当前位置:文档之家› 增压泵的功能及介绍

增压泵的功能及介绍

增压泵的功能及介绍
增压泵的功能及介绍

增压泵的功能及介绍

“负压泵”、“正压泵”主要是从功能和主要用途来人为区分的。“负压泵”主要用在对真空(负压)有要求的场合,比如:抽气、气体分析、气体循环、气体采样、真空吸附、间接吸水等;而“正压泵”主要用于需要泵作为动力,进行气体转移、对密闭容器增压、充气打气、间接压水等,两者常用于医疗、科研、环保、仪器、控制等等方面。

“负压泵”的排气端也是有正压的,只不过是微正压,比“正压泵”的输出压力小得多,比如微型真空泵VM、VAA、PC等系列就是“负压泵”、“吸气泵”,而它们的排气端压力往往只有几个千帕(KPa);“正压泵”的抽气端也是有微负压的,才能完成抽气的作用。

气体增压泵系列为二级增压泵,可以将极低压力的气体增至很高的压力,驱动气压≤7bar,气体输入口的压力范围为0.5—10bar,最大可增至90Mpa。该系列泵的换向方式与N系列完全相同,整台泵全部采用铝合金及不锈钢制造。在泵的气驱部分该系列需用润滑型气体,以便让密封和其他内部零件得到润滑,该系列泵的驱动活塞直径为160mm.气体增压泵系列为单级增压泵,为达到所需压力气体输入口输入气压需要一定程度的预压,预增压力因达到气体增压泵图片的最大压力不同而不同。最大可增压至80Mpa。

气体增压泵H系列采用单气控非平衡气体分配阀来实现泵的往复运动,全部采用铝合金及不锈钢制造。全部密封均为进口优质产品,最大设计驱动气压均为10bar,为了保证泵的寿命建议驱动气压<8bar。该系列泵的驱动活塞直径为160mm,为单作用泵,所有单作用泵均带有排气冷却。气体增压泵N系列为二级增压泵,可以将极低压力的气体增至很高的压力,驱动气压≤7bar,气体输入口的压力范围为0.5—

10bar,最大可增至90Mpa。该系列泵的换向方式与B系列完全相同,与B型相比流量大一倍。

一、ISW变频全自动管道增压泵功能特点:

1、性能范围广。可根据客户实际情况选择各种最佳性能匹配的各种立式或卧式水泵作为增压泵,当设备功率≤2.2KW时,可采取220V/380V两种模式供电,使其既能满足民用也可满足一般工农业生产需求。

2、运行稳定。设备配有高灵敏传感器,能保证用水高峰期管道压力稳定和水池水位。

3、经济实惠。增压泵无论是节点式控制或变频式控制,控制部分均无需PLC或单片机编程控制,有效的控制了产品成本且能保证稳定供水。

4、设备可定制内部时钟,通过设置定时开关机功能,用于定时供水(如办公区)。

5、运行可靠。设备控制部件均采用国内知名品牌,有效的减少了系统故障。加压泵可根据客户要求选择不同品牌,无特殊要求时使用本公司产品。

6、保护功能齐全。可根据需要实现漏电、过载、过流、短路、超压及缺水等常规保护功能。

7、安装及操作方便。设备本身就是一个带控制功能的管道泵,管道泵进出水口大小相同且位于同一直线上,安装极其方便,通电启动设备后便可全自动运行,无需专人看守。

二、ISW变频全自动管道增压泵应用场合:

1、城市小生活区、城中村出租房、新农村建筑群、农村家庭等生活水增压。

2、尤其适合小型办公楼、写字楼生活供水增压。

3、工厂各种生产流程水加压。

4、建筑工地施工临时供水增压、泥罐车冲洗增压装置等。

5、各行业冲洗、洗涤装置增压。

haskel气动增压泵

气体增压泵 Gas Booster Pumps 工作原理:压缩空气驱动大面积端活塞,小面积端得到高压气体输出。 输出压力:最高2690bar(269MPa),其中氧气最高5000psi(34.5MPa) 气体增压泵适用于空气、氮气、氦气、氩气、氧气、氢气、甲烷、天然气等大部分惰性气体增压 HASKEL气体增压泵选型表: (注:Pa为驱动气压,Ps为进气压力) 型号出口压力 计算公式 最高驱动 气压(bar) 最低进气 压力(bar) 最高进气 压力(bar) 最高排气 压力(bar) 排量/循环 (ml) AG-15 15Pa 10.3 3.5155 155 99.2 AG-30 30Pa 10.3 7 310310 49.6 AG-62 60Pa 10.314620620 49.6 AG-75 75Pa 10.317776775 19.2 AG-152 150Pa 10.3171,3791,380 19.2 AG-233 225Pa 9.017 1,5521,380 19.2 AG-303 300Pa 9.0341,6902,690 14.2 AGD-1.5 1.5Pa+Ps 9.0 ATM 2121 960 AGD-4 4Pa+Ps 10.3ATM8686 308.8 AGD-7 7Pa+Ps 10.3 1.7 172172 422.4 AGD-15 15Pa+Ps 10.3 3.5345345 196.8 AGD-30 30Pa+Ps 10.3 7 621620 99.2 AGD-32 30Pa+Ps 10.3 3.5345310 198.4 AGD-62 60Pa+Ps 10.314621620 99.2 AGD-75 75Pa+Ps 10.3171,3791,380 38.4 AGD-152H 150Pa+Ps 10.3171,7241,724 38.4 AGT-4 4Pa+Ps 10.31/4ATM 8686 160 AGT-7/15 15Pa+2Ps 10.3 1.76Pa276 211.2 AGT-7/30 30Pa+4Ps 10.3 1.72Pa 379 211.2 AGT-15/30 30Pa+2Ps 10.3 3.515Pa586 99.2 AGT-32/62 60Pa+2.5Ps 10.37 30Pa 621 99.2 AGT-15/75 75Pa +2.5Ps 10.3 3.5 3.5Pa897 99.2 AGT-30/75 75Pa +2.5Ps 10.37 20Pa 1,103 49.6 AGT-32/152H 150Pa +5Ps 10.37 7Pa 1,724 99.2 AGT-62/152H 150Pa+2.5Ps 10.3 7 40Pa 1,724 49.6 8AGD-1 1Pa+Ps 9.0 3.52121 6400 8AGD-2 2Pa+Ps 9.0 3.52121 3200

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。离心泵的主要性能参数有流量、压头、效率、轴功率等。它们之间的关系常用特性曲线来表示。特性曲线是在一定转速下,用20℃清水在常压下实验测得的。 (一)离心泵的性能参数 1、流量 离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。离心泵的流量与泵的结构、尺寸和转速有关。 2、压头(扬程) 离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。压头的影响因素在前节已作过介绍。 3、效率 离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。反映能量损失大小的参数称为效率。 离心泵的能量损失包括以下三项,即 (1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。闭式叶轮的容积效率值在0.85~0.95。 (2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。这种损失可用水力效率ηh来反映。额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。 (3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。离心泵的总效率由上述三部分构成,即 η=ηvηhηm(2-14) 离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。通常,小泵效率为50~70%,而大型泵可达90%。 4、轴功率N 由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有 Ne = HgQρ(2-15) 式中 Ne------离心泵的有效功率,W; Q--------离心泵的实际流量,m3/s; H--------离心泵的有效压头,m。 由于泵内存在上述的三项能量损失,轴功率必大于有效功率,即 (2-16) 式中 N ----轴功率,kW。 (二)离心泵的特性曲线 离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。在离心泵出厂前由泵的制造厂测定出H-Q、N-Q、η-Q

水处理增压泵的特点及工作原理

水处理增压泵的特点及工作原理 水处理增压泵特点 增压泵利用大面积活塞的低压气体(2—8bar)驱动而在小面积活塞上产生高压气体/液体。增压泵可用于压缩空气及其他气体,输出气压可通过驱动气压无级调节。气体管道增压泵有单作用泵和双作用泵。双作用泵气活塞在往复两个冲程中都压缩气体。当驱动气体作用于气活塞时,工作活塞随气驱动就可获得较大的输出流量。 增压泵具有以下特点: 1、增压泵维护简单:增压泵的零件及密封少,维护简单且成本低 着一起复增压。 2、增压泵性价比高:增压泵具有输出性能高而成本低的特性。 3、增压泵可调性强:增压泵输出压力和流量都由驱动气体的压力 调节阀准确地调节。调节驱动气压,使气压管道增压泵的输出压力在预增气压和最大输出压力之间精确调整。 4、增压泵输出压力高:气动液体管道增压泵的最高工作压力可达 到700Mpa,气动气体管道增压泵的最高工作压力可达到300Mpa。

5、增压泵材质优良:增压泵高压部分材质为硬质铝合金。高压柱塞材质为不锈钢。并采用双层密封。关键部位材质可以根据介质性制选配。 6、增压泵多种气体驱动:压缩空气、氮气、水蒸汽等。输出流量大:气动管道增压泵只需0.2—0.8Mpa压缩空。相同系列泵的所有O型圈,维修包易损部件可相互替换,大大降低了维修成本。气动管道增压泵无需使用润滑剂。 7、增压泵应用灵活:增压泵从简单的手工工作到全自动化工作,增压泵适用于各个应用领域,并方便与客户的系统配套兼容。在同一系列里的大多数型号的泵的空气马达是可互换的。 8、增压泵自动保压:工作时,增压泵迅速往复工作,随着输出压力接近设定压力值时泵的往复运动速度减小直至停止。并保持这个压力,此时能量消耗很小,无热量产生,无零件运动。当压力平衡打破增压泵自动开始工作到下一个平衡。 相关链接:https://www.doczj.com/doc/ec3830841.html,

离心泵知识,性能参数及特性曲线(参考模板)

离心泵知识、性能参数与特性曲线要正确地选择和使用离心泵,就必需了解泵的性能和它们之间的相互关系。离心泵的主要性能参数有流量、压头、轴功率、效率等。离心泵性能间的关系通常用特性曲线来表示。 一、离心泵的概念:水泵是把原动机的机械能转换成抽送液体能量的机器。来增加液体的位能、压能、动能。原动机通过泵轴带动叶轮旋转,对液体作功,使其能量增加,从而使需要数量的液体,由吸入口经水泵的过流部件输送到要求的高处或要求压力的地方。 二、离心泵的基本构造 离心泵的基本构造是由六部分组成的,分别是:叶轮,吸液室,泵壳,转轴,托架,轴承及轴承箱,密封装置,基础台板等。 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上

的的内外表面要求光滑,以减少水流的摩擦损失。 2、泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、转轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。轴承的依托为轴承箱。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出,不利于散热;太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封装置。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封装置,密封的间隙保持在0.25~1.10mm之间为宜。

离心泵特性曲线分析

一.根据数据绘制离心泵特性曲线(如图(2)所示) 目的:掌握离心泵特性曲线的绘制方法,实现离心泵的合理调节。 1.准备工作: 数据资料;坐标纸;直尺;曲线板;铅笔;橡皮 2. 操作步骤: (1)按比例在坐标纸上绘制横、纵坐标,横坐标表示流量;纵坐标表示扬程H、轴功率N、泵功率η。 (2)绘制特性Q-H曲线: 1)将流量和扬程对应的数据点画在坐标纸上 2)将各点用平滑曲线连接起来 (3)绘制绘制特性Q-N曲线: 1)将流量和功率对应的数据点画在坐标纸上 2)将各点用平滑曲线连接起来 (4)绘制绘制特性Q-η曲线: 1)将流量和效率对应的数据点画在坐标纸上 2)将各点用平滑曲线连接起来 (5)绘制绘制特性Q- NPSHr曲线: 1)将流量和必需的气蚀余量对应的数据点画在坐标纸上 2)将各点用平滑曲线连接起来 (6)在曲线图上标注曲线名称: Q-H曲线 Q-N曲线 Q-η曲线 Q-NPSHr曲线 (7)在曲线图上标出最佳工况点(效率η最大的点) (8)完善图名,清洁图面(离心泵的特性曲线) (9)回收工具,清理现场。 3.注意事项: (1)坐标末端必须标出箭头

(2)连线必须是平滑曲线,不能是直线。 二.离心泵相关知识的介绍 1.主要部件: 1)包括叶轮和泵轴的旋转部件 2)由泵壳、填料函和轴承组成的静止部件 2.工作原理: 液体随叶轮旋转,在惯性离心力的作用下自叶轮中心被甩向外周并获得了能量,使流向叶轮外周的液体的静压强提高,流速增大。液体离开叶轮进入蜗壳,因蜗壳内流道逐渐扩大而使流体速度减慢,液体的部分动能转换成静压能。于是,具有较高压强的液体从泵的排出口进入排出管路,被输送到所需的管路系统。 图(1)离心泵结构示意图 3.主要性能参数 (1)流量(Q):离心泵在单位时间送到管路系统的液体体积,常用单位为L/s 或m3/h;

增压泵工作原理

增压泵工作原理 内容来源自网络 增压泵利用大面积活塞的低压气体(2—8bar)驱动而在小面积活塞上产生高压气体/液体。可用于压缩空气及其他气体,输出气压可通过驱动气压无级调节。气体管道增压泵有单作用泵和双作用泵。双作用泵气活塞在往复两个冲 增压泵利用大面积活塞的低压气体(2—8bar)驱动而在小面积活塞上产生高压气体/液体。可用于压缩空气及其他气体,输出气压可通过驱动气压无级调节。气体管道增压泵有单作用泵和双作用泵。双作用泵气活塞在往复两个冲程中都压缩气体。当驱动气体作用于气活塞时,工作活塞随气驱动就可获得较大的输出流量。 增压泵具有以下特点: 维护简单:增压泵的零件及密封少,维护简单且成本低着一起复增压。 性价比高:增压泵具有输出性能高而成本低的特性。 可调性强:增压泵输出压力和流量都由驱动气体的压力调节阀准确地调节。 调节驱动气压,使气压管道增压泵的输出压力在预增气压和最大输出压力之间精确调整。输出压力高:气动液体管道增压泵的最高工作压力可达到700Mpa,气动气体管道增压泵的最高工作压力可达到300Mpa。 材质优良:增压泵高压部分材质为硬质铝合金。高压柱塞材质为不锈钢。并采用双层密封。关键部位材质可以根据介质性制选配。 多种气体驱动:压缩空气、氮气、水蒸汽等。 输出流量大:气动管道增压泵只需0.2—0.8Mpa压缩空。相同系列泵的所有“O”型圈,维修包易损部件可相互替换,大大降低了维修成本。气动管道增压泵无需使用润滑剂。 应用灵活:增压泵从简单的手工*作到全自动化*作,增压泵适用于各个应用领域,并方便与客户的系统配套兼容。在同一系列里的大多数型号的泵的空气马达是可互换的。 自动保压:工作时,增压泵迅速往复工作,随着输出压力接近设定压力值时泵的往复运动速度减小直至停止。并保持这个压力,此时能量消耗很小,无热量产生,无零件运动。当压力平衡打破增压泵自动开始工作到下一个平衡。

泵的特性曲线

北京化工大学 实验报告 课程名称:化工原理实验实验日期:2010 年10 月28 日班级:化工0808 学生姓名: 一、实验名称: 离心泵性能曲线 二、组员介绍: 实验时间:2010年10月28日 报告人: 三、报告摘要: 本实验以水为流动介质,实验装置主要由水槽、离心泵、真空表、压力表、控制阀以及孔板流量计等组成,在常温常压下测定了离心泵在恒定转速下的特性 与效率 随流量Q的变化关系,通曲线,并探讨了离心泵的扬程e H、轴功率N 轴 上升,而泵的总效率先增过实验可知随着流量增大,扬程e H下降,轴功率N 轴 C随雷诺数Re的变化大后减小。依据孔板流量计的测量原理测定了其孔流系数 C约为0.845347。在测定管路特性曲线时,通过调节离心泵的工关系,并测得 作频率调节流量,并由孔板流量计测定,得到在不同开度下的管路特性曲线,有图得知随着流量的增加,管路的压头递增。在整个实验过程中,进展顺利,基本达到了预期的实验目的。 四、实验目的及任务: ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 五、基本理论:

1. 离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1所示。由于液体流经泵时,不可避免地会遇到种种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He Q -、N Q -和Q η-三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。 图1 (1)泵的扬程He 0e H H H H =++压力表真空表 式中 H 压力表——泵出口处的压力,2m H O ; H 真空表——泵入口处的真空度,2m H O ; 0H ——压力表和真空表测压口之间的垂直距离,00.85H m =。 (2) 泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为

气动气液增压泵的原理

气动气液增压泵的原理 气动增压泵主要用于工业设备当驱动压力达不到,或者气体压力达不到的设备,可采用气动增压泵给予加压,或者说一些厨房防火系统中用于对安全设备灭火栓的水增压让其能够更快喷施。 电磁式气动增压水泵如下图: 电磁式气动增压水泵- 工作原理 电磁式气动增压水泵是以压缩空气为动力源,其原理是采用气缸的大面积活塞与之固定的小直径液压柱塞截面积之比所产生的增压比将压缩空气压强提高数十倍(其倍数即为两面积比)通过液压柱塞传递,使液压柱塞腔内因介质具有相同压强。 计算公式=压力比*驱动气压=输出压强,然后利用气动活塞上安装的磁环与外部二个电磁感应开关所产生的磁场给电信号到集成电阻电路板来控制驱动电磁阀通电与断电实现泵的自动循环。当驱动活塞向一端位移时输入口单向阀因吸力自动打开,常压水经输入口吸入泵内,同时输出口因吸力单向阀自动关闭,另一端因增压力使输入口单向阀关闭,输出口单向阀被打开,从而实现自动填充、泵内高压水源不断输出,在输出口加装一电磁式高压释放阀,当泵断电时及时释放泵内高压水,还可通过调整输入气压得到不同输出压力。

产品特性: 节约能源:电磁式气功增压水泵使用时耗电量是传统水泵的1/5,只相当于一个10W左右的灯泡,耗气量也相当低,在使用1.0mm的电极时泵的工作频率为25s/次,0.5mm电极时泵的工作频率为78s/次。同时建议气源气压使用在0.5MPA~0.8MPA之间。所以不难看出流量越小越省电。一年下来可节省数千元电费。 无水温:电磁式气动增压水泵高压水与电动水泵高压水温没有任何变化,冷却效果极佳,使机械在生产时提高效益降低成本。 寿命长:电磁式气动增压水泵比电动水泵使用寿命长,零泄漏,故障低、性能更稳定,所有密封件均采用日本及欧美密封件,相比传统电动水泵大大降低了维修成本。 介质取得方便:电磁式气动增压水泵可直接使用干净的自来水为冷却液,经济实用。 无震动:电磁式气动增压泵比电动水泵作功时非常平稳,无任何振动现象,提高设备的加工精度。 超值:质保承诺极大限度降低因水泵故障带来的售后服务成本,提高整体形象与质量。

水泵的性能曲线图分析

水泵的性能曲线图分析: 泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。 水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。注意其轴功率不应超过电机功率。 1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。扬程--流量曲线 以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。扬程是随流量的增大而下降的。 Q-H(流量-扬程)是一条不规则的曲线。相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。它将是该水泵最经济工作的一个点。在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。 因无法上图,请自找一幅水泵性能曲线图对照着看。主要就这些了。 GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分) 273L/h。 其中ft是英尺,表示扬程。 1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米. 比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢转换公式是什么请大家告诉我一下!谢谢 转换公式:高度H=P/(ρg) 压力为P=0.2 Mpa=200000 Pa 高度H=P/(ρg)=200000/(1000*9.8)= 20.41 m 以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。 0.1个兆帕理论上能撑起10米水柱, 水泵扬程与压力有什么关系 扬程就是压力。 压力的单位是bar 巴扬程单位是m 米1巴=10米 2、功率曲线(泵轴功率与流量的关系N-Q) HP与功率的比例关系? 答:HP是英制功率的计量单位,即马力。而KW是公制功率计量单位,它们的关系:1HP=0.75KW。 首先你要明白水泵性能曲线是由管路性能曲线和扬程流量曲线构成的,其实很简单。他的交点就是工况点,两水泵并联时流量叠加,扬程基本不变。串联时扬程叠加流量不变。 cdlf2系列里面还有多级叶轮的,根据叶轮代号查看对应极数的扬程(纵坐标),X+Y 对应的那个点。压力就是扬程,1公斤=10米 汽蚀余量 Capcity m3/h H (m) N (﹪) P (kw) Speed (rymin) (NPSH)r

液压泵的工作原理

液压泵的工作原理 柱塞泵 柱塞泵分为轴向柱塞泵和径向柱塞泵两种代表性的结构形式;由于径向柱塞泵属于一种新型的技术含量比较高的高效泵,随着国产化的不断加快,径向柱塞泵必然会成为柱塞泵应用领域的重要组成部分。 柱塞泵是往复泵的一种,属于体积泵,其柱塞靠泵轴的偏心转动驱动,往复运动,其吸入和排出阀都是单向阀。当柱塞外拉时,工作室内压力降低,出口阀关闭,低于进口压力时,进口阀打开,液体进入;柱塞内推时,工作室压力升高,进口阀关闭,高于出口压力时,出口阀打开,液体排出。 内带滑靴结构的轴向柱塞泵是目前使用最广泛的轴向柱塞泵,安放在缸体中的柱塞通过滑靴与斜盘相接触,当传动轴带动缸体旋转时,斜盘将柱塞从缸体中拉出或推回,完成吸排油过程。柱塞与缸孔组成的工作容腔中的油液通过配油盘分别与泵的吸、排油腔相通。变量机构用来改变斜盘的倾角,通过调节斜盘的倾角可改变泵的排量。

叶片泵 双作用泵工作原理:它由定子、转子、叶片和配油盘等组成。定子内壁近似椭圆形。叶片安装在转子径向槽内并可沿槽滑动,转子与定子同心安装。当转子转动时,叶片在离心力的作用下压向定子内表面,并随定子内表面曲线的变化而被迫在转子槽内往复滑动,相邻两叶片间的密封工作腔就发生增大和缩小的变化。叶片由小半径圆弧向大半径圆弧处滑移时,密封工作腔随之逐渐增大形成局部真空,于是油箱中油液通过配油盘上吸油腔吸入;反之将油压出。转子每转一周,叶片在槽内往复滑移2次,完成2次吸油和2次压油,并且油压所产生的径向力是平衡的,故称双作用式,也称平衡式。 单作用式叶片泵工作原理:主要由定子、转子、叶片和配油盘等组成。定子的内表面是一个圆柱形,转子偏心安装在定子中,即有一个偏心距e,叶片装在转子径向滑槽中,并可在槽内径向滑动。转子转动时,在离心力和叶片根部压力油的作用下,叶片紧贴在定子内表面上,这样相邻两片叶片间就形成了密封工作腔。在其中一边,叶片逐渐伸出,密封工作腔逐渐增大,形成局部真空,形成吸油;反之,另一边,形成压油。转子每转一周,叶片在滑槽内往复滑移1次,完成1次吸油1次压油。油压所产生的径向力是不平衡的,故称单作用式,也称不平衡式叶片泵。

变频水泵性能分析

变频水泵性能分析 根据水泵流体力学原理可知: 1、流量与转速的一次方成正比,即Q1/Q2=N1/N2,Q:流量,N:转速; 2、压力与转速的二次方成正比,即H1/H2=(N1/N2)2,H:压力,N:转速; 3、功率与转速的三次方成正比,即:P1/P2=(N1/N2)3,P:功率,N:转速。 分析如下: 根据流体力学的相似原理,两种流动作到完全相似,必须满足几何相似、运动相似和动力相似。以相似原理为指导, 在风机、水泵、以及飞机制造行业,利用模型级进行新机种设计的方法也被广泛而有效地使用。 几何相似就是实际和模型级水泵相应几何尺寸之比等于常数,一般,选取水泵叶轮外径d2为水泵的特性尺寸,几何相似即可由公式(1)表示: d2/ d20= sl=常数 (1) 式中:d2—实际叶轮外径,也是变频工况时实际叶轮外径,m; d20—模型级叶轮外径,也是额定工况变频水泵叶轮外径,m; sl—水泵几何比例因子; 对于一台变频水泵, 额定工况(下标为0的参数)水泵的叶轮外径d20和变频工况时的叶轮外径d2是相等的, 因此 sl=1 (2) 运动相似即实际和模型级水泵相应点的流体质点的牵连速度、相对速度和绝对速度组成的速度三角形相似,一般,选取水泵叶轮外径的圆周速度u2为水泵的特性速度,运动相似即可由公式(2)表示: u2/ u20= sv=(n/ n0)× sl = 常数 (3) 式中:u2—实际叶轮外径圆周速度,也是变频工况时变频水泵叶轮外径圆周速度,m/s;

u20—模型级叶轮外径圆周速度,也是额定工况时变频水泵叶轮外径圆周速度,m/s; sv—流体质点速度比例因在子,对于变频水泵有: sv= n/ n0 (4) n—实际叶轮转速,也是变频工况时变频水泵叶轮转速,rpm; n0—模型级叶轮转速,也是变频水泵叶轮额定转速,rpm; 由公式(1)、(2)可以推导出水泵的流量关系式: Q/Q0= sq=(n/ n0) × (sl)3 (5) 式中:q—实际水泵流量,也是变频工况时变频水泵流量,m3/s; q0—模型级水泵流量,也是额定工况时变频水泵流量,m3/s; sq—水泵流量比例因子。对于变频水泵有: Q/Q0= sq=(n/ n0) =常数 (6) 动力相似即实际和模型级水泵相应点的流体质点受到的作用力相似,离心式水泵主要是通过叶轮向流体质点施加离心力做功,才将叶轮的机械能转变成流体质点的压力能,从离心机械原理可知,水泵的压头p和其特性点质点的特性速度表示的动能1/2ρu22成正比,动力相似即可由公式(7)表示: p/ p0= sp=(n/ n0) 2× (sl)2=常数(7) 式中:p—实际水泵压头,也是变频工况时变频水泵压头,pa; p0—模型级水泵压头,也是额定工况时变频水泵压头,pa; sp—水泵压头比例因子。对于变频水泵有: p/ p0= sp=(n/ n0) 2=常数(8) 由公式(5)和(7)可得出水泵功率的相似关系式(9):

气动液压电动泵的工作原理和组成解读

Haskel气动液压电动泵 工作原理和组成 Haskel气动液体泵由气体驱动部分,液压部分和换向控制阀三个部分组成。气体驱动部分的活塞和液压部分的柱塞连在一起,由换向阀控制自动做往复运动。通过大面积的活塞和小面积的柱塞,将作用在活塞上的驱动气体的压强传递给柱塞,从而提高液体的出口压力。Haskel气动液体泵的特点: 以普通压缩空气或其它气体作为动力 连续起停,不受限制 最高压力可达:6800BAR 适用于绝大多数介质 无需任何润滑油 产品范围广 不产生热量和火花 体积小 Haskel气动液体泵型号字母代码: M 1"冲程,1/3HP泵系列XH2"冲程,1.5+2HP超高压泵系列 S 不锈钢柱塞和泵体G 4-1/2"冲程,6HP泵系列 29723 1/3HP化学泵84-1/2"冲程,8HP泵系列 D(前缀)液体端加长的泵144"冲程,10HP泵系列 D(后缀)双作用泵W聚氨脂U型密封 4B 1"冲程,3/4"HP泵系列(底部)F UHMWPE(超高分子聚乙烯密封)A2"冲程,1.5+2HP泵系列T增强聚四氟乙烯密封 H2"冲程,1.5+2HP高压泵列V合成橡胶密封 B底部进口 Haskel气动体泵适用液体种类: 1、石油,煤油,柴油,含5%可溶油的水 2、淡水

3、大多数的磷酸酯基液压油,与UHMWPE和合成橡胶相兼容的石油基溶剂 4、石油基溶剂,氯化了的溶剂,甲基丙酮,乙醇,氟里昂等 5、航空液压油,丙酮,乙醇等 6、去离子水 Haskel气动液本泵应用: ★压力测试★螺栓紧固★千斤顶★夹具★制动系统★爆破试验★液压控制系统 产品简介: 美国Haskel气体增压泵由通过连接杆与小面积气体活塞直接相连的空气驱动往复式大面积活塞构成。在每一个气体腔端盖中都包含输入、输出单向阀,空气驱动部分包含有循环轴和导向阀。当通入驱动气体时,二者提供连续往复运动。 气体增压泵中气体压缩腔与空气驱动腔的分离是由三级动态密封装置提供的。两腔之间的部分与空气相通。这种设计可以保证被压缩气体不被驱动气体污染。 气体增压泵充分利用驱动气体在做成功后温度显著降低的特点,将排出的低温驱动气体作为冷却剂通入增压器自带的热交换器,用来冷却高压输出气体和增压器的钢套。 气体增压泵主要包括AG系列,AGT系列,8AGD系列,14AGT系列等,气动气体增压泵是将低压气体增压为高压气体,高压范围从10Mpa,15Mpa,20Mpa,35Mpa,50Mpa,70Mpa,140Mpa,最大210Mpa,空气增压器主要包括HAA系列,AA系列,AAD系列,8AAD系列,用于空气管线或设备气路增压,空气压力由0.4Mpa增压至31Mpa; 空气钳和滚轮夹紧器的动力,缓冲垫保压,气弹簧和高压轮胎充气,提供阀门驱动力,阀门管件压力容器航空航天附件气压测试,井口装置水中冒泡试验,汽车制动系统测试,通信电缆充气设备,飞机轮胎液压蓄能器充氮,气体辅助注塑高压氮气充气,超纯气体气体压缩(CO2超临萃取)。 Haskel气体增压泵典型应用: 气动气体增压器可于各种气体介质; 应用于空气钳和滚轮夹紧器的动力; 缓冲垫保压; 气弹簧和高压轮胎充气; 提供阀门驱动力;

泥浆泵的分析介绍

第一章绪论 1.1 泥浆泵的发展 到目前为止,使用泥浆泵钻井己有一百多年的历史。早期的泥浆泵的功能仅在于循环泥浆、冷却井底、携带岩屑和在井壁形成泥饼。在四十年代末,采用了喷射式钻井,以及后来的井下动力钻具钻井,利用高压泥浆的冲蚀力辅助破碎岩石可以加快钻井速度,利用泥浆的动力驱动井下涡轮钻具也可以旋转钻井,从而扩大了泥浆泵的功能和使用范围。 泥浆泵早期的典型结构是双缸双作用泵,这种泵使用时比较可靠,但是体积和重量都较大,效率低,压力波动大。随着钻井井深的增加和套管层次的增多,对钻井泵的排量和泵压提出了愈来愈高的要求。这也导致了泵功率的急剧加大,泵的重量和外形尺寸也随之增加。为减轻泵重,当时在双缸泵的设计上较大的改进是以钢代铁和减小泵宽。以钢带铁是用钢板焊接的泵壳代换铸铁泵壳,并将一些零件改用优质合金钢制造;减小泵宽是应用大直径的滚动轴承作连杆大端支撑,摒弃悬臂曲拐轴设计。这样,两缸中心距明显缩小。这些都是50年代双缸泵的主要改进之处。当然,除此之外在细节结构上也有不少改进。尽管在50-60年代喷射钻井工艺本身提出了5 ?Pa的泵压要求,但双缸泵的实际持续工作泵压只能达 21010 到5 ?Pa左右。限制泵压提高的主要因素是活塞橡胶皮碗的寿命。双缸双作用15010 泵的活塞是“捂”在缸体里的,冷却散热条件极差。尽管冲次不高,但在高压下由于活塞皮碗与缸套的摩擦,仍将产生100℃上下的温度:再加上与缸套间的各种磨损作用,皮碗很快老化破裂,不能保证钻井作业的正常进行和使用的合理寿命。但这种单向活塞和敞口缸套的结构给吸入带来了特殊的问题,即三缸泵的吸入过程中,只要缸内压力低于当地大气压,空气就可能从活塞背后侵入液缸而破坏正常吸入。所以,在原则上三缸泵应配置灌注泵,这也是国外通常的做法。三缸单作用泥浆泵的优点在于体积小、重量轻、效率高、压力波动小,特别适用于钻井。三缸单作用泥浆泵经过三十多年的不断改进和完善,在性能上、结构上、可靠性、适应性与经济性等方面,已经走向成熟,使用效果也很显著。 在我国,第一台泵是五十年代诞生的,为双缸泵。在七十年代,由于钻井工艺的试验和推广,引进国外三缸泵及技术。从此开始了三缸泵的研制工作,它在短短的数年中取代了双缸泵,成为提高喷射钻井水平的关键设备。 1.2 泥浆泵的作用和特点: 在使用旋转钻井法钻石油、天然气井的作业中,钻井往复泵用于泵送钻井液—泥浆,使其循环流动进行冲井。所以钻井泵通常被称为泥浆泵。按其工作重要

气压罐工作原理

消防稳压泵XBD 消防泵 点击放大 产品 型 号: XBD 产品 报 价: 产品特点: 消防稳压 泵是消防 水泵的另 一种叫 法,由于 消防泵在 消防系统 中起到消 防稳压的 作用,固 很多地方 把其叫做 消防稳压 泵,常见 的消防稳 压泵一般 分为单级 与多级两 种较多 消防稳压泵概述:

消防稳压泵是消防泵的另一种叫法,由于具有消防稳压的作用,固被叫做消防稳压泵。 XBD系列消防泵是我公司根据市场对消防泵的实际需要及其特殊的使用要求,严格按照国家最新颁布的GB6245-2006《消防泵》标准而研制开发的新型消防产品。经国家消防装备质量监督检测中心检测,各项性能指标均达到或超过标准的要求,并获得国家消防产品认证证书。 XBD系列分为立式单级、立式多级、便拆立式多级和卧式多级四种结构形式,以满足用户不同的使用需要 消防稳压泵用途: XBD系列消防水泵主要用于各企事业单位、工程建设、高层大厦等固定消防系统中的消防栓灭火系统、自动喷淋灭火系统等,可供输送100℃以下不含固体颗粒的清水及物理化学性质类似于水的介质,又可用于消防、生活、生产共用给水系统及建筑、市政给排水等。 消防稳压泵使用说明 启动前: 1、用手转动联轴器,转子部件应无卡死现象。 2、打开进口阀门、排气阀使水充满泵腔,然后关闭排气阀; 3、点动电机,确定转向是否正确; 运行: 1、全开进口阀门,关闭出口管路阀门。 2、接通电源,当泵转速达到正常后,再打开出口管道阀门,并调节到所需的工况点; 3、观察泵运行后的有无异常情况,如有异常情况应立即停车检查,处理后再运行; 停车: 1、逐渐关闭出口阀门后,切断电源; 2、关闭进口阀门; 3 、如环境温度低于0℃,应采取保暖措施。 消防稳压泵分类: 常见的消防稳压泵有立式单级消防泵、立式多级消防泵。 消防稳压泵安装说明 1、安装时管路重量不得承受在泵体上,否则易损坏泵; 2、泵与电机是整体结构,出厂时已由厂家校正,所以安装时无须调整,因此安装十分方便; 3、安装时务必拧紧地脚螺栓,且每间隔一定时段应对泵进行检查防止其松动,以免泵启动时发生剧烈振动而影响泵的性能; 4、为了维护方便和使用安全,在泵的出口管路上安装一只调节阀及在出口附近安装一只压力表,对于高扬程的泵,为防止水锤,还应在出口闸阀前安装一只止回阀以防止突然断电等失去动力事故,从而确保水泵在最佳工况下运行; 5、泵用于有吸程的场合,应装有底阀,并且进口管道不应有过多的弯道,同时不得有漏气漏水等现象,以免影响水泵的吸入能力; 6、为了不使杂质进入泵内而堵塞流道影响性能,应在泵进口前面安装过滤器; 7、应定期(一般为15天)试运行泵,运行时间为1小时左右,以防止紧急时刻抱轴卡死不能运行。 XBD消防稳压泵订货须知: 一、按照使用条件决定泵的规格、材料、冷却和米饭管理系统及原动机。在订货时应提供流量(Q)、扬程(H)、吸入压力、密度、温度及介

离心泵性能实验报告(带数据处理)

实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日 同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵 预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图: 图5 离心泵性能实验装置流程图

气液增压泵SWB-160D介绍

气液增压泵SWB-160D介绍 原理介绍 四维SWB系列气液增压泵是以气体为动力源的一种往复式柱塞泵,利用大面积活塞端的低压气体驱动面产生小面积活塞端的高压液体,增压比决定泵的最大输出压力。工作时,当驱动活塞向后运行时,将液体吸入泵内,此时入口处的单向阀打开,出口单向阀关闭;当活塞向前运行时,在液体一侧会形成一定压力,压力会将入口处单向阀关闭,出口处单向阀打开,高压液体就从出口处流出。SIWELL液泵能够实现自动循环,当出口压力升高时,泵会减速运行,并对活塞产生一定的阻力,当力平衡时,泵会自动停止运行,此时高压活塞端压力与液压力达到平衡,活塞保持静止,此时能量消耗最低,液体温度不再增加,各部件停止工作。

当出口压力降低或气体驱动压力增加时,液泵会自动启动运行。 SWB气液增压泵产品特性 SIWELL气液增压泵是由我公司自主研发的产品。其原理是利用大面积活塞的低气压转换为小面积活塞的高液压。 产品具有以下特点: 输出压力高:最大液体输出压力可高达400Mpa。 适用范围广:工作介质可为液压油、水及大部分化学腐蚀性液体,而且可靠性高,免维护和寿命长。 输出范围广:对所有型号泵仅需较小气压就能平稳工作,此时获得最小的流量,调节进气量后可获得不同的流量。 应用灵活:选用不同型号的泵,可获得不同的压力区域。 易于调节:在泵的压力范围内,调节调节阀从而调节输入气压,输出液压相应得到无级调整。自动保压:无论何种原因造成保压回路压力下降,SIWELL泵将自动启动,补充泄漏压力,保持回路压力恒定。 操作安全:采用气体驱动,无电弧及火花,可在危险场所使用。 维护简单:与其它的气驱泵比较,SIWELL泵可完成同样的工作,但其零件及密封少,维护更简单。 性价比高:SIWELL气液增压泵是一种柱塞泵,工作时,SIWELL气液增压泵迅速往复工作,随着输出压力的增高,泵的往复减慢直至停止,此时,泵输出的压力恒定,能量消耗最低,各部件停止运动。

真空泵的工作原理

真空泵的工作原理 一、2X型旋片式真空泵(简称旋片泵)工作压强范围为101325~1.33×10-2(Pa)属于低真空泵。它可以单独使用,也可以作为其它高真空泵或超高真空泵的前级泵。它已广泛地应用于冶金、机械、军工、电子、化工、轻工、石油及医药等生产和科研部门。 旋片泵可以抽除密封容器中的干燥气体,若附有气镇装置,还可以抽除一定量的可凝性气体。但它不适于抽除含氧过高的,对金属有腐蚀性的、对泵油会起化学反应以及含有颗粒尘埃的气体。 旋片泵是真空技术中最基本的真空获得设备之一。旋片泵多为中小型泵。旋片泵有单级和双级两种。所谓双级,就是在结构上将两个单级泵串联起来。一般多做成双级的,以获得较高的真空度。 旋片泵的抽速与入口压强的关系规定如下:在入口压强为1333Pa、1.33Pa和1.33×10-1(Pa)下,其抽速值分别不得低于泵的名义抽速的95%、50%和20%。 二、2X型旋片真空泵工作原理如下: 旋片泵主要由泵体、转子、旋片、端盖、弹簧等组成。在旋片泵的腔内偏心地安装一个转子,转子外圆与泵腔内表面相切(二者有很小的间隙),转子槽内装有带弹簧的二个旋片。旋转时,靠离心力和弹簧的张力使旋片顶端与泵腔的内壁保持接触,转子旋转带动旋片沿泵腔内壁滑动。两个旋片把转子、泵腔和两个端盖所围成的月牙形空间分隔成A、B、C三部分,当转子按箭头方向旋转时,与吸气口相通的空间A 的容积是逐渐增大的,正处于吸气过程。而与排气口相通的空间C的容积是逐渐缩小的,正处于排气过程。居中的空间B的容积也是逐渐减小的,正处于压缩过程。由于空间A的容积是逐渐增大(即膨胀),气体压强降低,泵的入口处外部气体压强大于空间A内的压强,因此将气体吸入。当空间A与吸气口隔绝时,即转至空间B的位置,气体开始被压缩,容积逐渐缩小,最后与排气口相通。当被压缩气体超过排气压强时,排气阀被压缩气体推开,气体穿过油箱内的油层排至大气中。由泵的连续运转,达到连续抽气的目的。如果排出的气体通过气道而转入另一级(低真空级),由低真空级抽走,再经低真空级压缩后排至大气中,即组成了双级泵。这时总的压缩比由两级来负担,因而提高了极限真空度。 三、根据工作原理对真空泵进行分类 按真空泵的工作原理,真空泵基本上可以分为两种类型,即气体传输泵和气体捕集泵。随着

离心泵特性曲线实验报告(学习类别)

化工原理实验报告 实验名称:离心泵特性曲线实验报告姓名:张克川 专业:化学工程与工艺(石油炼制)班级:化工11203 学号:201202681

离心泵特性曲线实验报告 一、实验目的 1.了解离心泵的结构与特征,熟悉离心泵的使用。 2.测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作范围。 3.熟悉孔板流量计的构造与性能以及安装方法。 变化的规律。 4.测量孔板流量计的孔流系数C岁雷诺数R e 5.测量管路特性曲线。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:z1+++H=z2+++ (1-1) 由于两截面间的管子较短,通常可忽略阻力项,速度平方差也很小,故也可忽略,则有 H=(z1-z2)+=H1+H2(表值)+H3 (1-2) 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.2轴功率N的测量与计算 N=N电k(w) (1-3) 其中,N电为电功率表显示值,k代表电机传动效率,可取0.90 2.3效率η的计算 泵的效率η是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。泵的有效功率Ne可用下式计算:

管道泵工作原理

管道泵工作原理 管道泵的工作原理是:离心泵所以能把水送出去是由于离心力的作用。水泵在工作前,泵体和进水管必须罐满水形成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。水原的水在大气压力(或水压)的作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。在此值得一提的是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成设备事故! 离心泵的种类很多,分类方法常见的有以下几种方式1按叶轮吸入方式分:单吸式离心泵 双吸式离心泵泵。2按叶轮数目分:单级离心泵,多级离心泵。3按叶轮结构分:敞开式叶轮离心泵半开式叶轮离心泵 封闭式叶轮离心泵。4按工作压力分:低压离心泵 中压离心泵泵 高压离心泵,按安装方式: 立式离心泵,卧式离心泵。 管道泵使用的五大要点: 1、试车工作:检查连接件是否松动;用手盘动联轴器使转子转数圈,看机组转动是否灵活,是否有响声和轻重不匀的感觉,以判断泵内有否异物或轴是否弯曲,密封件安装正不正等;检查密封腔内的清洁20号润滑油是否加注1/2腔内空间;泵机组表面是否干净;机组转向空载测试。 2、手动启动:灌泵(第一次),稍开出口阀,启动电机,压力上升并确认为泵组运转平稳时渐开出口阀至工况要求。 3、运行检查:泵在工频(变频)正常运行时,应定时检查并记录其泵组电流表、电压表、进出口真空表、压力表和流量计等仪表的读数。机组的振动、噪音、温升等是否正常。轴封处不应有明显的航油泄漏。 4、正常停车:关闭排出阀,使泵轻载,停转电机。 5、紧急停车状况: ⑴泵电机工作电流表指示异常(过分偏大或变得很少);泵系统发出不正常的响声。 ⑵泵进口真空压力表、出口压力表指示异常,泵体震动较大并发出异声,性能严重下降。 ⑶泵电机产生异味、轴封处漏出航空油料、轴承温度超过75度等。

相关主题
文本预览
相关文档 最新文档