当前位置:文档之家› 二自由度冗余驱动并联机器人的动力学建模及控制研究

二自由度冗余驱动并联机器人的动力学建模及控制研究

二自由度冗余驱动并联机器人的动力学建模及控制研究
二自由度冗余驱动并联机器人的动力学建模及控制研究

机器人的动力学控制

机器人的动力学控制 The dynamics of robot control 自123班 庞悦 3120411054

机器人的动力学控制 摘要:机器人动力学是对机器人机构的力和运动之间关系与平衡进行研究的学科。机器人动力学是复杂的动力学系统,对处理物体的动态响应取决于机器人动力学模型和控制算法。机器人动力学主要研究动力学正问题和动力学逆问题两个方面,需要采用严密的系统方法来分析机器人动力学特性。本文使用MATLAB 来对两关节机器人模型进行仿真,进而对两关节机器人进行轨迹规划,来举例说明独立PD 控制在机器人动力学控制中的重要作用。 Abstract: for the robot dynamics is to study the relation between the force and movement and balance of the subject.Robot dynamics is a complex dynamic system, on the dynamic response of the processing object depending on the robot dynamics model and control algorithm.Kinetics of robot research dynamics problem and inverse problem of two aspects, the need to adopt strict system method for the analysis of robot dynamics.This article USES MATLAB to simulate two joints, the robot, in turn, the two joints, the robot trajectory planning, to illustrate the independent PD control plays an important part in robot dynamic control. 一 动力学概念 机器人的动力学主要是研究动力学正问题和动力学逆问题两个方面,再进一步研究机器人的关节力矩,使机器人的机械臂运动到指定位臵,其控制算法一共有三种:独立PD 控制,前馈控制和计算力矩控制,本文主要介绍独立PD 控制。 动力学方程:)()(),()(q G q F q q q C q q M +++=? ????τ

02-课件:5-4 机器人动力学建模(牛顿-欧拉法)

连杆动力学方程(牛顿-欧拉递推方法) 将机器人的连杆看成刚体,其质心加速度、总质量、角速度、 角加速度、惯性 张量与作用力矩满足如下关系: 牛顿第二定律 (力平衡方程) ()/ci i ci i ci d m dt m ==f v v 欧拉方程 (力矩平衡方程)()()/c c c ci i i i i d dt ==+?i i i n I ωI ω ωI ω

连杆动力学方程(牛顿-欧拉递推方法)

欧拉方程公式推导 v 为质心移动速度(移动时与惯性力相关)坐标系旋转时,惯性张量不是常量()()/c c c ci i i i i d dt ==+?i i i n I ωI ωωI ω ()() =[()] =[] =()c c c ci i i i c c i i i c c i i i c c i i i d d dt dt S ==+++?+?i i i i i i i i i n I ωI ωωI I ωωωI I ωωωI I ωωI ω ()()g d m dt =?+??+N I ωωI ωρ×v

力和力矩平衡方程 i i+1i-1iP i+1i fi i n i i f i+1i n i+1连杆i 在运动情况下,作用在上面 的合力为零,得力平衡方程式 (暂时不考虑重力): (将惯性力作为静力来考虑) 1 11f f R f +++=-i i i i ci i i i

力和力矩平衡方程 作用在连杆i 上的合力矩等于零,得力矩平衡方程式:1111111i i i i i i i i i ci i i i ci ci i i i +++++++=- -?-?n n R n r f P R f 将上式写成从末端连杆向内迭代的形式:111i i i i i i i ci +++=+f R f f 1111111i i i i i i i i i i i i ci ci ci i i i +++++++=++?+?n R n n r f P R f 利用这些公式可以从末端连杆n 开始,顺次向内递推直至到操作臂的基座。

简单串联机器人ADAMS仿真

机械系统动力学 简化串联机器人的运动学与动力学仿真分析 学院:机械工程学院 专业:机械设计制造 及其自动化 学生姓名: 学号: 指导教师: 完成日期: 2015.01.09

摘要 在机器人研究中,串联机器人研究得较为成熟,其具有结构简单、成本低、控制简单、运动空间大等优点,已成功应用于很多领域。本文在ADAMS 中用连杆模拟两自由度的串联机器人(机械臂),对其分别进行运动学分析、动力学分析。得出该机构在给出工作条件下的位移、速度、加速度曲线和关节末端的运动轨迹。 关键词:机器人;ADAMS;曲线;轨迹 一、ADAMS软件简介 ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.) (现已并入美国MSC公司)开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。 二、简化串联机器人的运动学仿真 (1)启动ADAMS/View。 在欢迎对话框中选择新建模型,模型取名为robot,并将单位设置为MMKS,然后单击OK。 (2)打开坐标系窗口。 按下F4键,或者单击菜单【View】→【Coordinate Window】后,打开坐标系窗口。当鼠标在图形区移动时,在坐标窗口中显示了当前鼠标所在位置的坐标值。

机器人动力学汇总

机器人动力学研究的典型方法和应用 (燕山大学 机械工程学院) 摘 要:本文介绍了动力学分析的基础知识,总结了机器人动力学分析过程中比较常用的动力学分析的方法:牛顿—欧拉法、拉格朗日法、凯恩法、虚功原理法、微分几何原理法、旋量对偶数法、高斯方法等,并且介绍了各个方法的特点。并通过对PTl300型码垛机器人弹簧平衡机构动力学方法研究,详细分析了各个研究方法的优越性和方法的选择。 前 言:机器人动力学的目的是多方面的。机器人动力学主要是研究机器人机构的动力学。机器人机构包括机械结构和驱动装置,它是机器人的本体,也是机器人实现各种功能运动和操作任务的执行机构,同时也是机器人系统中被控制的对象。目前用计算机辅助方法建立和求解机器人机构的动力学模型是研究机器人动力学的主要方法。动力学研究的主要途径是建立和求解机器人的动力学模型。所谓动力学模指的是一组动力学方程(运动微分方程),把这样的模型作为研究力学和模拟运动的有效工具。 报告正文: (1)机器人动力学研究的方法 1)牛顿—欧拉法 应用牛顿—欧拉法来建立机器人机构的动力学方程,是指对质心的运动和转动分别用牛顿方程和欧拉方程。把机器人每个连杆(或称构件)看做一个刚体。如果已知连杆的表征质量分布和质心位置的惯量张量,那么,为了使连杆运动,必须使其加速或减速,这时所需的力和力矩是期望加速度和连杆质量及其分布的函数。牛顿—欧拉方程就表明力、力矩、惯性和加速度之间的相互关系。 若刚体的质量为m ,为使质心得到加速度a 所必须的作用在质心的力为F ,则按牛顿方程有:ma F = 为使刚体得到角速度ω、角加速度εω= 的转动,必须在刚体上作用一力矩M , 则按欧拉方程有:εωI I M += 式中,F 、a 、M 、ω、ε都是三维矢量;I 为刚体相对于原点通过质心并与刚

基于动力学模型的轮式移动机器人运动控制_张洪宇

文章编号:1006-1576(2008)11-0079-04 基于动力学模型的轮式移动机器人运动控制 张洪宇,张鹏程,刘春明,宋金泽 (国防科技大学机电工程与自动化学院,湖南长沙 410073) 摘要:目前,对不确定非完整动力学系统进行设计的主要方法有自适应控制、预测控制、最优控制、智能控制等。结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器的设计和研究进展进行综述,并分析今后的重点研究方向。 关键词:轮式移动机器人;动力学模型;运动控制;非完整系统 中图分类号:TP242.6; TP273 文献标识码:A Move Control of Wheeled Mobile Robot Based on Dynamic Model ZHANG Hong-yu, ZHANG Peng-cheng, LIU Chun-ming, SONG Jin-ze (College of Electromechanical Engineering & Automation, National University of Defense Technology, Changsha 410073, China) Abstract: At present, methods of non-integrity dynamic systems design mainly include adaptive control, predictive control, optimal control, intelligence control and so on. Based on analyzing the recent results in modeling of WMR dynamics, a survey on motion control of WMR based on dynamic models was given. In addition, future research directions on related topics were also discussed. Keywords: Wheeled mobile robot; Dynamic model; Motion control; Non-integrity system 0 引言 随着生产的发展和科学技术的进步,移动机器人系统在工业、建筑、交通等实际领域具有越来越广泛的应用和需求。进入21世纪,随着移动机器人应用需求的扩大,其应用领域已从结构化的室内环境扩展到海洋、空间和极地、火山等环境。较之固定式机械手,移动机器人具有更广阔的运动空间,更强的灵活性。移动机器人的研究必须解决一系列问题,包括环境感知与建模、实时定位、路径规划、运动控制等,而其中运动控制又是移动机器人系统研究中的关键问题。故结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器设计理论和方法的研究进展进行研究。 1 WMR动力学建模 有关WMR早期的研究文献通常针对WMR的运动学模型。但对于高性能的WMR运动控制器设计,仅考虑运动学模型是不够的。文献[1]提出了带有动力小脚轮冗余驱动的移动机器人动力学建模方法,以及WMR接触稳定性问题和稳定接触条件。文献[2]提出一种新的WMR运动学建模的方法,这种方法是基于不平的地面,从每个轮子的雅可比矩阵中推出一个简洁的方程,在这新的方程中给出了车结构参数的物理概念,这样更容易写出从车到接触点的转换方程。文献[3]介绍了与机器人动作相关的每个轮子的雅可比矩阵,与旋转运动的等式合并得出每个轮子的运动方程。文献[4]基于LuGre干摩擦模型和轮胎动力学提出一种三维动力学轮胎/道路摩擦模型,不但考虑了轮胎的径向运动,同时也考虑了扰动和阻尼摩擦下动力学模型,模型不但可以应用在轮胎/道路情况下,也可应用在对车体控制中。在样例中校准模型参数和证实了模型,并用于广泛应用的“magic formula”中,这样更容易估计摩擦力。在文献[5]中同时考虑运动学和动力学约束,其中提出新的计算轮胎横向力方法,并证实了这种轮胎估计的方法比线性化的轮胎模型好,用非线性模型来模拟汽车和受力计算,建立差动驱动移动机器人模型,模型本身可以当作运动控制器。 2 WMR运动控制器设计的主要发展趋势 在WMR控制器设计中,文献[6]给出了全面的分析,WMR的反馈控制根据控制目标的不同,可以大致分为3类:轨迹跟踪(Trajectory tracking)、路径跟随(Path following)、点镇定(Point stabilization)。轨迹跟踪问题指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随给定的参考轨迹。路径跟随问题是指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随指定的几何 收稿日期:2008-05-19;修回日期:2008-07-16 作者简介:张洪宇(1978-)男,国防科学技术大学在读硕士生,从事模式识别与智能系统研究。 ,

二自由度机器人的位置控制

实验二自由度机器人的位置控制 一、实验目的 1. 运用Matlab语言、Simulink及Robot工具箱,搭建二自由度机器人的几何模 型、动力学模型, 2. 构建控制器的模型,通过调整控制器参数,对二自由度机器人的位姿进行控 制,并达到较好控制效果。 二、工具软件 1.Matlab软件 2.Simulink动态仿真环境 3.robot工具箱 模型可以和实际中一样,有自己的质量、质心、长度以及转动惯量等,但需要注意的是它所描述的模型是理想的模型,即质量均匀。这个工具箱还支持Simulink的功能,因此,可以根据需要建立流程图,这样就可以使仿真比较明了。 把robot 工具箱拷贝到MATLAB/toolbox文件夹后,打开matalb软件,点击file--set path,在打开的对话框中选add with subfolders,选中添加MATLAB/toolbox/robot,保存。这是在matlab命令窗口键入roblocks就会弹出robot 工具箱中的模块(如下图)。

三、实验原理 在本次仿真实验中,主要任务是实现对二自由度机器人的控制,那么首先就要创建二自由度机器人对象, 二自由度机器人坐标配置 仿真参数如下表1: 表1 二连杆参数配置

1.运动学模型构建二连杆的运动学模型,搭建twolink模型在MATLAB命令窗口下用函数drivebot(WJB)即可观察到该二连杆的动态位姿图。 %文件名命名为自己名字的首字母_twolink %构造连杆一 L{1}=link([0 0.45 0 0 0],'standard') ; L{1}.m=23.9 ;

空间二连杆机器人的动力学建模及其动态过程仿真

空间二连杆机器人的动力学建 模 及其动态过程仿真 作者:td 一引言 1.机器人机械臂的运动学与动力学分析方法 目录 空间二连杆机器人的动力学建模 (1) 及其动态过程仿真 (1) 作者:td (1) 一引言 (1) 1.1用户界面模块(ADAMS/View) (4) 1.2求解器模块(ADAMS/Solver) (5) 1.3后处理模块(ADAMS/PostProcessor) (6) 二.空间二连杆机器人adams建模仿真 (6) 2.1空间二连杆串联机器人 (6) 在ADAMS中用长方形连杆模拟机械臂,对两自由度的机械臂分别进行运动学分析动力学分析。 (6) 2.1.1运动学分析 (6) 2.1.2运动学分析 (9)

机器人的运动学和动力学既包含有一般机械的运动学、动力学内容,又反映了机器人的独特内容。工业机器人的运动学主要讨论了运动学的正问题和逆问题。假设一个构型已知的机器人,即它的所有连杆长度和关节角度()1q t ,()2q t ,()3q t …()n q t ,…都是已知的,其中n 为自由度数,那么计算机器人末端执行器相对于参考坐标系的位姿就称为运动学的正问题分析。换言之,如果已知机器人所有的关节变量,用正运动学方程就能计算任一瞬间机器人的位姿。然而,如果希望机器人的末端执行器到达一个期望的位姿,就必须要知道机器人操作臂每一个连杆的几何参数和所有关节的角矢量()12,,T n q q q q =???利用操作臂连杆几何参数和末端执行器期望的位姿来求解关节角矢量是运动学逆问题。运动学正问题可以利用齐次变换法来求解。设i 杆坐标系相对于基座坐标系的位姿齐次变换矩阵是b i T ,则 1231b i n n T A A A A A -=?????? ()11- 式中i A 为i 杆坐标系相对于1i -杆坐标系的坐标变换矩阵。相对于正运动学方程,机器人逆运动学方程显得更为重要。由于按给定末端执行器的位姿求解关节变量是在关节空间中进行非线性方程的求解,其中涉及多值性和奇异现象,因此,这一逆问题成为机器人运动学中的一个重要内容。机器人的控制器将用这些方程来计算关节值,并以此来运行机器人到达期望的位姿。机器人逆问题可有多种解法,如逆变换法、旋量代数法、数值迭代法、几何法等,其中Jaeobian 矩阵的速算法占有重要的地位。机器人作为多自由度可编程的工作系统,在运动学中研究的内容还有末端操作器运动规划、工作空间确定、位姿精度分析与补偿等。目前,对于一般机器人运动学的逆问题大部分都得到了解决,但是,对于有任意结构和有冗余自由度机器人的运动学逆问题,研究得还不够充分。 机器人操作臂的动力学建模主要是研究各主动关节的驱动力与操作臂运动的关系。机器人操作臂是一个十分复杂的动力学系统。机器人动力学方程的非线性特点和强耦合性使得对它的研究十分困难和复杂。目前人们已经提出了许多种动力学建模方法,分别基于不同的力学方程和原理。C .T .Lin ,Calafiore 等对Newton —Euler 动力学建模方法和Lagrange 方法在简化递推过程及减少运算次数上做了不少有益的工作;有些学者从计算机符号代数方向推导并行算法来进行研究;T .R .Kane 等发展了利用偏速度和广义力建模的Kane 方程法;有些学者利用广义d ’Alembert 原理来进行建模;还有人研究用图论进行机器人动力学分析的方法。其中以Newton —Euler 动力学建模方法及d ’Alembert 建模方法(或以这两种方法为基础)应用最为普遍。Newton —Euler 方法具有递推的形式,非常适合于数值计算,与

相关主题
文本预览
相关文档 最新文档