当前位置:文档之家› 真正的FOC型-开环矢量控制理论

真正的FOC型-开环矢量控制理论

真正的FOC型-开环矢量控制理论
真正的FOC型-开环矢量控制理论

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref 和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

转差频率控制的异步电动机

转差频率控制的异步电 动机 Revised as of 23 November 2020

转差频率控制的异步电动机 矢量控制系统仿真实训报告 二级学院 专业电气工程及其自动化 班级 指导教师 2014年6月 摘要 矢量变换控制技术的诞生和发展奠定了现代交流调速系统高性能化的基础。交流电动机是个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到了显着的改善和提高,从而使交流调速取代直流调速成为可能。目前对调速性能要求较高的生产工艺已较多地采用了矢量控制型的变频调速装置。实践证明,采用矢量控制的交流调速系统的优越性高于直流调速系统。 本文基于MATLAB?对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方

法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。 关键词:异步电动机矢量控制转差角频率 MATLAB 目录

一、转差频率控制的异步电动机矢量控制调速系统 1.矢量控制概述 矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制(VC)方式:矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1和Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

矢量控制由于异步电机的动态数学模型是一个高阶

矢量控制由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。上世纪 70 年代西门子工程师 F.Blaschke 首先提出异步电机矢量控制理论来解决交流电机转矩控制问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。简单的说,矢量控制就是将磁链与转矩解耦,有利于分别设计两者的调节器,以实现对交流电机的高性能调速。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。这样就可以将一台三相异步电机等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。矢量控制算法已被广泛地应用在siemens,AB,GE,Fuji 等国际化大公司变频器上。矢量控制方式采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器。鉴于电机参数有可能发生变化,会影响变频器对电机的控制性能,目前新型矢量控制通用变频器中已经具备异步电动机参数自动检测、自动辨识、自适应功能,带有这种功能的通用变频器在驱动异步电动机进行正常运转之前可以自动地对异步电动机的参数进行辨识,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。以异步电动机的矢量控制为例:它首先通过电机的等效电路来得出一些磁链方程,包括定子磁链,气隙磁链,转子磁链,其中气息磁链是连接定子和转子的.一般的感应电机转子电流不易测量,所以通过气息来中转,把它变成定子电流.然后,有一些坐标变换,首先通过3/2变换,变成静止的 d-q 坐标,然后通过前面的磁链方程产生的单位矢量来得到旋转坐标下的类似于直流机的转矩电流分量和磁场电流分量,这样就实现了解耦控制,加快了系统的响应速度.最后再经过2/3变换,产生三相交流电去控制电机,这样就获得了良好的性能.矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1 相当于直流电动机的励磁电流;It1 相当于与转矩成正比的电

感应电动机转差型矢量控制系统的设计

感应电动机转差型矢量控制系统的设计 1 引言 感应电动机具有结构简单、坚固耐用、转速高、容量大、运行可靠等优点。但是,由于感应电动机是一个高阶、非线性、强耦合的多变量系统,磁通和转矩耦合在一起,不能像直流电动机那样,磁通和转矩可以分别控制。所以,一直到20世纪80年代都没有获得高性能的感应电动机调速系统。近年来,随着电力电子技术、现代控制理论等相关技术的发展,使得感应电动机在可调传动中获得了越来越广泛的应用。矢量控制策略的提出,更是实现了磁通和转矩的解耦控制,其控制效果可媲美直流电动机。本文在分析感应电动机矢量控制原理的基础上,基于matlab/simulink建立了感应电动机转差型矢量控制系统仿真模型,仿真结果证明了该模型的合理性。并在此基础上进行系统的软、硬件设计,通过实验验证控制策略的正确性。 2 矢量控制的基本原理 长期以来,直流电动机具有很好的运行特性和控制特性,通过调节励磁电流和电枢电流可以很容易的实现对转矩的控制。因为它的转矩在主磁极励磁磁通保持恒定的情况下与电枢电流成线性关系,所以通过电枢电流环作用就可以快速而准确地实现转矩控制,不仅使系统具有良好稳态性能,又具有良好的动态性能。但是,由于换向器和电刷的原因,直流电动机有它固有的缺点,如制造复杂,成本高,需要定期维修,运行速度受到限制,难以在有防腐防暴特殊要求的场合下应用等等。矢量控制的设计思想是模拟直流电动机的控制特点进行交流电动机控制。基于交流电动机动态模型,通过矢量坐标变换和转子磁链定向,得到等效直流电动机的数学模型,使交流电动机的动态模型简化,并实现磁链和转矩的解耦。然后按照直流电动机模型设计控制系统,可以实现优良的静、动态性能。 转子磁链ψr仅由定子电流励磁电流ism产生,与定子电流转矩分量ist无关,而电磁转矩te正比于转子磁链和定子电流转矩分量的乘积,这充分说明了感应电动机矢量控制系统按转子磁链定向可以实现磁通和转矩的完全解耦。按转子磁链定向的矢量控制系统的关键是准确定向。但是,转子磁链的直接检测非常困难,而利用磁链模型间接估算磁链的

《电机矢量控制技术》矢量控制综述资料

福建工程学院 研究生课程论文 课程名称电机及其系统分析教师姓名 研究生姓名 研究生学号 研究生专业电气工程 研究方向电力工程 年级一年级 所在学院信息学院 日期2016年01 月13日

评语

矢量控制技术的发展以及在应用中的改善 摘要:电机在很多场合得到了广泛的使用,因为它具有的独特优点,例如它为现代运动控制系统提供了一种具有诸多优点和适用广泛的装置。异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。在上世纪70年代西门子工程师F.Blaschke 首先提出异步电机矢量控制理论来解决交流电机转矩问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。 关键词:矢量控制,异步电机,解耦 ABSTRACT:In many occasions, the motor has been widely used because it has unique advantages, such as it provides a lot of advantages and is suitable for a wide range of modern device having the motion control system. Dynamic mathematical model of the induction motor is a high order, nonlinear, strongly coupled multivariable systems. In the 1970s, Siemens engineers F.Blaschke first proposed induction motor vector control theory to solve the problem of the AC motor torque. The basic principle of vector control is achieved by measuring and controlling asynchronous motor stator current vector, based on the principle of field-oriented asynchronous motor excitation current and torque current control, respectively, so as to achieve the purpose of control of induction motor torque. Key Word : Vector control ,Induction motor ,Decoupling 0、序言 异步电动机的数学模型是一个极其复杂的模型。总的归结起来可以异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统[1]。而且在研究三相异步电动机的复杂的数学模型中,我们常常会做出以下几方面的假设。第一,我们往往会忽略空间谐波。第 二、忽略磁路饱和。并且假设它们的自感和互感都是线性的。第三、忽略铁芯损耗。第四、不考虑频率和温度对绕组的影响。由于感应电动机的励磁和电枢都是同一个绕组,所以转矩和磁链之间就相对比较复杂。电磁转矩的物理表达式为 22?φCOS I C T T e = 可以知道感应电动机各个参量相互耦合,这也是感应电动机难以控制的根本原因[2]。由于矢量控制具有转矩控制的线性特性,控制效率很高,调节器的设计也比较容易实现。而且,速度的调节较宽在接近零转速时仍然可以带动额定负载运行,具有良好的起制动性能,所以矢量控制技术才会被人们慢慢的所利用[3]。异步电机数学模型的电压方程、磁链方程、转矩方程和运动方程如下: 电压方程:

转差频率控制的异步电动机矢量控制系统的仿真建模

转差频率控制的异步电动机矢量控制系统 的仿真建模 *** (江南大学物联网工程学院,江苏无锡214122) 摘要:矢量控制是目前交流电动机的先进控制方式,本文对异步电动机的动态数学模型、转差频率矢量控制的基本原理和概念做了简要介绍,并结合Matlab/Simulink软件包构建了异步电动机转差频率矢量控制调速系统的仿真模型,并进行了试验验证和仿真结果显示,同时对不同参数下的仿真结果进行了对比分析。该方法简单、控制精度高,能较好地分析交流异步电动机调速系统的各项性能。 关键词:转差频率;交流异步电动机;矢量控制;Matlab Modeling and Simulation of induction motor vector control system Based on Frequency control Luxiao (School of Communication and Control, Jiangnan University, Wuxi, Jiangsu 214036,China) Abstract: Vector control is an advanced AC motor control, this paper dynamic mathematical model of induction motor, slip frequency vector control of the basic principles and concepts are briefly introduced, and combined with Matlab / Simulink software package ,give the slip frequency vector Control System of the simulation model of the induction motor .Showed the simulation results, and simulation results under different parameters were compared. The method is simple, high control precision, can better analyze the AC induction motor drive system of the performance. Keywords: AC asynchronism motor; vector control; modeling and simulation; Matlab; 引言: 由于交流异步电动机属于一个高阶、非线性、多变量、强耦合系统。数学模型比较复杂,将其简化成单变量线性系统进行控制,达不到理想性能。为了实现高动态性能,提出了矢量控制的方法。所谓矢量控制就是采用坐标变换的方法,以产生相同的旋转磁势和变换后功率不变为准则,建立三相交流绕组、两相交流绕组和旋转的直流绕组三者之间的等效关系,从而求出异步电动机绕组等效的直流电机模型,以便按照对直流电机的控制方法对异步电动机进行控制。因此,它可以实现对电机电磁转矩的动态控制,优化调速系统的性能。 Matlab是一种面向工程计算的高级语言,其Simulink环境是一种优秀的系统仿真工具软件,使用它可以大大提高系统仿真的效率和可靠性。本文在此基础上构造了一个矢量控制的交流电机矢量控制调速系统,包含了给定、PI调节器、函数运算、二相/三相坐标变换、PWM脉冲发生器等环节,并给出了仿真结果。 1.异步电动机的动态数学模型 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。在研究异步电动机的多变量非线性数学模型时,常作如下的假设: 1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿

TI公司官网源代码基于TMS320F2812的永磁同步电动机空间矢量控制的算法实现

往链点点通共享资源,了解更多请登录https://www.doczj.com/doc/ec9953163.html, 第7章基于TMS320F2812的永磁同步电动机控制例1、空间矢量算法实现 SVGEN_DQ对象结构体定义 typedef struct { _iq Ualpha; // 输入:α轴参考电压 _iq Ubeta; // 输入:β轴参考电压 _iq Ta; // 输出:参考相位a开关函数 _iq Tb; // 输出:参考相位b开关函数 _iq Tc; // 输出:参考相位c开关函数 void (*calc)(); // 函数指针 } SVGENDQ; typedef SVGENDQ *SVGENDQ_handle; SVGEN_DQ模块调用方法: main() { } void interrupt periodic_interrupt_isr() { svgen_dq1.Ualpha = Ualpha1; // 提供输入参数:svgen_dq1 svgen_dq1.Ubeta = Ubeta1; // 提供输入参数:svgen_dq1 svgen_dq2.Ualpha = Ualpha2; // 提供输入参数:vgen_dq2 svgen_dq2.Ubeta = Ubeta2; // 提供输入参数:svgen_dq2 svgen_dq1.calc(&svgen_dq1); // 调用函数模块svgen_dq1 svgen_dq2.calc(&svgen_dq2); // 调用函数模块svgen_dq2 Ta1 = svgen_dq1.Ta; // 访问运算结果svgen_dq1 Tb1 = svgen_dq1.Tb; // 访问运算结果svgen_dq1 Tc1 = svgen_dq1.Tc; // 访问运算结果svgen_dq1 Ta2 = svgen_dq2.Ta; // 访问运算结果svgen_dq2 Tb2 = svgen_dq2.Tb; // 访问运算结果svgen_dq2 Tc2 = svgen_dq2.Tc; // 访问运算结果svgen_dq2 } 为进一步了解空间矢量算法的基本原理,下面给出空间矢量模块的源代码:void svgendq_calc(SVGENDQ *v) { _iq Va,Vb,Vc,t1,t2;

矢量控制学习心得体会

矢量控制学习心得体会 这学期跟着严老师学习了运动控制这门课程,加深了对电机拖动在实例中的运用,而矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,虽然通过坐标变换可以使之降阶并简化,但并没有改变其非线性、多变量的本质。因此,需要异步电动机调速系统具有高动态性能时,必须面向这样一个动态模型。按转子磁链定向的矢量控制系统便是其中一种。异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,经过相应的坐标反变换,就能够控制异步电动机了。由于进行坐标变换的是电流的空间矢量,所以这样通过坐标变换实现的控制系统就叫作矢量控制系统,简称VC系统。在设计矢量控制系统时,可以认为,在控制器后面引入的反旋转变换器VR-1与电机内部的旋转变换环节VR抵消,2/3变换器与电机内部的3/2变换环节抵消,如果再忽略变频器中可能产生的滞后,则图6-53中虚线框内的部分可以完全删去,剩下的就是直流调速系统了。可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。 矢量变换包括三相/两相变换和同步旋转变换。在进行两相同步旋转坐标变换时,只规定了d,q两轴的相互垂直关系和与定子频率同步的旋转速度,并未规定两轴与电机旋转磁场的相对位置,对此是有选择余地的。按照图6-53的矢量控制系统原理结构图模仿直流调速系统进行控制时,可设置磁链调节器AψR 和转速调节器ASR分别控制ψr和ω,如图6-55所示。为了使两个子系统完全解耦,除了坐标变换以外,还应设法抵消转子磁链ψr对电磁转矩T e的影响。比较直观的办法是,把ASR的输出信号除以ψr,当控制器的坐标反变换与电机中的坐标变换对消,且变频器的滞后作用可以忽略时,此处的(÷ψr)便可与电

转差频率控制地异步电动机

转差频率控制的异步电动机矢量控制系统仿真实训报告二级学院 专业电气工程及其自动化 班级 指导教师 2014年6月

摘要 矢量变换控制技术的诞生和发展奠定了现代交流调速系统高性能化的基础。交流电动机是个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速取代直流调速成为可能。目前对调速性能要求较高的生产工艺已较多地采用了矢量控制型的变频调速装置。实践证明,采用矢量控制的交流调速系统的优越性高于直流调速系统。 本文基于MATLAB 对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。 关键词:异步电动机矢量控制转差角频率 MATLAB

目录 一、转差频率控制的异步电动机矢量控制调速系统 (4) 1.矢量控制概述 (4) 2.转差频率控制 (4) 3.转差频率矢量控制系统组成 (5) 4.转差频率矢量控制系统工作原理 (5) 二、基于Simulink的转差频率矢量控制系统仿真 (7) 1.仿真模型的建立 (7) 2.主电路模块 (7) 3.转速调节器(ASR)模块 (7) 4.函数运算模块 (8) 5.坐标变换模块2r/3s (9) 6.转差频率矢量控制系统仿真参数设置 (9) 7. 转差频率矢量控制系统仿真模型图 (10) 三、仿真结果及分析 (11) 1.仿真波形图 (11) 2.仿真结果分析 (14) 四、总结 (15) 五、参考文献 (16)

转差频率控制的异步电动机矢量控制系统仿真

目录 转差频率控制的异步电动机矢量控制系统仿真 (1) 引言 (1) 1 转差频率矢量控制概述 (1) 2 转差频率控制的基本原理 (3) 2.1 控制原理叙述 (3) 2.2 转差频率控制系统组成 (6) 3转差频率矢量控制系统构建 (7) 4 转差频率矢量控制调速系统仿真和分析 (8) 4.1 仿真模型的建立 (8) 4.1.1转速调节器模块 (8) 4.1.2 函数运算模块 (9) 4.1.3 坐标变换模块 (9) 4.1.4电动机转差频率矢量控制系统的仿真模型 (10) 4.2仿真条件 (11) 4.3仿真结果 (11) 5结语 (14) 参考文献 (15)

转差频率控制的异步电动机矢量控 制系统仿真 引言 电动机调速是电动机应用系统的关键环节。在19世纪,高性能的可调速传动控制大多采用直流电动机。但直流电动机在结构上存在难以克服的缺点,即存在电刷和机械换向器,使得直流电动机事故率高,维修工作量大,容量受到换向条件的制约,而交流电动机结构简单,造价小,坚固耐用,事故率低,容易维护,因此20世纪80年代以后,,交流调速技术开始迅速发展,并陆续出现了一些先进可靠的交流调速技术,首先是变压变频调速系统(VVVF),后来出现了转差频率矢量控制,无速度传感中矢量控制和直接转矩控制(DTC)等。其中,转差频率矢量控制系统结构简单且易于实现,控制精度高,具在良好的控制性能,因此,早期的矢量控制通用变频器上采用基于转差频率控制的矢量控制方式。基于此,本文在Matlab/Simulink环境下对转差频率矢量控制系统进行了仿真研究。 1转差频率矢量控制概述 由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。上世纪70年代西门子工程师F.Blaschke首先提出异步电机矢量控制理论来解决交流电机转矩控制问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。简单的说,矢量控制就是将磁链与转矩解耦,

基于Matlab转差频率控制的矢量控制系统的仿真

1转差频率矢量控制系统...................................... - 0 - 2.1 控制原理叙述........................................ - 3 - 2.2 转差频率控制系统组成................................ - 5 - 3、转差频率矢量控制系统构建................................. - 6 - 4.2模型参数............................................ - 8 - 概述: 常用的电机变频调速控制方法有电压频率协调控制(即v/F比为常数)、转差频率控制、矢量控制以及直接转矩控制等。其中,矢量控制是目前交流电动机较先进的一种控制方式。它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。其中基于转差频率控制的矢量控制方式是在进行U /f恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对输出频率f进行控制的。采用这种控制方法可以使调速系统消除动态过程中转矩电流的波动,从而在一定程度上改善了系统的静态和动态性能,同时它又具有比其它矢量控制方法简便、结构简单、控制精度高等特点。 Simulink仿真系统是Matlab最重要的组件之一,系统提供了标准的模型库,能够帮助用户在此基础上创建新的模型库,描述、模拟、评价和细化系统,从而达到系统分析的目的。在此利用Matlab/Simulink软件构建了转差频率矢量控制的异步电机调速系统仿真模型,并对此仿真模型进行了实验分析。 矢量控制是目前交流电动机的先进控制方式,一般将含有矢量交换的交流电动机控制都称为矢量控制,实际上只有建立在等效直流电动机模型上,并按转子磁场准确定向地控制,电动机才能获得最优的动态性能。转差频率矢量控制系统结构简单且易于实现,控制精度高,具有良好的控制性能、因此,早起的矢量控制通用变频器上采用基于转差频率控制的矢量控制方式。基于此,本文在Mtalab/Simulink环境下对转差频率矢量控制系统进行了仿真研究。 1转差频率矢量控制系统 由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。转差频率矢量控制是按转子磁链定向的间接矢量控制系统,不需要进行复杂的磁

转差频率矢量控制的电机调速系统设计与研究

转差频率矢量控制的电机调速系统设计与研 究 时间:2010-12-24 13:52:37来源:现代电子技术作者:朱军,郝润科,黄少瑞,高渊炯,朱 政 摘要:鉴于直接转子磁场定向矢量控制系统较为复杂、磁链反馈信号不易获取等缺点,而转差频率矢量控制方法是按转子磁链定向的间接矢量控制系统,不需要进行磁通检测和坐标变换,并具有控制简单、控制精度高、具有良好的动、静态性能等特点。在分析其控制原理的基础上,应用Matlab/Simulink软件构建了转差频率矢量控制的异步电机调速系统仿真模型,并通过各模块闽的参数配合调节与优化,对其进行了仿真分析。仿真结果验证了,采用转差频率矢量控制的调速系统具有良好的控制性能。 关键词:转差频率;矢量控制;Matlab/Simulink;调速系统 0 引言 常用的电机变频调速控制方法有电压频率协调控制(即v/F比为常数)、转差频率控制、矢量控制以及直接转矩控制等。其中,矢量控制是目前交流电动机较先进的一种控制方式。它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。其中基于转差频率控制的矢量控制方式是在进行U/f恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对输出频率f进行控制的。采用这种控制方法可以使调速系统消除动态过程中转矩电流的波动,从而在一定程度上改善了系统的静态和动态性能,同时它又具有比其它矢量控制方法简便、结构简单、控制精度高等特点。 Simulink仿真系统是Matlab最重要的组件之一,系统提供了标准的模型库,能够帮助用户在此基础上创建新的模型库,描述、模拟、评价和细化系统,从而达到系统分析的目的。在此利用Matlab/Simulink软件构建了转差频率矢量控制的异步电机调速系统仿真模型,并对此仿真模型进行了实验分析。 1 转差频率矢量控制系统 1.1 数学模型 转差频率矢量控制是按转子磁链定向的间接矢量控制系统,不需要进行复杂的磁通检测和繁琐的坐标变换,只要在保证转子磁链大小不变的前提下,通过检测定子电流和旋转磁场角速度,通过两相同步旋转坐标系(M-T坐标系)上的数学模型运算就可以实现间接的磁场定向控制。其控制的基本方程式如下: 电压方程:

矢量控制的原理

矢量控制的原理 矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的 具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。 直接转矩控制也称之为“直接自控制”,这种“直接自控制”的思想是以转矩为中心来进行磁链、转矩的综合控制。和矢量控制不同,直接转矩控制不采用解耦的方式,从而在算法上不存在旋转坐标变换,简单地通过检测电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得差值,实现磁链和转矩的直接控制。 矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的 。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。 基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子

转差频率矢量控制系统PI调节器参数计算

转差频率矢量控制系统PI调节器参数计算 矢量控制PI调节器参数计算 1引言 在转差频率型间接磁场定向控制装置中,转子磁链空间矢量ψr的大小与空间相位角是用所测得的定子电流和转速求得的。在转子磁链定向矢量控制中,仅考虑转子磁通的稳态方程,就可以从转子磁通直接得到定子电流d轴分量的给定值,再通过对定子电流的有效控制,就形成转差矢量控制。转差频率型间接磁场定向控制由于其控制简单已在实际中广泛应用,“和谐号”CRH2动力分散型高速动车组就是采用该控制算法[1] 。 本文根据转差频率矢量控制原理,采用连续系统的工程设计方法,对转差频率矢量控制系统的PI调节器进行设计和参数计算,并仿真验证设计的有效性和可行性。 2转差频率矢量控制系统传函 转差频率矢量控制基本框图如图1所示。 图1 转差频率矢量控制模型 根据转差频率矢量控制原理,可得下列表达式: Lmisd=ψrd(1) 其中, Lm——定转子互感; isd——定子电流d轴分量; ψrd——转子磁链d轴分量。 该控制算法可以由下列方程表示[3]

(2) Tem——电磁转矩; Pn——极对数; ωsl——转差频率。 由转差频率矢量控制方程式可得 注意到上式中存在和ωs有关的旋转电动势耦合项,因为Lmisd=ψrd,令 (3) (4) (5) (6) 从而有

根据式(2)中,考虑到矢量控制过程中ψrd保持恒定,因而ψrd=const为常数,则写成传递函数形式为 (7) 图2为一个转差频率矢量控制系统的传递函数框图。 图2 转差频率矢量控制系统的传递函数框图 3 PI调节器设计 3.1 定子电流调节器设计 在控制系统中选择定子电流作为控制变量的根本原因是:在进行磁场定向控制时,电磁转矩和磁通解耦后直接受控于定子电流的转矩分量与磁通分量,通过控制定子电流就能有效地控制转矩和磁通。另外,电流调节器在一定意义上可以认为具有理想电流源的特性,可以不考虑电机的定子侧由于电阻、电感或反电动势造成的动态行为,使控制系统的阶数降低,同时也降低了控制环节的复杂性。

TI公司官网源代码基于TMS320F2812的永磁同步电动机空间矢量控制的算法实现

第7章基于TMS320F2812的永磁同步电动机控制 例1、空间矢量算法实现 SVGEN_DQ对象结构体定义 typedef struct { _iq Ualpha; // 输入:α轴参考电压 _iq Ubeta; // 输入:β轴参考电压 _iq Ta; // 输出:参考相位a开关函数 _iq Tb; // 输出:参考相位b开关函数 _iq Tc; // 输出:参考相位c开关函数 void (*calc)(); // 函数指针 } SVGENDQ; typedef SVGENDQ *SVGENDQ_handle; SVGEN_DQ模块调用方法: main() { } void interrupt periodic_interrupt_isr() { svgen_dq1.Ualpha = Ualpha1; // 提供输入参数:svgen_dq1 svgen_dq1.Ubeta = Ubeta1; // 提供输入参数:svgen_dq1 svgen_dq2.Ualpha = Ualpha2; // 提供输入参数:vgen_dq2 svgen_dq2.Ubeta = Ubeta2; // 提供输入参数:svgen_dq2 svgen_dq1.calc(&svgen_dq1); // 调用函数模块svgen_dq1 svgen_dq2.calc(&svgen_dq2); // 调用函数模块svgen_dq2 Ta1 = svgen_dq1.Ta; // 访问运算结果svgen_dq1 Tb1 = svgen_dq1.Tb; // 访问运算结果svgen_dq1 Tc1 = svgen_dq1.Tc; // 访问运算结果svgen_dq1 Ta2 = svgen_dq2.Ta; // 访问运算结果svgen_dq2 Tb2 = svgen_dq2.Tb; // 访问运算结果svgen_dq2 Tc2 = svgen_dq2.Tc; // 访问运算结果svgen_dq2 } 为进一步了解空间矢量算法的基本原理,下面给出空间矢量模块的源代码: void svgendq_calc(SVGENDQ *v) { _iq Va,Vb,Vc,t1,t2; _iq sector = 0; /*设相位置(sector)等于Q0 */ /*逆clarke变换*/ Va = v->Ubeta; Vb = _IQmpy(_IQ(-0.5),v->Ubeta) + _IQmpy(_IQ(0.8660254),v->Ualfa); /* 0.8660254 = sqrt(3)/2 */

转差频率间接矢量控制.doc

第一章绪论 1.1异步电动机调速系统的简介 根据采用的电流制式不同,电动机分为直流电动机和交流电动机两大类,其中交流电动机拥有量最多,提供给工业生产的电量多半是通过交流电动机加以利用的。异步电动机广泛应用于工业、农业、国防各领域,其总用电量占全国工业用电量的60%以上。在额定负载附近运行时异步电动机的效率最高,如对于额定功率为1~75kw的电机,额定工作点的效率在74~92%之间。但在轻载时仍运行于额定磁通,励磁电流不变,由于铁损和由励磁电流产生的定子铜损保持不变,电机的运行效率和功率因数会明显下降。因此,对于长期轻载运行或负载变化范围较宽的异步电动机,存在很大的节能空间。所以对异步电动机的速度控制方式进行研究就显得极为重要。为了控制电动机的运行,就要为电动机配上控制装置。电动机+控制装置=电力传动自动控制系统。以直流电动机作为控制对象的电力传动自动控制系统称之为直流调速系统;以交流电动机作为控制对象的电力传动自动控制系统称之为交流调速系统。 1.1.1直流调速系统的缺点 众所周知,直流电动机的转速比较容易控制和调节,在额定转速下,保持励磁电流不变,可用改变电枢电压的方法实现恒转矩调速;在额定转速以上,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。因此,长期以来(在20世纪80年代以前)在变速传动领域中,直流调速一直占据主导地位。但是,由于直流电机本身结构上存在机械式换向器和电刷这一致命弱点,这给直流调速的开发和应用带来了一系列的限制。 (1) 机械式换向器表面线速度及换向电流、电压有一定极限容许值,这就限制了单机的转速和功率。如果要超过极限容许值,则大大增加电机制造的难度和成本,以及调速系统的复杂性。因此,在工业生产上,对一些要求特高转速、特大功率的场合则根本无法采用直流调速方案。 (2) 为了使机械换向器能够可靠工作,往往增大电枢和换向直径,导致电机转动惯量很大。对于要求快速响应的生产工艺,采用直流调速方式难以实现。 (3) 机械式换向器必须经常检查和维修,电刷必须定期更换。这就表明了直流调速系统维检工作量大,维修费用高,同时停机检修和更换电刷也直接影响了正常生产。 (4) 在一些易燃、易爆的生产场合,一些多粉尘、多腐蚀性气体的生产场合不能或不易使用直流电机。由于直流电动机在应用中存在着这样的一些限制,使得直流调速系统的应用也相应受到了限制。 1.1.2交流调速系统的发展现状及分类 采用无换向器的交流电动机作为调速传动设备代替直流调速传动可以突破这些限制,满足生产发展对调速传动的各种不同的要求。交流电动机,特别是鼠笼型异步电机,具有结构简单、制造容易、价格便宜、坚固耐用、转动惯量小、运行可靠、很少维修、使用环境及结构发展不受限制等优点。但是长期以来由于受科技发展的限制,把交流电动机作为调速电机的困难问题未能得到较好的解决,只有一些调速性能差、低效耗能的调速方法,如:绕线式异步电机转子外串电阻及机组式串级调速方法。鼠笼式异步电机定子调压调速方法(自耦变压器、饱和电抗器)及后来的电磁(滑差离合器)调速方法。 20世纪60年代以来后,由于生产发展的需要和节省电能的要求,促使世界各国重视交流调速

相关主题
文本预览
相关文档 最新文档