中所要求的“不重复”、“不遗漏”。 (2)完成一件事的n类办法是相互独立的。从集合角度看,完成一件事分A、B两类办法,则A∩B=?,A∪B=I(I表示全集)。 (3)明确题目中所指的“完成一件事”是指什么事,完成这件事可以有哪些办法,怎样才算是完成这件事。 2、分步乘法计数原理 完成一件事,需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有:N=m1·m2·……·m n种不同的方法。 注意:(1)明确题目中所指的“做一件事”是什么事,单独用题中所给的某种方法是不是能完成这件事,是不是要经过几个步骤才能完成这件事。 (2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步,这件事都不可能完成。 (3)根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步去

第一章 计数原理单元测试题

第一章 计数原理单元测试题 一、选择题(本大题共12小题,每小题5分,共60分) 1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种 B .20种 C .25种 D .32种 2.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有 A .36种 B .48种 C .96种 D .192种 3. 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种 4. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.() 2 1 4 2610C A 个 B.24 2610A A 个 C.()2 14 26 10 C 个 D.2 4 2610A 个 5. 从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有 (A)40种 (B) 60种(C) 100种 (D) 120种 6. 由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有( ) B.60 7.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第( )个数. B.9 和CD 为平面内两条相交直线,AB 上有m 个点,CD 上有n 个点,且两直线上各有一个与交点重合,则以这m+n-1个点为顶点的三角形的个数是( ) A. 2121m n n m C C C C + B. 2 1121m n n m C C C C -+ C. 2 1211m n n m C C C C +- D. 2 1 11211---+m n n m C C C C 9.设 () 1010221010 2x a x a x a a x +???+++=-,则 ()()292121020a a a a a a +???++-+???++的值为( ) B.-1 D.

高中数学教案:计数原理

高中数学教案:计数原理 教学目标: 对差不多概念,差不多知识和差不多运算的把握 注重对分析咨询题和解决咨询题的能力的培养 对综合咨询题要注意数学思想的培养 教学重难点: 对两个差不多计数原理的把握和运用 排列组合以及二项式定理典型题解题技巧 教学设计: 知识网络: 一、两个差不多计数原理: 1、分类计数原理:完成一件事,有n 类方法,在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第n 类方法中有mn 种不同的方法,那么完成这件事共有 N=m1+m2+…+mn 种不同的方法。〔加法原理〕 2、分步计数原理:完成一件事,需要分成n 个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n 步有mn 种不同的方法,那么完成这件事有 N=m1×m2×…×mn 种不同的方法。〔乘法原理〕 二、排列 排列:一样地,从n 个不同的元素中取出m 〔m ﹤n 〕个元素,并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 注意:1、排列的定义中包含两个差不多内容:①〝取出元素〞;②〝按照一定顺序排列〞,〝一定顺序〞确实是与位置有关,这也是判定一个咨询题是不是排列咨询题的重要标志。 2、依照排列的定义,两个排列相同,是指当且仅当两个排列的元素完全相同,而且元素的排列顺序也相同 排列数公式: )!(!)1()2()1(m n n m n n n n A m n -=+-???-?-?= !12)2()1(n n n n A n n =????-?-?= 三、组合 组合:一样地,从n 个不同元素中取出m 个不同元素并成一组,叫做从n 个不同元素中取出m 个不同元素的一个组合。 组合数公式: 〔组合数公式1—适用于运算〕 〔组合数公式2—适用于化简证明〕 组合数公式性质:性质1: m n n m n C C -= ! )1()2)(1(m m n n n n m m m n m n C +---=A =A ! )(! ! m n m n C m n -=

高中数学选修2-3计数原理概率知识点总结

选修2-3定理概念及公式总结 第一章基数原理 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 N=m 1+m 2+……+m n 种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整” 3.两个计数原理的区别: 如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理, 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理. 4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-???--=m n n n n A m n 用于计算, 或m n A )! (! m n n -=() n m N m n ≤∈*,, 用于证明。 n n A =!n =()1231????- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 (1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m n C 表示 (2)组合数公式: (1)(2)(1) ! m m n n m m A n n n n m C A m ---+== 用于计算, 或)! (!! m n m n C m n -= ),,(n m N m n ≤∈*且 用于证明。

(完整word)高中数学《计数原理》练习题

《计数原理》练习 一、选择题 1.书架上层放有6本不同的数学书,下层放有5本不同的语文书,从中任取数学书和语文书各一本,则不同的取法种数有( ) A 11 B 30 C 56 D 65 2.在平面直角坐标系中,若{}{}1,2,3,3,4,5,6x y ∈∈,则以(),x y 为坐标的点的个数为( ) A 7 B 12 C 64 D 81 3.若()12n x +的展开式中,3x 的系数是x 系数的7倍,则n 的值为( ) A 5 B 6 C 7 D 8 4.广州市某电信分局管辖范围的电话号码由8位数字组成,其中前3位是一样的,后5位数字都是0~9这10个数字中的一个,那么该电信分局管辖范围内不同的电话号码个数最多有( ) A 50 B 30240 C 59049 D 100000 6.按血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,其子女的血型一定不是O 型,如果某人的血型为O 型,则该人的父母血型的所有可能情况种数有( ) A 6 B 7 C 9 D 10 7.计算0121734520C C C C ++++L 的结果为( ) A 421C B 321 C C 320C D 420C 8.一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球得2分,取出一个白球得1分,问从口袋中取出5个球,使总分不少于7分的取法种数有( ) A 15 B 16 C 144 D 186 二、填空题 9.开车从甲地出发到丙地有两种选择,一种是从甲地出发经乙地到丙地,另一种是从甲地出发经丁地到丙地。其中从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。则从甲地到丙地不同的走法共有 种。 10.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 种。 14.()()5 211x x +-的展开式中3x 的系数为

2021版高中数学第一章计数原理课时训练01分类加法计数原理与分步乘法计数原理新人教B版选修2

课时训练01 分类加法计数原理与分步乘 法计数原理 (限时:10分钟) 1.如果x,y∈N,且1≤x≤3,x+y<7,则满足条件的不同的有序自然数对的个数是( ) A.15 B.12 C.5 D.4 解析:利用分类加法计数原理. 当x=1时,y=0,1,2,3,4,5,有6种情况. 当x=2时,y=0,1,2,3,4,有5种情况. 当x=3时,y=0,1,2,3,有4种情况. 据分类加法计数原理可得,共有6+5+4=15种情况. 答案:A 2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279 解析:0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个). 答案:B 3.某体育馆有8个门供球迷出入,某球迷从其中一门进入,另一门走出,则不同的进出方法有( ) A.16种 B.56种 C.64种 D.72种 解析:分两步进行:第一步,选一门进入有8种方法;第二步,从剩下的门中选择一门走出有7种方法,共8×7=56种方法.答案:B 4.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A,或x∈B},则当集合C中有且只有一个元素时,C的情况有__________种. 解析:分两类进行,第一类,当元素属于集合A时,有3种.第二类,当元素属于集合B时,有4种. ∴共3+4=7种.

答案:7 5.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有多少种不同的推选方法. 解析:分为三类: 第一类,甲班选一名,乙班选一名,根据分步乘法计数原理有3×5=15种选法; 第二类,甲班选一名,丙班选一名,根据分步乘法计数原理有3×2=6种选法; 第三类,乙班选一名,丙班选一名,根据分步乘法计数原理有5×2=10种选法. 综合以上三类,根据分类加法计数原理,共有15+6+10=31种不同选法. (限时:30分钟) 一、选择题 1.某乒乓球队里有男队员6人,女队员5人,从中选取男、女队员各一人组成混合双打队,不同的组队总数有( ) A.11 B.30 C.56 D.65 解析:先选1男有6种方法,再选1女有5种方法,故共有6×5=30种不同的组队方法. 答案:B 2.某小组有8名男生,4名女生,要从中选出一名当组长,不同的选法有( ) A.32种 B.9种 C.12种 D.20种 解析:由分类加法计数原理知,不同的选法有N=8+4=12种.答案:C 3.由0,1,2三个数字组成的三位数的个数为( ) A.27 B.18 C.12 D.6 解析:分三步,分别取百位、十位、个位上的数字,分别有2种、3种、3种取法,故共可得2×3×3=18个不同的三位数.答案:B 4.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有

【高中数学】计数原理总结

【高中数学】计数原理总结 知识梳理: 1. 分类加法计数原理和分布乘法计数原理 (1)如果完成一件事有n 类不同的方案,在第一类中有m1种不同的方法,在第二类中有m2种不同的方法,…,在第n 类中有mn 种不同的方法,那么完成这件事共有N=_________种不同的方法。 (2)如果完成一件事需要n 个不同的步骤,在第一步中有m1种不同的方法,在第二步中有m2种不同的方法,…,在第n 步中有mn 种不同的方法,那么完成这件事共有N=_________种不同的方法。 (3)分类和分布的区别,关键是看事件能否完成,事件完成了就是___________;必须要连续若干步才能完成则是 _____________。分类要用分类计数原理将种数_________,分步要用分步计数原理将种数_________。 2. 排列与组合 (1)排列 (1)(2)(1)()(1)321(1)(2)(1)()(1)321 !()! m n n n n n m n m n m A n n n n m n m n m n n m ---+---??=---+= ---??=- (1)(2)(!()!m n A n n n n n n m =--=- (2)组合 ①组合数公式(1)(2)(1)!()(1)321()!! m n n n n n m n C n m n m n m m ---+==---??- ①组合数的两个性质_______ _ ____、 。 ③区别排列与组合 3. 常见的解题策略有以下几种: (1)特殊元素优先安排的策略 (2)合理分类和准确分布的策略 (3)排列、组合混合问题先选后排的策略 (4)正难则反、等价转化的策略 (5)相邻问题捆绑的策略 (6)不相邻问题插空处理的策略 (7)定序问题除法处理的策略 (8)分排问题直排处理的策略 (9)“小集团”排列问题中先整体后局部的策略 (10)构造模型的策略。 4. 二项式定理 (1)二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n (2)通项:展开式的第1+r 项,即) ,,1,0(1n r b a C T r r n r n r ==-+ (3)二项式系数的性质: ①对称性:在二项展开式中,与首末两端等距离的任意两项的二项式系数相等。即 ①增减性与最值:二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C ③二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和。即 m n n m n C C -=n n n k n n n n C C C C C 2 210 =+???++???+++∴ 0213n-1n n n n C +C +=C +C +=2

高中数学之计数原理

计数原理(讲义) ? 知识点睛 一、两个计数原理 1. 全排列:n 个不同元素全部取出的排列,叫做n 个不同元素的一个全排列, A (1)(2)21n n n n n n =?-?-???=L ! 即正整数1到n 的连乘积叫做n 的阶乘,用n !表示. A ()m n n n m =-!!,A !C !()!A m m n n m m n m n m ==-, 规定0!1=,0C 1n =. 2. 组合数的性质 C C m n m n n -=,11C C C m m m n n n -+=+. ? 精讲精练 1. 从A 地到B 地要经过C 地和D 地,从A 地到C 地有3条路,从C 地到D 地有2条路,从D 地 到B 地有4条路,则从A 地到B 地的不同走法共有( )种.

A .3+2+4=9 B .1 C .3×2×4=24 D .1+1+1=3 2. 设4名学生报名参加同一时间安排的3项课外活动的方案有a 种,这4名学生在运动会上共同争 夺100米、跳远、铅球3项比赛的冠军的可能结果有b 种,则(a ,b )为( ) A .(34,34) B .(43,34) C .(34,43) D .3344(A A ), 3. 填空: (1)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有______种. (2)某校学生会由高一年级5人,高二年级6人,高三年级4人组成,若要选出不同年级的两人参加市里组织的某项活动,则不同的选法共有______种. (3)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有_____种. (4)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的为_____种(结果用数值表示). 4. 填空: (1)用0到9这10个数字,可组成________个没有重复数字的四位偶数. (2)6个人从左至右排成一行,若最左端只能排甲或乙,最右端不能排甲,则不同的排法共有________种. (3)某运输公司有7个车队,每个车队的车均多于4辆且型号相同,现从这个车队中抽调出10辆车,并且每个车队至少抽调一辆,则不同的抽调方法共有________种.

第一章计数原理(复习教案)(学生)

第一章 计数原理复习导学案 一. 学习目标 1.掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题. 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. 3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应 用问题. 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 二. 知识网络 项式系数性质 第一课 两个原理 一.知识梳理 1. 分类计数原理(也称加法原理) :做一件事情,完成它可以有 n 类办法,在第一类办法 中有 m 1种不同的方法,在第二类办法中有 m 2 种不同的方法,??,在第 n 类办法中有 m n 种不同的方法,那么完成这件事共有 N = 种不同的方法. 2.分步计数原理(也称乘法原理) :做一件事情,完成它需要分成 n 个步骤,做第一步有 m 1种不同的方法,做第二步有 m 2种不同的方法,??,做 n 步有 m n 种不同的方法,那么完 成这件事共有 N = 种不同 的方法. 3.解题方法:枚举法、插空法、隔板法. 二.基础自测 1. 有一项活动需在 3名老师, 8 名男同学和 5名女同学中选人参加, (1)若只需一人参加, 有多少种不 同的选法? ( 2 )若需一名老师,一名学生参加,有多少种不同的选法? 3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法? 2. ( 09重庆卷)将 4名大学生分配到 3 个乡镇去当村官,每个乡镇至少一名,则不同的分 配方案有 种(用数 字作答) . 3. 如图所示,用五种不同的颜色分别给 A 、B 、 C 、D 四个区域涂色,相邻区域必须涂不同 排列组合 二项式定理 二项式定 通项公式 应用 应用 两个计数原理

选修2-3第一章计数原理教材分析

选修2-3第一章:“计数原理”教材分析与教学建议 一、地位与作用 计数问题是数学中的重要研究象之一,分类加法计数原理与分步乘法计数原理是解决计数问题的最基本、最重要的方法,它们为解决很多实际问题提供了思想和工具。计数原理是学习统计与概率以及相关分支的基础。计数原理的思想方法独特灵活,有利于培养和发展学生的抽象能力和逻辑思维能力。 二、本章重点、难点 1.重点:(1)分类加法计数原理、分步乘法计数原理;(2)排列与组合的意义;(3)排列数公式与组合数公式;(4)二项式定理。 2.难点:(1)如何利用原理和有关公式解决应用问题。 三、课程标准 1.分类加法计数原理、分步乘法计数原理 通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。 2.排列与组合 通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题。 3.二项式定理 能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。四、教学安排与课时分配 这部分的内容与《大纲》没有太大的区别,在处理方式上,相对于排列、组合来说,《标准》更强调基本的计数原理,而把排列、组合、二项式定理的证明作为计数原理的应用实例。就计数原理本身而言,《标准》强调对计数思想的理解, 两个版本相比,A版更加注重体现课标的精神,比如:从内容编排上看,非常强调基本计数原理的思想及其应用,第一节安排了有梯度的9个例题,计划用4课时,让学生通过丰富的实例来熟悉原理及其基本应用,而同样内容B版为3个例题,2课时;注重学生对新概念、新公式的探究。 避免抽象的讨论计数原理,而且强调计数原理在实际中的应用。教学用时比《大纲》少了4课时。 六、教材分析 (一)计数原理 1.分类加法计数原理 (1)原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N m n =+种不同的方法.

高中数学第一章计数原理1_1两个基本计数原理染色问题素材苏教版选修2_3

染色问题 例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 证明:正方形有6个面由最多[(m-1)÷n]+1 得出[(6-1)÷2]+1=[2.5]+1=3 例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。 例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色? 解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。 例3′(六人集会问题)证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 例3”:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。 解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。 若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。 若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。

高考数学解析分类汇编(4)---计数原理 理

2012年高考真题理科数学解析汇编:计数原理 一、选择题 1 .(2012年高考(天津理))在2 5 1(2)x x - 的二项展开式中,x 的系数为 ( ) A .10 B .10- C .40 D .40- 2 .(2012年高考(新课标理))将2名教师,4名学生分成2个小组,分别安排到甲、乙 两地参加社会实践活动, 每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 B .10种 C .9种 D .8种 3 .(2012年高考(浙江理))若从1,2,2,,9这9个整数中同时取4个不同的数,其和为 偶数,则不同的取法共有 ( ) A .60种 B .63种 C .65种 D .66种 4 .(2012年高考(重庆理))8 的展开式中常数项为 ( ) A . 16 35 B . 8 35 C . 4 35 D .105 5 .(2012年高考(四川理))方程2 2 ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( ) A .60条 B .62条 C .71条 D .80条 6 .(2012年高考(四川理))7 (1)x +的展开式中2 x 的系数是 ( ) A .42 B .35 C .28 D .21 7 .(2012年高考(陕西理))两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所 有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( ) A .10种 B .15种 C .20种 D .30种 8 .(2012年高考(山东理))现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片 各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 ( ) A .232 B .252 C .472 D .484 9 .(2012年高考(辽宁理))一排9个座位坐了3个三口之家,若每家人坐在一起,则不 同的坐法种数为 ( ) A .3×3! B .3×(3!)3 C .(3!)4 D .9! 10.(2012年高考(湖北理))设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a = ( ) A .0 B .1 C .11 D .12 11.(2012年高考(大纲理))将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 ( ) A .12种 B .18种 C . 24种 D .36种 12.(2012年高考(北京理))从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复

高中数学第一章计数原理1.2.1排列概念与排列数公式(1)学案2_3

1.2.1 排列(一) [学习目标] 1.理解并掌握排列的概念. 2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题. [知识链接] 1.同一个排列中,同一个元素能重复出现吗? 答由排列的定义知,在同一个排列中不能重复出现同一个元素. 2.排列与排列数的区别是什么? 答“排列”和“排列数”是两个不同的概念,一个排列是指完成的具体的一件事,其过程要先取后排,它不是一个数;而排列数是指完成具体的一件事的所有方法的种数,即所有排列的个数,它是一个数. [预习导引] 1.排列的定义 一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 2.排列数的定义 从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m 个元素的排列数,用符号A m n表示. 3.排列数公式 A m n=n(n-1)(n-2)…(n-m+1)(n,m∈N*,m≤n)=n! (n-m)! . 要点一排列的概念 例1 判断下列问题是否是排列问题 (1)从1到10十个自然数中任取两个数组成直角坐标平面内的点的坐标,可得多少个不同的点的坐标?

(2)从10名同学中任抽两名同学去学校开座谈会,有多少种不同的抽取方法? (3)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式共有多少种? 解 (1)由于取出的两数组成点的坐标与哪一数作横坐标,哪一数作纵坐标的顺序有关,所以这是一个排列问题. (2)因为任何一种从10名同学抽取两人去学校开座谈会的方式不用考虑两人的顺序,所以这不是排列问题. (3)因为从一门进,从另一门出是有顺序的,所以是排列问题. ∴(1)(3)是排列问题,(2)不是排列问题. 规律方法 确认一个具体问题是否为排列问题,一般从两个方面确认. (1)首先要保证元素的无重复性,否则不是排列问题. (2)其次要保证选出的元素被安排的有序性,否则不是排列问题,而检验它是否有顺序的标准是变换某一结果中两元素的位置,看结果是否变化,有变化就是有顺序,无变化就是无顺序. 跟踪演练1 下列问题是排列问题吗?并说明理由. (1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法? (2)从集合M ={1,2,…,9}中,任取两个元素作为a ,b ,可以得到多少个焦点在x 轴上的 椭圆方程x 2a 2+y 2b 2=1?可以得到多少个焦点在x 轴上的双曲线方程x 2a 2-y 2 b 2=1? 解 (1)第一问不是排列问题,第二问是排列问题.“入座”问题同“排队”问题,与顺序有关,故选3个座位安排三位客人是排列问题. (2)第一问不是排列问题,第二问是排列问题.若方程x 2a 2+y 2 b 2=1表示焦点在x 轴上的椭圆,则必有a >b ,a ,b 的大小关系一定;在双曲线x 2a 2-y 2b 2=1中,不管a >b 还是a <b ,方程x 2 a 2-y 2 b 2 =1均表示焦点在x 轴上的双曲线,且是不同的双曲线,故是排列问题. 要点二 列举法解决排列问题 例2 (1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数? (2)写出从4个元素a ,b ,c ,d 中任取3个元素的所有排列. 解 (1)由题意作树形图,如图.

高考数学计数原理

回扣8计数原理 1.分类计数原理 完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有m n种方法,那么完成这件事共有N=m1+m2+…+m n种方法(也称加法原理). 2.分步计数原理 完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有m n种方法,那么完成这件事共有N=m1×m2×…×m n种方法(也称乘法原理). 3.排列 (1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. (2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m个元素的排列数,用A m n表示. (3)排列数公式:A m n=n(n-1)(n-2)…(n-m+1). (4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,A n n=n·(n-1)·(n -2)·…·2·1=n!.排列数公式写成阶乘的形式为A m n=n! (n-m)! ,这里规定0!=1. 4.组合 (1)组合的定义:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合. (2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,用C m n表示. (3)组合数的计算公式:C m n=A m n A m m= n! m!(n-m)! = n(n-1)(n-2)…(n-m+1) m! ,由于0!=1, 所以C0n=1. (4)组合数的性质:①C m n=C n-m n ;②C m n+1=C m n+C m-1 n . 5.二项式定理 (a+b)n=C0n a n+C1n a n-1b1+…+C r n a n-r b r+…+C n n b n(n∈N*). 这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中的系数C r n(r=0,1,2,…,n)叫做二项式系数.式中的C r n a n-r b r叫做二项展开式的通项,用T r+1表示,即展

高中选修2-3第一章计数原理知识点总结与训练

第一章:计数原理 一、两个计数原理 3、两个计数原理的区别 二、排列与组合 1、排列: 一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。用符号 表 示. 3、排列数公式: 其中 4、组合: 一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 5、组合数: 从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。用符号 表示。 6、组合数公式: 其中 注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”. 7、性质: m n A m n A ()()() ()! ! 121m n n m n n n n A m n -= +---= . ,,*n m N m n ≤∈并且m n C ()()() ()! !! ! 121m n m n m m n n n n C m n -= +---= . ,,*n m N m n ≤∈并且m n n m n C C -=m n m n m n C C C 1 1+-=+

三、二项式定理 如果在二项式定理中,设a=1,b=x ,则可以得到公式: 2、性质: 0241351 2 n n n n n n n C C C C C C -=+++=+++= 奇数项二项式系数和偶数项二项式系数和:

2020年高考数学试题分类汇编 计数原理

十四、计数原理 1.(重庆理4)(13)(6) n x n N n +∈ 其中且≥的展开式中56 x x 与的系数相等,则n= A.6 B.7 C.8 D.9 【答案】B 2.(天津理5) 在 6 2 ?? - ?的二项展开式中,2x的系数为 A. 15 4 - B. 15 4C. 3 8 - D. 3 8 【答案】C 3.(四川理12)在集合{} 1,2,3,4,5 中任取一个偶数a和一个奇数b构成以原点为起点的向量 (,) a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记 所有作成的平行四边形的个数为n,其中面积不超过4的平行四边形的个数为m,则m n = A. 4 15B. 1 3C. 2 5D. 2 3 【答案】D 基本事件: 2 6 (2,1),(2,3),(2,5),(4,1),(4,5),(4,3),3515 n C ==?= 由 其中面积为1的平 行四边形的个数 (2,3)(4,5);(2,1)(4,3);(2,1)(4,1)其中面积为2的平行四边形的个数为(2,3)(2,5);(2,1)(2,3)其中面积为3的平行四边形的个数(2,3)(4,3);(2,1)(4,5)其中面积为4的平行四边形的个数(2,1)(2,5);(4,1)(4,3);(4,3)(4,5)其中面积为5的平行四边形的个数 (2,3),(4,1);(2,5)(4,5);其中面积为7的平行四边形的个数(2,5),(4,3)其中面积为8的平行四边形的个数(4,1)(4,5)其中面积为9的平行四边形的个数(2,5),(4,1) 4.(陕西理4) 6 (42) x x - -(x∈R)展开式中的常数项是 A.-20 B.-15 C.15 D.20 【答案】C 5.(全国新课标理8) 5 1 ()(2) a x x x x +- 的展开式中各项系数的和为2,则该展开式中常数项 为 (A)—40 (B)—20 (C)20 (D)40 【答案】D 6.(全国大纲理7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位 朋友每位朋友1本,则不同的赠送方法共有 A.4种B.10种C.18种D.20种 【答案】B 7.(福建理6)(1+2x)3的展开式中,x2的系数等于 A.80 B.40 C.20 D.10 【答案】B 8.(安徽理8)设集合 {} 1,2,3,4,5,6, A=}8,7,6,5,4{ = B则满足S A ?且S Bφ ≠ I的集合S 为 (A)57 (B)56 (C)49 (D)8

计数原理综合习题

选修2-3第一章计数原理单元质量检测 时间:120分钟总分:150分 第Ⅰ卷(选择题,共60分) 一、选择题(每小题5分,共60分) 1.小王打算用70元购买面值分别为20元和30元的两种IC电话卡.若他至少买一张,则不同的买法一共有( ) A.7种 B.8种 C.6种 D.9种 2.设某班有男生30人,女生24人,现要从中选出男、女生各一名代表班级参加比赛,则不同的选法种数是( ) A.360 B.480 C.720 D.240 3.设P=1+5(x+1)+10(x+1)2+10(x+1)3+5(x+1)4+(x+1)5,则P等于( ) A.x5 B.(x+2)5 C.(x-1)5 D.(x+1)5 5的展开式中x2y3的系数是( ) A.-20 B.-5 C.5 D.20 5.20个不同的小球平均分装在10个格子中,现从中拿出5个球,要求没有两个球取自同一个格子中,则不同的拿法一共有( ) A.C510种 B.C520种 C.C510C12种 D.C510·25种 6.在(1-x)n=a0+a1x+a2x2+…+a n x n中,若2a2+a n-5=0,则n的值是( ) A.7 B.8 C.9 D.10 7.7人站成一排照相,甲站在正中间,乙、丙与甲相邻且站在甲的两边的排法共有( ) A.120种 B.240种 C.48种 D.24种

8.(2+3 3)100的展开式中,无理项的个数是( ) A.83 B.84 C.85 D.86 9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A.72 B.120 C.144 D.168 10.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A.144 B.120 C.72 D.24 11.在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( ) A.45 B.60 C.120 D.210 12.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x +y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( ) A.5 B.6 C.7 D.8 第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分) 13.某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有________种(用数字作答). 14.(x+a)6的展开式中含x2项的系数为60,则实数a=________. 15.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).

相关主题
文本预览
相关文档 最新文档