当前位置:文档之家› AM及FM调制系统设计与仿真

AM及FM调制系统设计与仿真

AM及FM调制系统设计与仿真
AM及FM调制系统设计与仿真

河北联合大学轻工学院

通信原理课程设计

课题名称: AM及FM调制系统设计与仿真专业班级: 08级通信一班

组数:(1)

成员及学号:

一、设计内容概述

调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将信号转换成合适于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。AM 信号的调制属于频谱的线性搬移,它的解调往往采用非相干解调即包络解调方式;而FM信号的调制属于频谱的非线性搬移,它的解调有相干和非相干解调两种方式。

本课程设计使用的仿真软件为Matlab6.5,利用Matlab集成环境下的M文件,编写程序来实现模拟调制中的振幅调制AM和频率调制FM的设计和仿真,并分析绘制基带信号即调制信号、载波信号、已调信号的时域波形和频域波形,并改变参数观察信号变化情况,进行实验分析。

二、仿真软件介绍

MATLAB的名称源自Matrix Laboratory,它的首创者是在数值线性代数领域颇有影响的Cleve Moler博士,他也是生产经营MATLAB 产品的美国Mathworks公司的创始人之一。MATLAB是一种交互式的、以矩阵为基础的软件开发环境,它用于科学和工程的计算与可视化。MATLAB的编程功能简单,并且很容易扩展和创造新的命令与函数,它将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,应用MATLAB可方便地解决复杂数值计算问题。此外,MATLAB还具有强大的Simulink动态仿真环境,可以实现可视化建模和多工作

环境间文件互用和数据交换。

MATLAB以一系列称为工具箱的应用指定解答为特征。对多数用户十分重要的是,工具箱使你能学习和应用专门的技术。工具箱是MATLAB函数(M-文件)全面的综合,这些文件把MATLAB的环境扩展到解决特殊类型问题上。具有可用工具箱的领域有:信号处理,控制系统神经网络,模糊逻辑,小波分析,模拟等等,从而使其被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作中。MATLAB与其它计算机高级语言如 C,C++等相比,MATLAB语言编程要简洁得多,编程语言更加接近数学描述,可读性好,其强大的图形功能和可视化数据处理能力也是其它高级语言望尘莫及的。对于具有任何一门高级语言基础的学生来说,学习MATLAB十分重要。MATLAB使人们摆脱了常规计算机编程的繁琐,让人们能够将大部分精力投入到研究问题的数学建模上。可以说,应用MATLAB这一数学计算和系统仿真的强大工具,可以使科学研究的效率得以成百倍的提高。

MATLAB® 是一种对技术计算高性能的语言。它集成了计算,可视化和编程于一个易用的环境中,在此环境下,问题和解答都表达为我们熟悉的数学符号。典型的应用有:

数学和计算,算法开发,建模,模拟和原形化,数据分析、探索和可视化,科学与工程制图,应用开发,包括图形用户界面的建立。

三、模拟调制AM、FM 的基本原理

3.1模拟通信系统设计原理

模拟通信系统的主要内容是研究不同信道条件下不同的调制解调方法。调制可以分为三类,即调幅(AM)、调频(FM)、调相(PM)。

基带信号:(1)基带信号是由消息转化而来的原始模拟信号,它的频谱一般从零频附近开始,如语音信号为300~3400Hz;(2)在实际通信系统中,基带信号一般含直流和低频成分,不宜直接传输,这就需要把基带信号变换成其频带适合在信道中传输的信号,并可在接收端进行反变换,完成这种变换和反变换作用的通常是调制器和解调器。

已调信号:它有三个基本特征,即(1)携带有信息;(2)适合在信道中传输;(3)信号的频谱具有带通形式且中心频率远离零频,因而已调信号又称带通信号或频带信号。

所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。这里高频振荡波就是携带信号的运载工具,也叫载波。调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。

3.2振幅调制产生原理

振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。在线性调制系列中,最先应用的一种幅度调制是全调幅或常规调幅,简称为调幅(AM)。在频域中已调波频谱是基带调

制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。

设正弦载波为:

式中,A为载波幅度;为载波角频率;为载波初始相位(假设=0).

调制信号(基带信号)为。根据调制的定义,振幅调制信号(已调信号)一般可以表示为:

设调制信号的频谱为,则已调信号的频谱

3.3AM调幅电路方案分析

标准调幅波(AM)产生原理

调制信号是只来来自信源的调制信号(基带信号),这些信号可以是模拟的,亦可以是数字的。调制的高频振荡信号可称为载波,它可以是正弦波,亦可以是非正弦波(如周期性脉冲序列)。载波由高频信号源直接产生即可,然后经过高频功率放大器进行放大,作为调幅波的载波,调制信号由低频信号源直接产生,二者经过乘法器后即可产生双边带的调幅波。

假设调制信号的平均值为0,将其叠加一个直流偏量

后与载波相乘(如下图),即可形成调幅信号。设载波信号的表达式为

,调制信号的表达式为 ,则调幅信号的时域表

达式为

式中:

为外加的直流分量; 可以是确知信号,也可以是随机信号。若

为确知信号,则AM 信号的频谱为

图3.1 AM 调制模型

3.4频率调制(FM )产生原理 调制时,若载波的频率随调制信号变化,称为频率调制或调频FM 。频率调制和振幅调制不同的是,已调信号的频谱不再是原调制信号频谱的线性搬移,而是频谱的非线性变换,会产生与频谱搬移不同的新的频率成分,故又称为非线性调制。从频率调制的相位与频率关系可以看出,调频信号可通过直接调频和间接调频两种方法得到。所谓间接调频急事先对调频信号积分再调相而得到,如下图3.3.2。

在调制时,调制信号的频率去控制载波的频率的变化,载波的瞬时频偏随调制信号()m t 成正比例变化,即

()()f d t K m t dt

?=

式中,f K 为调频灵敏度(()rad s V ?)。

这时相位偏移为

()()f t K m d ?ττ=?

则可得到调频信号为

()cos ()FM c f s t A t K m d ωττ??=+??

? 其中,()m t 为基带调制信号

设调制信号为

()cos(2)m m t A f t π=

设正弦载波为

()cos(2)c c t f t π=

图3.2直接调频模型

图3.3 间接调频模型

四、设计思路和仿真程序

4.1设计流程图

图4.1 AM振幅调制设计流程图(即设计思路)

图4.2 FM振幅调制设计流程图(即设计思路)4.2振幅调制AM的仿真程序

% ===========载波信号=========================

t=-1:0.00001:1; %设定步长

A0=8; %载波信号振幅

f=3000; %载波信号频率

w0=2*f*pi;

ct=A0*cos(w0*t); %产生载波信号

subplot(2,1,1);

plot(t,ct);

title('载波信号波形');

axis([0,0.01,-10,10]);

subplot(2,1,2);

Y1=fft(ct); %对载波信号进行傅里叶变换plot(abs(Y1));

title('载波信号频谱');

axis([5900,6100,0,1000000]);

% ===========调制信号=========================

t=-1:0.00001:1;

A1=5; %调制信号振幅

f=3000; %调制信号频率

w0=2*f*pi;

mes=A1*sin(0.001*w0*t); %调制信号

subplot(2,1,1);

plot(t,mes);

xlabel('t'),title('调制信号');

subplot(2,1,2);

Y2=fft(mes); % 对调制信号进行傅里叶变换plot(abs(Y2));

title('调制信号频谱');

axis([198000,201000,0,1000000]);

% ============AM已调信号=====================

t=-1:0.00001:1;

A0=10; %载波信号振幅

A1=5; %调制信号振幅

A2=3; %已调信号振幅

f=3000; %载波信号频率

w0=2*f*pi; m=0.15; %调制度

mes=A1*sin(0.001*w0*t); %消调制信号

Uam=A2*(1+m*mes).*cos((w0).*t); %AM 已调信号

subplot(2,1,1); plot(t,Uam);

grid on; title('AM已调信号波形');

subplot(2,1,2);

Y3=fft(Uam); %对AM已调信号进行傅里叶变换plot(abs(Y3)),grid; title('AM已调信号频谱');

axis([5950,6050,0,500000]);

4.3频率调制FM的仿真程序

% ============载波信号=====================

t=0:0.0001:1.5;

fc=50; %载波信号频率

ct=cos(2*pi*fc*t); %生成载波

subplot(2,1,1);

plot(t,ct);

axis([0,1.5,-1,1]);

xlabel('t'),

title('载频信号波形');

subplot(2,1,2);

Y1=fft(ct); %对载波信号进行傅里叶变换plot(abs(Y1));

title('载波信号频谱');

axis([0,150,0,10000]);

% ============调制信号=====================

t=0:0.0001:1.5; %设置步长

A1=15; %调制信号振幅

f=5; %调制信号频率

mt=A1*cos(2*pi*f *t); %生成调制信

subplot(2,1,1);

plot(t,mt);

axis([0,1.5,-17,17]);

xlabel('t'),title('调制信号');

subplot(2,1,2);

Y2=fft(mt); %对调制信号进行傅里叶变换plot(abs(Y2));

title('调制信号频谱');

axis([10000,20000,0,100000]);

% ============FM已调信号====================

dt=0.0001; %设定时间步长

t=0:dt:1.5; %产生时间向量

A2=15; %设定调制信号幅度←可更改fm=5; %设定调制信号频率←可更改mt=A2*cos(2*pi*fm*t); %生成调制信号

fc=50; %设定载波频率←可更改

ct=cos(2*pi*fc*t); %生成载波

kf=10; %设定调频指数

int_mt(1)=0; %对mt进行积分

for i=1:length(t)-1

int_mt(i+1)=int_mt(i)+mt(i)*dt;

end

sfm=A2*cos(2*pi*fc*t+2*pi*kf*int_mt);

subplot(4,1,1);plot(t,mt); %绘制调制信号的时域图xlabel('时间t');

title('调制信号的时域图');

subplot(4,1,2);plot(t,ct); %绘制载波的时域图

xlabel('时间t');

title('载波的时域图');

subplot(4,1,3);

plot(t,sfm); %绘制已调信号的时域图xlabel('时间t');

title('已调信号的时域图')

subplot(4,1,4);

Y3=fft(sfm); %对调制信号进行傅里叶变换plot(abs(Y3));

title('调制信号频谱');

axis([10000,20000,0,100000]);

五、仿真结果和分析

本课程设计圆满的完成了对信号实现AM和FM的调制,与课题的要求十分相符;也较好的完成了对调制信号、载波信号以及AM已调信号和FM已调信号的时域分析及时域波形,通过fft变换,得出了这些信号的频谱图。

下面给出了本课程设计的仿真结果,即各调制信号、载波信号和已调信号的时域和频域波形图。

5.1 AM调制中的载波信号仿真波形图:

图5.1 AM调制中的载波信号仿真波形图5.2 AM调制中的调制信号仿真波形图:

图5.2 AM调制中的调制信号仿真波形图5.3 AM调制中的已调信号信号仿真波形图:

AM调制中的已调信号信号仿真波形图5.4 FM调制中的载波信号仿真波形图:

图5.4 FM调制中的载波信号仿真波形图5.5 FM调制中的调制信号仿真波形图:

图5.5 FM调制中的调制信号仿真波形图

5.6 FM调制中的已调信号仿真波形图:

图5.6 FM调制中的已调信号仿真波形图

六、总结

在一门课程的学习过程中,课程设计是培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。通过本次系统仿真实验,使我们对模拟系统仿真的方法、原理及仿真算法有了较详细的了解,从实际操作中对通信系统概念的理解更加深刻,基本上掌握了模拟信号调制基本方法—AM、FM,进而也可由它们的仿真方法及过程来对DSB、SSB及PM提出类似的仿真设计方案,因为模拟信号调制与解调的仿真方法都有许多共性,即要么调幅(抑制载波SSB、DSB与非抑制载波AM),要么调相角(分为调频FM与调相PM),并且都要从时域

和频域两个方面来研究它,这就必须要用到傅里叶变换和其它一些DSP知识,因此数字信号处理与通信原理是相通的。

模拟信号之所以要进行调制,那是因为基带信号一般都含直流和低频成分,不宜直接传输,这就需要把基带信号变换成其频带适合在信道中传输的信号,并可在接收端进行反变换-解调。为了进行有效传输,一般要求载波频率要远大于原调制信号的频率,但在该模拟系统仿真中,我们把信道当成的是理想信道,忽略了信道中的噪声,因此该仿真中载波频率可以随便定义(合理就行)。

在这次通信系统仿真中,我们对MATLAB的功能有了更深入的认识,懂得了一些新的、重要的MATLAB函数的功能,提高了MATLAB 程序阅读、分析能力(我认为首先关键是要读懂程序,然后提炼该程序所用到的实际通信原理,再与课本上的通信传输理论进行对比,最后对该原理加以理解及应用)。

在程序运行及调试中,通过改变参数dt、f、fc的值,及改变输入的调制信号或载波信号,可以对任意输入信号进行调制,这使得该调制方法有广泛的应用。

为什么载波都选择余弦信号呢?我的理解是:载波信号必是一个周期信号,而由级数可知,任何周期函数都可写成三角级数的组合形式,则说明载波信号实质上还是许多正、余弦的叠加在发挥作用,故直接就取载波信号为余弦信号,这样既直接又方便。

回顾起此次通信原理课程设计,至今我仍感慨颇多,的确,从选题到定稿,从理论到实践,可以说遇到了很多困难,有时程序运

行失败,有时运行出的波形不正确,但通过小组成员分析讨论以及老师的指导,问题都迎刃而解了,我们都学到很多很多的的东西,同时不仅巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我们懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正学到东西,从而提高自己的实际动手能力和独立思考的能力。同时,经历了此次课设,我们深刻地体会到了团结合作的重要性,也体会到了同学之间互帮互助以及老师耐心指导的温暖,在这向帮助我们的同学和指导老师说声:谢谢!

基于matlab编程和simulink仿真的AM调制与解调

东北大学秦皇岛分校计算机与通信工程学院 综合课程设计 设计题目 专业名称通信工程 班级学号 学生姓名 指导教师 设计时间2013.12.30~2014.1.15

课程设计任务书 专业:通信工程学号:学生姓名(签名): 设计题目:基于simulink和matlab编程的AM调制与解调 一、设计实验条件 AM调制与解调实验室 二、设计任务及要求 1.熟悉使用matlab和simulink软件环境及使用方法,包括函数、原理和方法的 应用; 2.熟悉AM信号的调制和解调方法; 3.调制出AM信号的时域波形图和频谱图; 4.定性的分析高斯白噪声对于信号波形的影响; 三、设计报告的内容 1.设计题目与设计任务 AM调制与解调电路的实现及调制性能分析 2.前言 利用matlab中的建模仿真工具Simulink对通信原理实验进行仿真,随着通信技术的发展日新月异,通信系统也日趋复杂,在通信通信系统的设计研发过程中,软件仿真已成为不可缺少的一部分,电子设计自动化EDA技术已成为电子设计的潮流。随着信息技术的不断发展电子EDA仿真技术也在突飞猛进之中,涌现出了许多功能强大的电子仿真软件,如Workbeench、Protel、Systemview、Matlab等。许多知名IT企业其实在产品开发阶段也是应用仿真软件进行开发,虚拟实验技术发展迅速,应用领域广泛,一些在现实世界无法开展的科研项目可借助于虚拟实验技术完成,例如交通网的智能控制,军事上新型武器开发等。 3.设计主体 3.1实验步骤: (1)产生AM调制信号; (2)对信号进行调制,产生调制信号; (3)绘制调制及解调时域图、频谱图; (4)改变采样频率后,绘制调制及解调信号的时域图、频谱图; (5)加上高斯噪声,绘制调制及解调的时域图和频谱图,分析噪声对调制信号和解调信号的影响。

AM系统仿真.

******************* 实践教学 ******************* 大学 计算机与通信学院 2014年秋季学期 通信原理课程设计 题目: AM调制系统仿真 专业班级:通信工程 姓名: 学号: 指导教师: 成绩: 摘要

这次的课程设计我们组主要运用MATLAB设计AM调制解调系统仿真。在这次课程设计中先根据AM调制与解调原理编写调制解调程序,然后设计FIR低通滤波器,合理设置参数并运行,并通过不断的修改优化得到需要信号,之后分别加入高斯白噪声,并分析对信号的影响,最后通过对解调信号的波形图、频谱图和功率谱的分析得出AM调制解调系统仿真是否成功。 关键词:AM;调制;解调;噪声;滤波 目录

前言 (1) 第一章基本原理 (2) 2.1 AM调制解调原理 (2) 2.2高斯白噪声原理 (4) 2.3 Matlab基本原理 (6) 第二章FTR滤波器的设计 (6) 2.1 FIR数字低通滤波器的设计 (6) 第三章基于Matlab的AM调制系统仿真 (8) 3.1 载波信号的仿真 (8) 3.2 AM调制信号的仿真 (9) 3.3 AM已调信号的信号仿真 (10) 3.4 AM解调信号的仿真 (11) 总结 (14) 致谢 (15) 参考文献 (16) 附录一 (17) 附录二 (20)

前言 调制就是使一个信号(如光、高频电磁振荡等)的某些参数(如振幅、频率等)按照另一个欲传输的信号(如声音、图像等)的特点变化的过程。用所要传播的语言或音乐信号去改变高频振荡的幅度,使高频振荡的幅度随语言或音乐信号的变化而变化,这个控制过程就称为调制。其中语言或音乐信号叫做调制信号,调制后的载波就载有调制信号所包含的信息,称为已调波。 解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。对于幅度调制来说,解调是从它的幅度变化提取调制信号的过程。对于频率调制来说,解调是从它的频率变化提取调制信号的过程。频率解调要比幅度解调复杂,用普通检波电路是无法解调出调制信号的,必须采用频率检波方式,如各类鉴频器电路。关于鉴频器电路可参阅有关资料,这里不再细述。 本课题利用MATLAB软件对AM信号调制解调系统进行模拟仿真,分别对余弦波进行调制,观察调制信号、已调信号和解调信号的波形和频谱分布。 调制与解调技术是通信电子线路课程中一个重要的环节,也是实现通信必不可少的一门技术,也是通信专业学生必须掌握的一门技术。课题在这里是把要处理的信号当做一种特殊的信号,即一种“复杂向量”来看待。也就是说,课题更多的还是体现了数字信号处理技术。 从课题的中心来看,课题“AM调制系统仿真”是希望将AM调制与解调技术应用于某一实际领域,这里就是指对信号进行调制。作为存储于计算机中的调制信号,其本身就是离散化了的向量,我们只需将这些离散的量提取出来,就可以对其进行处理了。这一过程的实现,用到了处理数字信号的强有力工具MATLAB。通过MATLAB里几个命令函数的调用,很轻易的在调制信号与载波信号的理论之间搭了一座桥。

AM调制解调系统仿真

设计(论文)任务书 课题名称:AM调制系统的仿真与原理实验分析 完成期限:2009年11月28日至2010年1月3日 院系名称外经贸学院指导教师李XX 专业班级电信0722班指导教师职称副教授学生姓名许XX 学号 071409xxx 院系课程设计(论文)工作领导小组组长签字

摘要 通信按照传统的理解就是信息的传输。在当今高度信息化的社会,信息和通信已经成为现代社会的“命脉”。信息作为一种资源,只有通过广泛的传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。而通信作为传输信息的手段或方式,与传感技术、计算机技术相互融合,已成为21世纪国际社会和世界经济发展的强大动力。可以预见,未来的通信对人们的生活方式和社会的发展将会产生更加重大和意义深远的影响。 在此我们将分别介绍各种调制系统,并将重点放在发展迅猛的数字调制上。调制在通信系统中的作用至关重要。所谓调制就是把信号转换成适合在信道中传输的形式的一种过程。调制的方式有很多。根据调制信号时模拟信号还是数字信号,载波是连续波还是脉冲序列,相应的调制方式有模拟连续波调制、数字连续波调制、模拟脉冲调制和数字脉冲调制等。 关键字:模拟调制系统、调制解调、超外差、仿真

目录 引言 (4) 1. 通信系统简介 (5) 1. 1 通信的基本概念 (5) 1. 2 通信的发展史 (5) 1.3 通信系统的组成 (5) 1.4 通信系统的分类 (6) 2. AM调制原理 (6) 2. 1 基本概念 (6) 2.2 AM调制的SystemView仿真 (7) 2.3 仿真模型参数 (10) 2.3.1正弦波发生器 (11) 2.3.2运放 (11) 2.3.3噪声源 (11) 2.3.4低通滤波器 (11) 3. 结语 (12) 参考文献: (13)

AM调制与解调

课程设计 班级: 姓名: 学号: 指导教师: 成绩: 电子与信息工程学院 信息与通信工程系

摘要 振幅调制信号的解调过程称为同步检波。有载波振幅调制信号的包络直接反应调制信号的变化规律,可以用二极管包络检波的方法进行检波。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反应调制信号的变化规律,无法用包络检波进行解调,所以要采用同步检波方法。 同步检波器主要适用于对DSB和SSB信号进行解调,也可以用于AM,但是一般AM调制信号都用包络检波来进行检波。同步检波法是加一个与载波同频同相的恢复载波信号。外加载波信号电压加入同步检波器的方法有两种。利用模拟乘法器的相乘原理,将已调信号频谱从载波频率附近搬移到原来位置,并通过低通滤波器提取多需要的调制(基带)信号,滤除无用的高频分量,从而实现双边带信号的解调。 本文详细介绍了根据模拟乘法器MC1496的AM调制系统和同步检波器的详细方案和各种参数。给出了基于Multisim软件的解调和解调仿真结果。 关键字:同步检波;AM;Multisim;调制

目录 1 MC1496芯片设计 (2) 1.1MC1496内部结构及基本性能 (2) 2 信号调制的一般方法 (3) 2.1模拟调制 (3) 2.2数字调制 (3) 2.3脉冲调制 (3) 3 振幅调制 (4) 3.1基本原理 (4) 3.2AM调制与仿真实现 (4) 3.3DSB调制与仿真实现 (6) 4解调 (7) 4.1同步检波器原理框图 (7) 4.2同步检波解调电路图 (9) 4.3分析解调过程 (9) 4.4解调仿真结果 (10) 4.4.1 AM解调与仿真实现 (10) 4.4.2 DSB解调与仿真实现 (11) 5 小结与体会 (12) 6附录:总电路图 (12)

AM调制解调及matlab仿真程序和图

(1)所用滤波器函数:巴特沃斯滤波器 % 注: wp(或Wp)为通带截止频率 ws(或Ws)为阻带截止频率 Rp为通带衰减 As为阻带衰减 %butterworth低通滤波器原型设计函数要求Ws>Wp>0 As>Rp>0 function [b,a]=afd_butt(Wp,Ws,Rp,As) N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(Wp/Ws))); %上条语句为求滤波器阶数 N为整数 %ceil 朝正无穷大方向取整 fprintf('\n Butterworth Filter Order=%2.0f\n',N) OmegaC=Wp/((10^(Rp/10)-1)^(1/(2*N))) %求对应于N的3db截止频率 [b,a]=u_buttap(N,OmegaC); (2)傅里叶变换函数 function [Xk]=dft(xn,N) n=[0:1:N-1]; k=[0:1:N-1]; WN=exp(-j*2*pi/N); nk=n'*k; WNnk=WN.^(nk); Xk=xn*WNnk; 设计部分: 1.普通AM调制与解调 %单音普通调幅波调制y=amod(x,t,fs,t0,fc,Vm0,ma)要求fs>2fc %x调制信号,t调制信号自变量,t0采样区间,fs采样频率, %fc载波频率,Vm0输出载波电压振幅,ma调幅度 t0=0.1;fs=12000; fc=1000;Vm0=2.5;ma=0.25; n=-t0/2:1/fs:t0/2; x=4*cos(150*pi*n); %调制信号 y2=Vm0*cos(2*pi*fc*n); %载波信号figure(1) subplot(2,1,1);plot(n,y2); axis([-0.01,0.01,-5,5]); title('载波信号'); N=length(x); Y2=fft(y2); subplot(2,1,2); plot(n,Y2); title('载波信号频谱'); %画出频谱波形y=Vm0*(1+ma*x/Vm0).*cos(2*pi*fc*n); figure(2) subplot(2,1,1);plot(n,x) title('调制信号'); subplot(2,1,2) plot(n,y) title('已调波信号'); X=fft(x);Y=fft(y);

利用MATLAB实现信号的AM调制与解调

郑州轻工业学院 课程设计任务书 题目利用MATLAB实现信号的AM调制与解调专业、班级电子信息工程级班学号姓名 主要内容、基本要求、主要参考资料等: 主要内容: 利用MATLAB对信号 () () ?? ? ? ?≤ = 其他 ,0 t , 100 2t t Sa t m 进行AM调制,载波信号 频率为1000Hz,调制深度为0.5。t0=0.2;首先在MATLAB中显示调制信号的波形和频谱,已调信号的波形和频谱,比较信号调制前后的变化。然后对已调信号解调,并比较解调后的信号与原信号的区别。 基本要求: 1、掌握利用MATLAB实现信号AM调制与解调的方法。 2、学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示。 3、加深理解调制信号的变化;验证信号调制的基本概念、基本理论,掌握信号与系统的分析方法。 主要参考资料: 1、王秉钧等. 通信原理[M].北京:清华大学出版社,2006.11 2、陈怀琛.数字信号处理教程----MATLAB释义与实现[M].北京:电子工业出版社,2004. 完成期限:2014.6.9—2014.6.13 指导教师签名: 课程负责人签名: 2014年6月5日

目录 摘要 (1) 1.matlab简介 (2) 1.1matlab基本功能 (2) 1.2matlab应用 (2) 2.系统总体设计方案 (4) 2.1调制信号 (4) 2.1.1 matlab实现调制信号的波形 (4) 2.1.2 matlab实现调制信号的频谱 (4) 2.1.3 matlab实现载波的仿真 (5) 2.2信号的幅度调制 (6) 2.2.1信号的调制 (6) 2.2.2幅度调制原理 (6) 2.2.3 matlab实现双边带幅度调制 (8) 2.2.4 matlab实现已调信号的频谱图 (8) 2.2.5 幅度调制前后的比较 (9) 2.3已调信号的解调 (9) 2.3.1 AM信号的解调原理及方式 (9) 2.3.2 matlab实现已调信号的解调 (11) 2.3.3信号解调前后的比较 (12) 结论与展望 (13) 参考文献 (14) 附录 (15)

AM调制与解调课程设计(DOC)

信号与线性系统课程设计报告课题三 AM调制与解调系统的设计 班级: 姓名: 学号: 成绩:

指导教师:王宝珠日期:2014.12.22-1.4

目录 1 课程设计的目的、意义 (3) 2 课题任务 (3) 3 设计思路与方案 (4) 4 设计内容、步骤及要求 (4) 5 设计步骤及结果分析 (4) 5.1 必做部分 (6) 5.1.1 Matlab程序及运行结果 (6) 1.普通AM调制与解调 (6) 2.抑制双边带调制与解调 (10) 3.单边带调制与解调 (14) 5.1.2 Simulink仿真及运行结果 (16) 1.普通AM调制与解调 (16) 1.1 单音普通调制解调 (16) 1.2 复音普通调制解调 (18) 2.抑制双边带调制解调 (20) 2.1 单音双边带调制解调 (20) 2.2 复音抑制双边带调制解调 (21) 3.单边带调制解调 (22) 3.1 单音单边带调制解调 (22) 3.2 复音单边带调制解调 (24) 5.2 拓展部分 (26) 5.2.1 单音普通AM调制解调 (26) 5.2.2单音抑制双边带调制解调 (27) 5.2.3 单音单边带调制解调 (27) 6 总结 (29) 7 参考文献 (30) 8 意见、建议 (31)

摘要: 本课程设计主要利用MATLAB集成环境下的Simulink仿真平台及Labview虚拟仪器仿真研究AM 调制与解调模拟系统的理论设计和软件仿真方法。从而实现单音调制的普通调幅方式(AM)、抑制载波的双边带调制(DSB-SC)和单边带调制(SSB)的系统设计及仿真,并显示仿真结果,根据仿真显示结果分析所设计的系统性能。在课程设计中,幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化,其它参数不变。同时也是使高频载波的振幅载有传输信息的调制方式。 关键词:Simulink,GUI友好界面,调制与解调,Labview 1、本课题的目的与意义 1.1 目的: 本课程设计课题主要研究AM 调制与解调模拟系统的理论设计和软件仿真方法。通过完成本课题的设计,拟主要达到以下几个目的: 1.掌握模拟系统AM 调制与解调的原理。 2.掌握AM 调制与解调模拟系统的理论设计方法; 3.掌握应用MATLAB分析系统时域、频域特性的方法,进一步锻炼应用Matlab进行编程仿真的能力; 4.熟悉基于Simulink的动态建模和仿真的步骤和过程; 5.了解基于LabVIEW虚拟仪器的特点和使用方法,熟悉采用LabVIEW进行仿真的方法。 1.2 意义: 通过本次课程设计使我们了解了幅度调制与解调的基本原理。在进行了专业基础知识课程教学的基础上,设计分析一些简单的仿真系统,有助于加深对所学知识的巩固和理解。2、课题任务 设计AM调制与解调模拟系统,仿真实现相关功能。包括:可实现单音调制的普通调幅方式(AM)、抑制载波的双边带调制(DSB-SC)和单边带调制(SSB)的系统设计及仿真,要求给出系统的设计框图、源程序代码及仿真结果,并要求给出程序的具体解释说明,记录系统的各个输出点的波形和频谱图。具体内容为: 1)设计实现AM(包括普通AM、DSB-SC和SSB)调制与解调的模拟系统,给出系统的原理框图,对系统的主要参数进行设计说明。 2)采用Matlab语言设计相关程序,实现1)中所设计模拟系统的功能,要求采用两种方式进行仿真,即直接采用Matlab语言编程的静态仿真方式、采用Simulink进行动态建模和仿真的方式。要求采用两种以上调制信号源(如正弦波、三角波和方波)进行仿真,并记录系统的各个输出点的波形和频谱图。 3)设计图形用户界面。采用Matlab语言,利用GUI设计友好的图形用户界面,完成AM调制与解调的功能。 4)采用LabVIEW进行仿真设计,实现系统的功能,要求给出系统的前面板和框图,采用两种以上调制信号源(如正弦波、三角波和方波)进行仿真,并记录仿真结果。 5)要求分析上述三种实现方式(直接采用Matlab语言编程的静态仿真方式、采用Simulink 进行动态建模和仿真的方式和采用LabVIEW进行仿真设计)进行对比分析,并与理论设计结果进行比较分析。 6)对系统功能进行综合测试,整理数据,撰写设计报告。

AM及SSB调制与解调详解

通信原理课程设计 设计题目:AM 及SSB 调制与解调及抗噪声性能分析 班级:学生姓名:学生学号:指导老师: 目录 一、引言 (3) 1.1概述 (3)

1.2课程设计的目的 (3) 1.3课程设计的要求 (3) 二、A M调制与解调及抗噪声性能分析 (4) 2.1AM 调制与解调 (4) 2.1.1AM 调制与解调原理 (4) 2.1.2调试过程 (6) 2.2相干解调的抗噪声性能分析 (9) 2.2.1 抗噪声性能分析原理 (9) 2.2.2调试过程 (10) 三、S SB调制与解调及抗噪声性能分析 (12) 3.1 SSB 调制与解调原理 (12) 3.2SSB 调制解调系统抗噪声性能分析 (13) 3.3调试过程 (15) 四、心得体会 (19) 五、参考文献 (19)

一、引言 1.1概述 《通信原理》是通信工程专业的一门极为重要的专业基础课,但内容抽象,基本概念较多,是一门难度较大的课程,通过MATLAB仿真能让我们更清晰地理解它的原理,因此信号的调制与解调在通信系统中具有重要的作用。本课程设计是AM及SSB 调制解调系统的设计与仿真,用于实现AM及 SSB 信号的调制解调过程,并显示仿真结果,根据仿真显示结果分析所设计的系统性能。在课程设计中,幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化,其他参数不变。同时也是使高频载波的振幅载有传输信息的调制方式。 1.2课程设计的目的 在此次课程设计中,我需要通过多方搜集资料与分析: (1)掌握模拟系统AM和SSB调制与解调的原理; (2)来理解并掌握AM和SSB调制解调的具体过程和它在MATLAB中的实现方法; (3)掌握应用MATLAB分析系统时域、频域特性的方法,进一步锻炼应用MATLAB进行编 程 仿真的能力。 通过这个课程设计,我将更清晰地了解AM和SSB的调制解调原理,同时加深对MATLAB 这 款《通信原理》辅助教学操作的熟练度。 1.3课程设计的要求 (1)熟悉MATLAB的使用方法,掌握AM信号的调制解调原理,以此为基础用MATLAB编程 实现信号的调制解调; (2)设计实现AM调制与解调的模拟系统,给出系统的原理框图,对系统的主要参数 进行设计说明; (3)采用MATLAB语言设计相关程序,实现系统的功能,要求采用一种方式进行仿真,即 直接采用MATLAB语言编程的静态方式。要求采用两种以上调制信号源进行仿真,并记录各个输出点的波形和频谱图; (4)对系统功能进行综合测试,整理数据,撰写课程设计论文。

am的调制与解调

1课程设计目的: 掌握am调制与解调系统的理论设计和软件仿真方法,掌握应用matlab分析时域频域特性的方法。通过MATLAB仿真,加深对AM系统的理解;锻炼运用所学知识,独立分析问题、解决问题的综合能力 2课程设计要求: 运用通信原理的基本理论和专业知识,对AM系统进行设计、仿真(仿真用程序实现),要求用程序画出调制信号,载波,已调信号、相干解调之后信号的的波以及已调信号的功率谱密度。 用matlab产生一个频率为1HZ、功率为1的余弦信源,设载波频率为10HZ,A=2,试画出:调制信号,AM信号,载波,解调信号及已调信号的功率谱密度。 3相关知识: AM调制信号波形图: AM调制也称普通调幅波,已调波幅度将随调制信号的规律变化而线性变化,但载波频率不变。设载波是频率为ωc的余弦波:uc(t)=Ucmcosωct, 调制信号为频率为Ω的单频余弦信号,即UΩ(t)=UΩmcosΩt(Ωωc),则普通调幅波信号为: u AM(t)= (U cm+kUΩm cos Ωt)cosωc t = U cm(1+M a cosΩt)cosωc t (1) ——式中:Ma=kUΩm/U cm,称为调幅系数或调幅度 AM调制信号波形如图1所示:

图1.普通调幅波形 显然AM波正负半周对称时:MaUcm=Umax-Ucm =Ucm-Umin, 调幅度为:Ma=( Umax-Ucm )∕Ucm =( Ucm-Umin )∕Ucm。 Ma=0时,未调幅状态 Ma=1时,满调幅状态(100%),正常Ma值处于0~1之间。 Ma>1时,普通调幅波的包络变化与调制信号不再相同,会产生失真,称为过调幅现象。所以,普通调幅要求Ma必须不大于1。图2所示为产生失真时的波形。

实验2:AM调制与解调仿真

实验2:AM调制与解调仿真 一、实验目的 1、掌握AM的调制原理和MATLAB Simulink仿真方法 2、掌握AM的解调原理和MATLAB Simulink仿真方法 二、实验原理 1、AM调制原理 所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。这里高频振荡波就是携带信号的运载工具,也叫载波。振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。在线性调回系列中,最先应用的一种幅度调制是全条幅或常规调幅,简称为调制(AM)。在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。 m(t)为取值连续的调制信号,c(t)为正弦载波。下图为AM调制原理图: 2、AM解调原理 从高频已调信号中恢复出调制信号的过程为解调,又称为检波。对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程,解调是调制的逆过程。下图为AM解调原理图:

三、实验步骤 1、AM调制方式的MATLAB Simulink仿真(1)原理图 (2)仿真图 (3)仿真分析

①调制器 Constant和Add 以及低通滤波器,sine wave2和product1是对已调信号频谱进行线性搬移,低通滤波器是滤除高频部分,得到原始信号 ②调制后调制后信号加上了2v的偏置,频率变大了,幅度随时间在不断的呈现周期性变化,在1~2.5之间,大于调制前的幅度。 ③模拟信号的调制是将要发送的模拟信号附加到高频振荡上,再由天线发射出去,这里的高频振荡就是载波。振幅调制就是由调制信号去控制高频振荡的振幅,直至随调制信号做线性变化。 2、AM解调方式的MATLAB Simulink仿真 (1)原理图 (2)仿真图

AM调制解调仿真

通 信 原 理 实 验 报 告 班级: 姓名: 学号:

AM 调制与解调仿真 一 实验目的: 1.掌握 AM 的调制原理和 Matlab Simulink 仿真方法 2.掌握 AM 的解调原理和 Matlab Simulink 仿真方法 二 实验原理: 1. AM 调制原理 基带信号m(t)先与直流分量A 0叠加,然后与载波相乘,形成调幅信号。 2.AM 解调原理 调幅信号再乘以一个与载波信号同频同相的相干载波,然后经过低通滤波器,得到解调信号 。 三 实验内容: AM 调制方式 Matlab Simulink 仿真 数学推导:AM 信号:t t m A t S c AM ωcos )]([)(0+= (1) 其中0A 是直流分量,)(t m 是基带信号。 t t m A t m A t S s c c AM p ωω2cos )]([2 1 )]([21cos 00+++=*= (2) 经过低通滤波器得: )]([2 1 0t m A s d += (3) 1 仿真框图

图1 仿真图 图中的Signal Generator和Signal Generator1模块分别产生发送端和接收端的载波信号的角频率ωc都设为30rad/s,调幅系数为1;调制信号m(t)由Sine Wave模块产生,其为正弦信号,角频率为4rad/s,幅度为1V;直流分量A0由Constant模块产生,为1V;低通滤波器模块的截止角频率设为10rad/s。 2 仿真参数设置图 图2 低通滤波器截止角频率参数设置

图3 发送端、接收端的载波信号Sine Wave1、Sine Wave2 角频率参数设置

AM调制与相干解调系统仿

AM调制与相干解调系统仿 摘要本课程设计主要利用MATLAB集成环境下的Simulink仿真平台,设计一个AM调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。经过调制,初步实现了设计目标,并且经过适当的完善后,实验成功。 关键词Simulink;仿真;AM调制;相干解调 1 引言 本课程设计是在MATLAB集成环境下,设计一个AM调制与相干解调通信系统,并在Simulink平台上仿真,并把运行仿真结果输入显示器,拿解调输出的波形与基带信号进行比较,根据显示结果分析所设计的系统性能。MATLAB 是一种可交互式使用又能解释执行的计算机编程语言,利用简单的命令,能快速完成其他高级语言只有通过复杂编程才能实现的数值运算和图形显示。Simulink 是建立在MATLAB基础上的动态系统仿真工具。利用MATLAB工具箱可以快速完成各类数值计算、符号计算和数据可视化等任务,可以解决有关线性代数、矩阵分析、微积分、微分方程、信号与系统、信号分析与处理、系统控制等领域的问题;利用Simulink机器模块库,则能够方便地创建各种动态系统的模型并进行仿真,可以用来仿真线性系统、非线性系统、连续系统、离散系统、连续和离散的混合系统、多速率采样系统以及单任务或多任务的离散事件驱动系统。通过Simulink,用户可以快速的构建和运行仿真模型,根据仿真结果分析系统性能,并且从中分离出影响系统性能的关键因素,找出最优的系统配置方案。 1.1课程设计目的 设计一个AM调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能【1】。 1.2课程设计的要求

利用MATLAB实现AM调制与解调

题目利用MATLAB实现信号的AM调制与解调 专业、班级电子信息工程技术 学号 姓名 基本要求、主要参考资料等: 基本要求: 1、掌握利用MATLAB实现信号AM调制与解调的方法。 2、学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示。 3、加深理解调制信号的变化;验证信号调制的基本概念、基本理论,掌握信号与系统的分析方法。 主要参考资料: 1、王秉钧等. 通信原理[M].北京:清华大学出版社,2006.11 2、陈怀琛.数字信号处理教程----MATLAB释义与实现[M].北京:电子工业出版社,2004.

目录 摘要 (1) 1.matlab简介 (2) 1.1matlab基本功能 (2) 1.2matlab应用 (2) 2.系统总体设计方案 (3) 2.1调制信号 (3) 2.1.1 matlab实现调制信号的波形 (3) 2.1.2 matlab实现调制信号的频谱 (3) 2.1.3 matlab实现载波的仿真 (4) 2.2信号的幅度调制 (5) 2.2.1信号的调制 (5) 2.2.2幅度调制原理 (5) 2.2.3 matlab实现双边带幅度调制 (7) 2.2.4 matlab实现已调信号的频谱图 (7) 2.2.5 幅度调制前后的比较 (8) 2.3已调信号的解调 (8) 2.3.1 AM信号的解调原理及方式 (8) 2.3.2 matlab实现已调信号的解调 (10) 2.3.3信号解调前后的比较 (111) 结论 (122) 参考文献 (133)

摘要 现在的社会越来越发达,科学技术不断的在更新,在信号和模拟电路里面经常要用到调制与解调,而信号幅度调制与解调是最基本,也是经常用到的。用AM 调制与解调可以在电路里面实现很多功能,制造出很多有用又实惠的电子产品,为我们的生活带来便利。在我们日常生活中用的收音机也是采用了AM 调制方式,而且在军事和民用领域都有十分重要的研究课题。本设计主要研究内容是利用MATLAB 实现对()()?????≤=其他 ,0t ,10002t t Sa t m 进行AM 调制,载波信号频率为1000Hz ,调制深度为0.5。t0=0.2.在MATLAB 中显示调制信号的波形和频谱,已调信号的波形和频谱,比较信号调制前后的变化。并对已调信号解调,比较了解调后的信号与原信号的区别。信号幅度调制与解调及MATLAB 中信号表示的基本方法及绘图函数的调用,实现了对连续时间信号的可视化表示。 关键词:AM 、 调制、 解调、 MAT LAB

AM调制系统仿真

指导教师对学生在课程设计中的评价 评分项目优良中及格不及格课程设计中的创造性成果 学生掌握课程内容的程度 课程设计完成情况 课程设计动手能力 文字表达 学习态度 规范要求 课程设计论文的质量 指导教师对课程设计的评定意见 综合成绩指导教师签字 2014年1月10日 AM调制系统仿真

摘要本课程设计主要利用MATLAB集成环境下的Simulink仿真平台,设计一个AM调制通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。经过调制,初步实现了设计目标,并且经过适当的完善后,实验成功。 关键词Simulink;仿真;AM调制;相干解调 1 引言 本课程设计是在MATLAB集成环境下,设计一个AM调制通信系统,并在Simulink 平台上仿真,并把运行仿真结果输入显示器,拿解调输出的波形与基带信号进行比较,根据显示结果分析所设计的系统性能。MATLAB是一种可交互式使用又能解释执行的计算机编程语言,利用简单的命令,能快速完成其他高级语言只有通过复杂编程才能实现的数值运算和图形显示。Simulink是建立在MATLAB基础上的动态系统仿真工具。利用MATLAB 工具箱可以快速完成各类数值计算、符号计算和数据可视化等任务,可以解决有关线性代数、矩阵分析、微积分、微分方程、信号与系统、信号分析与处理、系统控制等领域的问题;利用Simulink机器模块库,则能够方便地创建各种动态系统的模型并进行仿真,可以用来仿真线性系统、非线性系统、连续系统、离散系统、连续和离散的混合系统、多速率采样系统以及单任务或多任务的离散事件驱动系统。通过Simulink,用户可以快速的构建和运行仿真模型,根据仿真结果分析系统性能,并且从中分离出影响系统性能的关键因素,找出最优的系统配置方案。 1.1课程设计目的 设计一个AM调制通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。本课程设计课题主要研究AM 调制与解调模拟系统的理论设计和软件仿真方法。通过完成本课题的设计,拟主要达到以下几个目的:(1)掌握模拟系统AM 调制与解调的原理;(2)掌握AM 调制与解调模拟系统的理论设计方法;(3)掌握应用MATLAB分析系统时域、频域特性的方法,

Simulink仿真AM调制解调系统

大连理工大学实验报告 学院(系):专业:班级: 姓名:学号:组: 实验时间:实验室:实验台: 指导教师签字:成绩: 实验名称:Simulink仿真AM调制解调系统 一、实验程序和结果: 利用matlab中的simulink功能,对系统进行仿真。 1.语音信号的调制与解调 (1)各部分参数设计: ①输入的调制信号: 调制信号的频率为20Hz,载波信号的频率为200Hz,二者的采样频率均为1000Hz,满足采样频率的要求。 ②随机信号模拟的干扰: 在实际仿真时,随机信号模拟信道的干扰信号,但在进行仿真时,并无图像输出。大概设置存在问题。 ③带通滤波器的参数设置: 滤波器为带通滤波器,下限通带频率为150Hz,阻带频率为100Hz;上限通带频率为250Hz,阻带频率为300Hz.采样频率为1000Hz. ④低通滤波器: 低通滤波器的上限通带截止频率为25Hz,阻带频率为30Hz;采样频率为1000Hz。

(2)框图: (3)各处时域频域波形: A.调制信号: 时域图像:频域图像:

B.载波信号: 时域波形:频域波形: C.调制后信号波形: 时域波形:频域波形: D.加入噪声后图像: 时域波形:频域波形:

E.带通滤波器后信号图像: 时域波形:频域波形: F.通过低通滤波器后信号图像: 时域波形:频域波形: 2、结果分析 该系统使用乘法器对低频信号进行幅度调制,用低频信号u控制高频载波u0的幅度。再利用想干解调的方法将原信号还原。由输出波形可知,该系统基本实现了预定的功能。但加噪声后的波形输出幅度波动较大,原因是带通滤波器对噪声的滤波效果不理想,导致解调后的波形含有剩余的噪声分量,主要是f0附近的噪声对波形造成了影响。

AM及SSB调制与解调详解

通信原理课程设计 设计题目:AM及SSB调制与解调及抗噪声性能分析班级: 学生姓名: 学生学号: 指导老师:

目录 一、引言 (3) 1.1 概述 (3) 1.2 课程设计的目的 (3) 1.3 课程设计的要求 (3) 二、AM调制与解调及抗噪声性能分析 (4) 2.1 AM调制与解调 (4) 2.1.1 AM调制与解调原理 (4) 2.1.2调试过程 (6) 2.2 相干解调的抗噪声性能分析 (9) 2.2.1抗噪声性能分析原理 (9) 2.2.2 调试过程 (10) 三、SSB调制与解调及抗噪声性能分析 (12) 3.1 SSB调制与解调原理 (12) 3.2 SSB调制解调系统抗噪声性能分析 (13) 3.3 调试过程 (15) 四、心得体会 (19) 五、参考文献 (19)

一、引言 1.1 概述 《通信原理》是通信工程专业的一门极为重要的专业基础课,但内容抽象,基本概念较多,是一门难度较大的课程,通过MATLAB仿真能让我们更清晰地理解它的原理,因此信号的调制与解调在通信系统中具有重要的作用。本课程设计是AM及SSB调制解调系统的设计与仿真,用于实现AM及SSB信号的调制解调过程,并显示仿真结果,根据仿真显示结果分析所设计的系统性能。在课程设计中,幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化,其他参数不变。同时也是使高频载波的振幅载有传输信息的调制方式。 1.2 课程设计的目的 在此次课程设计中,我需要通过多方搜集资料与分析: (1) 掌握模拟系统AM和SSB调制与解调的原理; (2) 来理解并掌握AM和SSB调制解调的具体过程和它在MATLAB中的实现方法; (3) 掌握应用MATLAB分析系统时域、频域特性的方法,进一步锻炼应用MATLAB进行编程 仿真的能力。 通过这个课程设计,我将更清晰地了解AM和SSB的调制解调原理,同时加深对MATLAB这款《通信原理》辅助教学操作的熟练度。 1.3 课程设计的要求 (1) 熟悉MATLAB的使用方法,掌握AM信号的调制解调原理,以此为基础用MATLAB编程 实现信号的调制解调; (2) 设计实现AM调制与解调的模拟系统,给出系统的原理框图,对系统的主要参数进行设 计说明; (3) 采用MATLAB语言设计相关程序,实现系统的功能,要求采用一种方式进行仿真,即直 接采用MATLAB语言编程的静态方式。要求采用两种以上调制信号源进行仿真,并记录各个输出点的波形和频谱图; (4) 对系统功能进行综合测试,整理数据,撰写课程设计论文。

AM调制解调电路的设计仿真与实现

AM调制解调电路的设计仿真与实现 1.Proteus 软件简介 Proteus软件是英国LABCENTERELECTRONICS公司出版的EDA工具软件。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前最好的仿真单片机及外围器件的工具。Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。 Proteus软件具有4大功能模块:智能原理图设计、完善的电路仿真功能、独特的单片机协同仿真功能、实用的PCB设计平台。由于Proteus软件界面直观、操作方便、仿真测试和分析功能强大,因此非常适合电子类课程的课堂教学和实践教学,是一种相当好的电子技术实训工具,同时也是学生和电子设计开发人员进行电路仿真分析的重要手段。 Proteus软件具有其它EDA工具软件(例:multisim)的功能。这些功能是: (1)原理布图 (2)PCB自动或人工布线 (3)SPICE电路仿真 革命性的特点 (1)互动的电路仿真 用户甚至可以实时采用诸如RAM,ROM,键盘,马达,LED,LCD,AD/DA,部分SPI器件,部分IIC器件。 (2)仿真处理器及其外围电路 可以仿真51系列、AVR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的虚拟逻辑分析仪、示波器等,Proteus建立了完备的电子设计开发环境。 本次Proteus课程设计实现AM调制解调电路的原理图绘制以及电路的仿真。运用由三极管组成的乘法器调制出AM信号,再经非线性元件二极管与电容等组成的包络检波电路解调得到解调信号。

基于MATLAB的AM调制及解调系统仿真分解

基于MATLAB的AM调制及解调系统仿真 摘要:振幅调制、解调电路是信号在发射机和接收机之间进行传送时的信号处理电路。标准振幅调制与解调电路实际上是完成信号频谱的线性搬移,以便于信号的传送。MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,具有强大的软件仿真建模能力,可通过MATLAB建立完整的AM调制、解调系统的仿真模型,描绘出信号在调制与解调过程的波形变化,探究调制解调的影响因素,以便于更好的了解AM调制与解调的过程。 关键词:MATLAB AM 调制解调 Abstract:the amplitude modulation and demodulation circuit is the signals between the transmitter and receiver of the signal processing circuit. Standard of amplitude modulation and demodulation circuit is actually the complete spectrum of linear move, so that the transfer of a signal. MATLAB is a kind of for algorithm development, data visualization, data analysis and numerical calculation of senior technical computing language and interactive environment, is a powerful software simulation modeling ability, can build complete AM modulation and demodulation system by MATLAB, a simulation model of describing the waveform of the signal in the modulation and demodulation process changes, to explore the influencing factors of modem, so as to better understand the AM modulation and demodulation process. Keywords:MATLAB AM modulation demodulation 1.引言 在无线电技术中,调制与解调占有十分重要的地位。假如没有调制与解调技术,就没有无线电通信,没有广播和电视,也没有今天的 BP 寻呼、手持电话、传真、电脑通信及 Internet 国际互联网。 振幅调制常用于长波、中波、短波和超短波的无线电广播、通信、电视、雷达等系统。这种调制方式是用传递的低频信号(如代表语言、音乐、图像的电信号)去控制作为传送载体的高频振荡波的幅度,使已调信号的幅度随调制信号的大小线性变化,而保持载波的角频率不变。在振幅调制中,根据所输出已调波信号频谱分量的不同,分为普通调幅(标准调幅,用AM表示)、抑制载波的双边带调幅(用DSB表示)、抑制载波的单边带调幅(用SSB表示)等。它们主要的区别是产生的方法和频谱的结构不同。 标准振幅调制(AM)是一种相对便宜的、设备简单、占用频带窄的调制形式,

AM调制解调过程仿真

clc fs=1000; fc=20; fm=1; dt=0.001 N=5/dt; t=[0:N-1]*dt; snr=1; g=5*cos(2*pi*fm*t); A=5; s_am=(A+g).*cos(2*pi*fc*t); figure(1); subplot(211); plot(g); grid on; df=fs/(N-1); f=(0:N-1)*df; yg=fft(g,N); mg=abs(yg(1:N/2))*2*pi/N; subplot(212); stem(f(1:20),mg(1:20)); grid on;

figure(2); subplot(211); plot(s_am);hold on; plot(A+g,'r-'); grid on; df=fs/(N-1); f=(0:N-1)*df; y=fft(s_am,N); m=abs(y(1:N/2))*2*pi/N; subplot(212); stem(f(1:200),m(1:200)); grid on; figure(3) subplot(211); x1=awgn(s_am,snr); plot(x1); grid on; N=1500; df=fs/(N-1); f=(0:N-1)*df; y1=fft(x1,N); m1=abs(y1(1:N/2))*2*pi/N;

subplot(212); stem(f(1:150),m1(1:150)); grid on; y1 = x1(:); figure(4) subplot(211) t1 = (0 : 1/fs :(size(y1,1)-1)/fs)'; t1 = t1(:, ones(1, size(y1, 2))); z1 = y1 .* cos(2*pi * fc * t1 ); [num,den] = butter(5,fc*2/fs); for i = 1 : size(y1, 2) z1(:, i) = filtfilt(num, den, z1(:, i)) * 2; end plot(g);hold on xx=z1-A; plot(xx,'r') hold off 运行结果:

相关主题
相关文档 最新文档