当前位置:文档之家› 微膨胀纤维混凝土的研究及应用

微膨胀纤维混凝土的研究及应用

微膨胀纤维混凝土的研究及应用
微膨胀纤维混凝土的研究及应用

混凝土膨胀剂

混凝土膨胀剂 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

混凝土膨胀剂(G B23439--2009) 1 分类 1) 按水化产物分:硫铝酸钙类(代号A)、氧化钙类(代号C)、硫铝酸钙-氧化钙(代 号AC). 2)按混凝土膨胀剂膨胀限制率分为Ⅰ型和Ⅱ型。 2标记本标准所涉及的混凝土膨胀剂产品名称标注为EA. 标记按产品名称、代号、型号、标准号。 例如:RACⅡGB23439-2009 3化学指标 1)氧化镁含量:不大于5%。 2)碱含量:不大于%。(以NaO+计算值). 4混凝土膨胀剂物理性能指标 5验规则:出产检验项目细度、凝结时间、水中7d限制膨胀率、抗压强度。 6样品编号: 1)日产超过0吨时。不足200吨为一个编号。不足200吨时,以日产量为一编号。 2)取样有代表性,可连续性,也可从20个不同部位取等量样。总量不低于10千克。

7判定规则实验结果符合化学成分和物理性能全部要求时,判定该产品合格;否则判定不合格。 8报告产品发出之日起12日寄发除28天抗压强度外的各项检测结果,32天内补报28天强度。 砂浆、混凝土防水剂(JC474-2008) 1砂浆匀质性指标 2受检混凝土的性能指标

注1)安定性是受检净浆试验结果,凝结时间为受检混凝土与基准混凝土的差值,其他数据为受检混凝土与基准混凝土的比值。 2)“-"号表示提前。 3检验规则 各项符合防水剂减水剂匀质性指标。 4品次与抽样 1)年产不低于500吨的以50吨,年产500吨以下的每30吨,不足50吨或30吨的,也按一个品次计。 2)抽样每次抽样量不少于0.2吨水泥所需用的外加剂量。 3)封存时间180天。 5检验型式检验在有效期内,检验结果符合防水剂匀质性各项指标。 6检验判定所检验匀质性和受检混凝土的性能指标要求,可判定为响应等级的产品,如不符合上述要求则不合格。 混凝土外加剂匀质性比对试验允许值(GB/T8077-2000) 水泥比对试验允许偏差值

纤维混凝土技术模板

目录 一、编制依据 (1) 二、工程概况 (1) 三、聚丙烯纤维混凝土简介 (1) 五、施工部署 (4) 六、施工准备 (6) 七、混凝土浇筑工作安排 (8) 八、聚丙烯纤维混凝土施工及养护 (9) 九、安全文明及环境保护施工措施 (11)

1编制依据 1.1施工合同; 1.2中国建筑设计研究院设计的本工程施工图纸 1.3依据的主要施工及验收规范及图集: 2.工程概况2.1工程总体概况 奥林匹克公园瞭望塔工程,占地面积6500川左右,总建筑面积为17976.50〃,其中地下13030 ,地上4946.5 m2,结构形式为高耸

钢结构、框架剪力墙结构。结构自下而上由塔座大厅、塔身、顶部塔楼三部分组成, 结构顶标高246.8m。 塔座大厅为钢筋混凝土框架、剪力墙结构, 屋盖为大跨度钢筋混凝土根部加腋梁结构。塔座大厅最大高度18.5m。 塔身、顶部塔楼为钢结构, 由五个直径与高低各不相同的单塔组成, 分别为1#塔、2#塔、3#塔、4#塔、5#塔。每个单塔均由圆柱状塔身与塔楼树冠形的观景厅、上人的观景平台组成。各塔身之间利用结构伸臂行架设有疏散连接通道。 2.2聚丙烯混凝土工程概况 按设计要求, 大屋面、拱形入口、椭圆形采光筒以及一些上部有覆土要求的 按设计要求, 大屋面、拱形入口、椭圆形采光筒以及一些上部有覆土要求的结 构构件, 不得漏水、渗水和出现大的裂缝的要求。本工程对这些有特殊要求的构件在混凝土中掺入聚丙烯纤维材料, 使其达到设计的要求。 3. 聚丙烯纤维混凝土简介 3.1 对聚丙烯纤维的认识 聚丙烯纤维是一种以聚丙烯为主要原料, 以独特生产工艺制造的高强度束桩单丝纤维 聚丙烯纤维束

微膨胀混凝土施工注意事项

微膨胀混凝土施工 注意事项

混凝土膨胀剂使用中存在的误区及应注意的问题 1、膨胀剂使用中存在的误区 (1)、掺膨胀剂的补偿收缩混凝土配合比设计不明,膨胀剂采用何种方法不明确。当使用粉煤灰掺合料时,配比又应当如何设计?在配制防渗混凝土时,按规范规定:水泥用量不得小于3 00kg/ m3,如掺入粉煤灰,则水泥用量不得小于280kg/m3。以此为基准设计膨胀剂的混凝土配合比。由于各厂的水泥和粉煤灰活性不同,各地砂石质量差异较大,施工选用混凝土的坍落度也不同,因此,试验室应参考以往的经验,结合试验中得到的技术参数,确定基准混凝土的水泥和粉煤灰单方用量,再计算膨胀剂的掺量。 (2)、大多数施工单位委托试验和与混凝土搅拌站签定合同时,只要求提供满足掺膨胀剂混凝土的坍落度、强度和抗渗等级的配合比数据,不提混凝土限制膨胀率的指标。存在膨胀剂“一掺就灵”的盲目思想,这是使用膨胀剂的最大误区。根据GB J119—88规范,掺膨胀剂的补偿收缩混凝土的特性指标是:水中养护14d的限制膨胀率≥0.015%。膨胀剂主要用途是补偿收缩,根据大量工程实践表明,防水工程的底板混凝土的限制膨胀率ε2=0.02% 0.025%,侧墙ε2=0.03% 0.035%后浇带或膨胀加强带ε2=0.035%- 0.045%为宜。不同的结构部位的抗裂要求不同,因此,膨胀剂掺量是不同的。由于膨胀剂与水泥及减水剂(泵送剂)之间存在适应性的问题,在同一配合比下,使用不同的水泥

及减水剂(泵送剂),混凝土产生的膨胀率也不同。必要根据工地原材料进行补偿收缩混凝土的试配。在满足混凝土坍落度、强度和抗渗等级的情况下,必须达到设计要求的限制膨胀率,否则就要考虑调整膨胀剂掺量。有些单位把膨胀剂当防水剂使用,这是允许的。一般防水剂只能提高混凝土抗渗性能,但不能满足抗裂性能。而膨胀剂首先解决混凝土结构的抗裂,不裂能够不渗。而达到补偿收缩的抗裂作用,关键是混凝土膨胀率能否满足不同结构的补偿收缩要求。必须指出,厂家推荐的膨胀剂掺量只作参考,试验证明有些厂家的膨胀剂质量波动较大,有的甚至是“调包”的伪劣产品。因此,在使用前一定要检测混凝土的限制膨胀率,并以此作为配合比的主要依据之一。这就要求各检测试验单位应配备检测限制膨胀率的仪器设备和检测人员。 (3)、许多单位反映,膨胀剂替代水泥后,混凝土强度下降,认为少掺膨胀剂为宜,这也是个误区。因为膨胀剂替代率是经过试验而确定的。在实际工程中,混凝土结构则受到钢筋和邻位的约束。试验表明,带模养护的膨胀混凝土试件的限制强度比自由强度高10% --15%,因此,不必担心掺膨胀剂的混凝土强度下降。不能以7d自由强度作判断,应以28d强度是否达到试配强度为准。 (4)、膨胀剂掺量有意和无意少掺是使用补偿收缩混凝土的又一个误区。现实中发现,施工现场不能正确使用试验室提供的混凝土配合比,在实际操作中,许多工地和搅拌站没有专门的

钢纤维混凝土

钢纤维混凝土 随着国民经济建设和公路交通事业的飞速发展,城市道路和国道干线公路上的车辆荷载及密度越来越大,行驶速度越来越快,致使路面的损坏也日趋严重起来。特别是对损坏的水泥混凝土路面而言,它不仅翻修投资大,且施工周期较长,严重影响交通畅通及行车安全。如用普通水泥混凝土修复路面虽有强度高,板块性好,有一定的抗磨性及承受气象作用的耐久性好等特点,但它的最大缺陷是脆性大、易开裂、抗温性差,路面板块容易受弯折而产生断裂,所以就要求路面面板应有足够的抗弯、抗拉强度和厚度。用钢纤维混凝土修筑路面,就是意将钢纤维均匀地分散于基体混凝土中(与混凝土一起搅拌),并通过分散的钢纤维,减小因荷载在基体混凝土引起的细裂缝端部的应力集中,从而控制混凝土裂缝的扩展,提高整个复合材料的抗裂性。同时由于混凝土与钢纤维接触界面之间有很大的界面粘结力,因而可将外力传到抗拉强度大、延伸率高的纤维上面,使钢纤维混凝土作为一个均匀的整体抵抗外力的作用,显着提高了混凝土原有的抗拉、抗弯强度和断裂延伸率。特别是提高了混凝土的韧性和抗冲击性。 实践证明,采用钢纤维混凝土这一新型高强复合材料对路面修理,既可提高路面的抗裂性、抗弯曲、耐冲击和耐疲劳性,而且可改善路面的使用性能,延长使用寿命从而减少老路开挖,对节省工程造价等具有重要的经济效益和社会效益;为提高道路补强与改造提供了良好的途径。 1、基本要求 1.1钢纤维混凝土材料 钢纤维混凝土就是在一般普通混凝土中掺配一定数量的短而细的钢纤维所组成的一种新型高强复合材料。由于钢纤维阻滞基体混凝土裂缝的产生,不但具有普通混凝土的优良性能,而且具有良好的抗折、抗冲击、抗疲劳以及收缩率小、韧性好、耐磨耗能力强等特性。可使路面厚度减薄50%以上,缩缝间距可增至15m~30m,不用设胀缝和纵缝。钢纤维混凝土用钢纤维类型有圆直型、熔抽型和剪切型钢纤维。其长度分为各种不同规格,最佳长径比为40~70,截面直径在0.4mm~0.7mm范围内,抗拉强度不低于380mpa.在施工时钢纤维在混凝土中的掺入量为1.0%~2.0%(体积比),但最大掺量不宜超过2.0%。水泥采用425#~525#普通硅酸盐水泥,以保证混合料具有较高的强度和耐磨性能。钢纤维混凝土用的粗骨料最大粒径为钢纤维长度的23.不宜大于20mm.细集料采用中粗砂,平均粒径0.35mm~ 0.45mm,松装密度1.37g/cm3.砂率采用45%~50%。 1.2钢纤维混凝土配合比 钢纤维混凝土混合料配合比的要求首先应使路面厚度减薄,其次是保证钢纤维混凝土有较高的抗弯强度,以满足结构设计对强度等级的要求即抗压强度与抗折强度,以及施工的和易性。钢纤维混凝土配合比设计基本按以下步骤进行。 (1)根据强度设计值以及施工配制强度提高系数,确定试配抗压强度与抗折强度;钢纤维混凝土抗折强度设计值的确定:fftm=ftm(1+atmpflf/df) 式中fftm――钢纤维混凝土抗折强度设计值;ftm――与钢纤维混凝土具有相同的配合材料、水灰比和相近稠度的素混凝土的抗折强度设计值;atm――钢纤维对抗折强度的影响系数(试验确定);pf――钢纤维体积率,%;lf/df――钢纤维长径比,当ftm<6.0n/mm2时,可按表1采用。 (2)根据试配抗压强度计算水灰比;

混凝土膨胀剂

混凝土膨胀剂建材行业标准 应用技术规范、防水工法和建筑构造图集汇编 中国建筑材料科学研究总院 北京中岩特种工程材料公司

编者话 为使混凝土膨胀剂生产厂家、设计、施工、建设和监理单位的技术人员,全面了解最新制定的混凝土膨胀剂建材行业标准,混凝土膨胀剂应用技术规范、补偿收缩混凝土防水工法以及有关地下工程建筑构造图集,现汇编成集,供各方参用。资料来源如下: 1.《混凝土膨胀剂》建材行业标准JC476-2001 ——国家建材工业局2001-02-20批准 2.《混凝土外加剂应用技术规范》国家标准GB50119-2003 ——中华人民共和国建设部、国家质量监督检验检疫总局联合发布3.《UEA补偿收缩混凝土防水工法》YJGF22-92 ——建设部施工管理司颁布,1992年 4.《地下工程防水建筑构造通用图集》88J6-1 ——华北地区建筑设计标准化办公室、西北地区建筑标准设计协作办公室审定,2002年 5.《地下工程防水技术规范》GB50108-2001 ——中华人民共和国建设部2001-07-04批准 应说明的是,混凝土膨胀剂应用技术规范列在GB50119-2003第八章,补偿收缩混凝土防水工法是YJGF22-92的修改稿。 ——编者

中华人民共和国建材行业标准 JC 4 7 6—2001 代替JC 476—1998 混凝土膨胀剂 Expansive agents for concrete 1 范围 本标准规定了混凝土膨胀剂的定义、技术要求、试验方法、检验规则及包装、标志、运输和贮存。 本标准适用于硫铝酸钙类、硫铝酸钙-氧化钙类与氧化钙类粉状混凝土膨胀剂。 2 引用标准 下列标准包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 175-1999 硅酸盐水泥、普通硅酸盐水泥 GB/T 176—1996 水泥化学分析方法(eqv ISO 680:1990) GB/T 1345—1991 水泥细度检验方法(80 m筛筛析法)GB/T 1346—1989 水泥标准稠度用水量、凝结时间、安定性检验方法 (neq ISO/DIS 9597) GB 4357—1989 碳素弹簧钢丝 GB/T 8074—1987 水泥比表面积测定方法(勃氏法) GB 8076—1997 混凝土外加剂 GB/T 12573—1990 水泥取样方法 GB/T 17671—1999 水泥胶砂强度检验方法(ISO法) JC/T 420—1991 水泥原料中氯的化学分析方法 JC 477—1992(1996)喷射混凝土用速凝剂 JGJ 63—1989 混凝土拌和用水标准 3 定义 混凝土膨胀剂是指与水泥、水拌和后经水化反应生成钙矾石、钙矾石和氢氧化钙或氢氧化钙,使混凝土产生膨胀的外加剂。 国家建筑材料工业局2001-02-20批准 2001-10-01实施 1

纤维混凝土施工新技术应用总结

纤维混凝土技术 .1工程概况 本工程地下一层,筏板浇筑厚度为800mm,局部下沉承台1200mm,外墙厚度为300mm 。地下室混凝土用量约为8500m3。根据现场实际施工的特性及其混凝土构件本身的结构性质,地下室抗渗混凝土极易形成结构裂缝而造成渗水。从抗渗混凝土原材料自身特性上进行改良是抗渗混凝土防止裂缝的一项重要措施之一。本工程采用纤维混凝土应用技术,在混凝土原材料中掺入每立方米0.8kg 聚丙烯微细纤维以增强混凝土的抗裂能力,满足地下混凝土结构抗渗要求。 .2聚丙烯纤维混凝土简介 对聚丙烯纤维的认识 聚丙烯纤维是一种以聚丙烯为主要原料,以独特生产工艺制造的高强度束桩单丝纤维。 聚丙烯纤维束 聚丙烯纤维的物化性能参数 原料成分聚丙烯纤维类型束状单丝 当量直径15~45 比重0.91~0.93g/cm3 长度3~40mm 颜色自然色 抗拉强度>500MP 断裂延伸率10~40% 弹性模量≥385MPa 熔点160~180℃ 耐酸碱性(强力保持率)≥94.4% 吸水率无 热传导性低 .3纤维混凝土工作原理 在混凝土内掺入聚丙烯纤维,聚丙烯纤维与水泥集料有极强的结合力,可以迅速而轻易地与混凝土材料混合,分布均匀;同时由于细微,故比表面积大,0.8kg 聚丙烯纤维分布在1m3的混凝土中,则可使每立方米混凝土中就有2000~3000万根纤维不定向分布在其中,故能在混凝土内部构成一种均匀的乱向支撑体系。当微裂缝在细裂缝发展的过程中,必然碰到多条不同向的微纤维,由于遭到纤维的阻

挡,消耗了能量,难以进一步发展。因此,聚丙烯纤维可以有效地抑制混凝土早期干缩微裂的产生和发展,极大地减少了混凝土收缩裂缝。从宏观上解释,就是微纤维分散了混凝土的定向拉应力,从而达到抗裂的效果。聚丙烯纤维混凝土的施工与常规混凝土基本相同,但聚丙烯纤维混凝土在相同配合下,坍落度比普通混凝土降低30%左右,且泌水速度降低,故要进行二次振捣,收面作业应适当加强。拌合物试验内容为纤维对拌合物的含气量、坍落度随时间变化特性、初凝和终凝时间以及泌水速度等的影响。试验结果表明,聚丙烯纤维的掺入对混凝土含气量无影响:掺入纤维后,混凝土初凝提前1~1.5h,终凝也略有提前,同时,聚丙烯纤维的掺入减少了塑性混凝土表面的析水,表现为泌水率下降,泌水推迟20min开始,提早30min结束。与普通混凝土一样,聚丙烯纤维混凝土在拌和后坍落度随时间有所减少,特别在0.5h后,损失速度加快。 1.提高混凝土抗裂性能 混凝土裂缝主要发生在混凝土硬化前,此阶段由于水分的蒸发转移,因而引起混凝土内部塑性裂缝的产生。掺入聚丙烯工程纤维后,在混凝土内部形成一种均匀三维不定向分布的支撑体系,延缓和阻止早期混凝土塑性裂缝的发生和发展,因此起到更为有效的抗裂效果。 2.提高混凝土的抗渗性能 混凝土掺入少量纤维后,抑制了早期干缩裂缝及离析裂缝的产生和发展。使混凝土空隙率大大降低,从而使混凝土抗渗能力大幅度提高,起到很好的抗渗效果。 .4纤维混凝土施工要求 根据工程结构设计对各部位混凝土强度等级的不同要求,对商品混凝土供应商提出试配的要求,商品混凝土供应商根据所选用的水泥品种、砂石级配、含泥量和外加剂等进行混凝土试配,得出优化配合比。 1.混凝土原材料要求 1)水泥 (1)水泥品种:选用强度等级为P.0 42.5的普通硅酸盐水泥,不得采用立窑生产的水泥。在满足混凝土强度的前提下,尽量采用低标号、低细度、少用量;对于控制混凝土的收缩、减小水化热具有很大的作用。

膨胀剂在防水混凝土中的正确应用(一)

膨胀剂在防水混凝土中的正确应用(一) 摘要:从膨胀剂的选择应用,以及防水混凝土设计、施工、养护和维护等诸多方面对膨胀剂在防水混凝土中的应用进行了阐述。 关键词:膨胀剂;防水混凝土;限制膨胀率;掺量 随着膨胀剂在防水混凝土中的广泛应用,因膨胀剂应用不当而引起的质量事故不断发生,以致有人误认为:不掺膨胀剂不裂,掺了反而会裂。膨胀剂在实际工程中的应用效果波动很大,同一种膨胀剂在一个工程中防水抗裂效果显著,用于另外类似的工程中却失败。掺了膨胀剂并非万无一失,不正确的应用甚至适得其反。膨胀剂的应用技术愈来愈引起人们的重视。混凝土中任何材料的应用离不开其综合使用环境,本文着重介绍膨胀剂在防水混凝土中的正确应用。 1、膨胀剂在防水混凝土中的作用机理 水泥水化发生体积收缩,混凝土中的水分蒸发产生干燥收缩,水泥水化产生大量水化热和结构内外温差变化引起收缩,这些收缩都会导致混凝土的裂缝,对结构的刚性自防水是十分不利的。膨胀剂的主要功能是补偿混凝土硬化过程中的早期干缩裂缝和中期水化热引起的温差收缩裂缝,减少收缩开裂,尤其适用于地下、水工、海工、地铁等防水混凝土结构工程。 如目前国内广泛应用的硫酸钙类膨胀剂、若以适宜的掺量掺入混凝土中,可减少混凝土的裂缝。其作用机理为:硫酸钙类膨胀剂与水泥反应形成钙矾石(C3A.CaSO4.32H2),并产生体积膨胀,在钢筋和邻位的约束限制条件下,可在混凝土中建立一定的预压应力(0.2~0.7MPa),改善混凝土的应力状态,提高抗裂性能,补偿混凝土的收缩拉应力,减少裂缝,从而提高防水性能。同时,由于钙矾石具有填充、堵塞毛细孔缝的作用,改善了混凝土的孔结构,降低总孔隙率,从而提高了混凝土的抗渗性能。 然而,膨胀剂并非万能、一掺就灵的,只有科学使用膨胀剂,才能收到理想效果,否则会适得其反。 2、膨胀剂的选用和掺量 2.1结合工程实际选用合适类型的膨胀剂 《混凝土外加剂应用技术规范》GBJ50119—2003中规定,硫铝酸钙类、氧化钙一硫铝酸钙类膨胀剂不能用于长期处于环境温度为80℃以上的工程。虽然规范没有限制长期的时间,但考虑到安全,如果没有足够的降温措施,在厚度2m以上的混凝土结构和厚度1m以上的基础底板等厚大结构中应慎重使用膨胀剂。因为膨胀剂在厚大结构内,水化程度降低,膨胀能减小,甚至钙矾石分解,达不到预期的补偿收缩作用。为防止和减少混凝土温度裂缝,其内外温差一般宜小于25℃。 应用氧化钙类膨胀剂时,由于CaO水化生成Ca(OH)2,而Ca(OH)2化学稳定性差和胶凝性较差,它与CL-、SO42-、Na+、Mg2+等离子进行置换反应,形成膨胀结晶体或被溶析出来,因此从耐久性角度考虑,该类膨胀剂不得用于海水和有侵蚀性介质的工程。 采用复合型膨胀剂,如缓凝型复合膨胀剂,有利于商品混凝土的远距离运输和泵送;抗冻型复合膨胀剂则适用于冬期施工的膨胀混凝土。 2.2选用经过严格检测的膨胀剂 面对市场上种类繁多、良莠不齐的膨胀剂,选用时,最重要的是要看其是否符合《混凝土膨胀剂》JIC475—2001)标准。其中,应特别注意21d空气中限制膨胀率值是否合格。测定限制膨胀率时,对仪器、检验环境等要求非常严格。膨胀剂进入工程现场后,必须经检测合格后才能入库、使用。劣质膨胀剂经常掺加粉煤灰,不能形成足够的膨胀源,限制膨胀率不合格,因而不能很好地起补偿收缩作用。 2.3混凝土限制膨胀率和限制干缩率的检测 2.4确定膨胀剂的合适掺量

膨胀剂在大体积混凝土中的应用

UEA膨胀剂在大体积混凝土中的应用 【摘要】本文通过介绍 U型混凝土膨胀剂的性能和特点及其应用实例,为U 型混凝土膨胀剂今后在工程中的应用和推广提供了有益的借鉴。 【关键词】UEA 混凝土屋面施工 近10年来,混凝土的刚性防水技术获得了极大的发展,混凝土的设计强度等级和设计抗渗标号都在逐步提高。混凝土的防水抗渗性能主要取决于其密实程度。提高刚性混凝土的自防水能力应从提高混凝土的密实性和控制混凝土内部裂缝的产生两方面入手。 一、UEA混凝土控制裂缝(防水)原理 UEA混凝土能够避免或减少混凝土结构开裂,达到自防水的效果,可以从应力和应变两方面解释: 1、应力方面 混凝土的抗拉强度低,相当其抗压强度的7%~11%。混凝土的开裂主要是因为其内部拉应力超过混凝土的抗拉强度所致。在限制条件下,补偿收缩混凝土自身膨胀,对限制体(如钢筋、相邻物体等)产生拉应力。与此同时,限制体反向作用于混凝土压应力。正是这种应力不同程度地抵消了可能导致混凝土开裂的拉应力,从而避免或减少混凝土的开裂。 2、应变方面

补偿收缩混凝土主要有膨胀和收缩两种变形,它们在自由(非限制)、限制两种条件下的结果不同。在工程结构中,混凝土的变形是限制条件下出现的。 有限制膨胀条件下,补偿收缩混凝土内部产生相向收缩变形,抵消了部分自由膨胀产生的背向变形,使混凝土质点间距缩小,内部组织结构致密, 避免或减少了混凝土开裂。 在限制收缩条件下,补偿收缩混凝土内部产生的相向变形,使混凝土质点间距增大,内部组织结构拉伸, 导致混凝土开裂。 从上述可知:在限制条件下, 补偿收缩混凝土的膨胀变形能够有效地避免或减少混凝土结构的开裂, 从而增强了结构的抗裂、防水性能。 二、U型混凝土膨胀剂的化学成分和物理性能 U型混凝土膨胀剂又称UEA混凝土膨胀剂,是用特种膨胀熟料、明矾石和石膏共同粉磨而成的高效复合膨胀剂。 内掺适量UEA的混凝土和未掺UEA的普通混凝土相比,凝固前的流变性质相近。掺UEA的混凝土的坍落度损失比普通混凝土稍快,凝结时间稍短,但不影响施工。在规定掺量下,混凝土28d抗压强度与不掺UEA的普通混凝土强度大致相同,后期强度持续增长。随UEA掺量的增多,混凝土的膨胀率增加,强度有所降低。一般情况下,在水泥内掺10%~14%的UEA可以获得良好的膨胀性能且对强度影响不大。UEA的最佳加入量应根据工程的要求和选用水泥的强度而定。 三、UEA的材料特性

钢纤维混凝土及其在桥面铺装中的应用

钢纤维混凝土及其在桥面铺装中的应用 钢纤维混凝土(Steel Fiber REinforced Concrent. 简称SFRC)是一种由水泥、粗细集料和随机分布的短钢纤维组合而成的复合材料。钢纤维混凝土中的钢纤维呈三维乱向分布,沿每个方向都有增强和增韧的作用,尤其对复杂应力区增强非常有效,可使混凝土物理力学性能产生质的变化,大大提高混凝土抗裂性能和抗冲击性能,使原本脆性的混凝土材料呈现很高的延性和韧性,以及优良的抗冻、耐磨性能,特别适用于要求连续、快速浇注混凝土的较大工程 桥梁的混凝土桥面铺装层由于重型车辆的使用、交通量的增加,损坏非常严重,维修周期越来越短,这不仅妨碍了交通安全,也给维修工作带来不便。若改用SFRC 铺装桥面层,则可使面层厚度减薄,伸缩缝间距加大,从而改善桥面的使用性能,降低维修费用,延长使用寿命 SFRC 应用于桥面铺装层,一般有两种:一种为部分粘结式的铺装层;一种为SFRC 增强钢筋网或钢丝网混凝土铺装层,亦称为复合式铺装层 钢纤维的品种及性能是影响钢纤维混凝土质量的主要因素,钢纤维主要有以下几种:切断钢纤维。剪切钢纤维。熔抽钢纤维 钢纤维对混凝土的增强表现在当混凝土基体刚刚出现微裂缝时,钢纤维混凝土并未立即破坏,而是随着裂缝的稳定扩展,承载力继续上升,直到裂缝宽度增大到一个临界值时,钢纤维逐渐拔动或拔出,钢纤维混凝土才由于发生突然性的裂缝失稳扩展而破坏。为防止钢纤维混凝土因钢纤维被拉断而失去强度,钢纤维的抗拉强度不低于380kPa,钢纤维表面不得有油污和其他妨碍钢纤维与水泥浆粘结的杂质。钢纤维内含有的铁屑及杂质总量不得超过.钢纤维混凝土的水泥用量较一般混凝土高出10左右。细集料砂的粒径为 0.15~5mm,粗集料碎石最大粒径不宜大于20mm 或钢纤维长度的2/ 3.为保证钢纤维拌和物的和易性,混凝土的砂率一般不低于50,必要时掺入减水剂或超塑化剂以降低水灰比

钢纤维混凝土路面施工技术分析

钢纤维混凝土路面施工技术分析 论文关键词:钢纤维混凝土;路面;加铺层;施工 论文摘要:本文首先分析钢纤维混凝土路面优点和钢纤维混凝土的材料性能,并详细阐述了其施工技术和质量控制措施,供广大公路工程技术人员参考。 1前言 钢纤维混凝土是一种纤维型材料与颗粒型材料混杂的复合材料。由于钢纤维的掺入,使脆性的基体成为具有良好韧性的钢纤维增强水泥基复合材料。钢纤维混凝土路面在动荷载下,具有良好的抗冲击、抗弯、抗拉、耐磨性能,疲劳寿命长,并具有良好的阻止和抑制因温度应力引起裂缝产生与扩展的能力。此外,钢纤维混凝土的抗冻性能良好。这些性质与路面

的要求基本一致,并且可以实现按照使用要求设计材料的目的。因而在路面新建、加铺层、路面修补等工程具有广泛的应用前景。但是由于钢纤维的存在,钢纤维混凝土路面质量的优劣不仅取决于混凝土的配合比和钢钎维的性能,同时往往取决于施工质量。钢纤维的存在给混凝土路面施工带来了技术难题,而施工机械的选择及使用对钢纤维混凝土路面的质量产生较为重要的影响。 2钢纤维混凝土路面优点分析 钢纤维混凝土路面具有如下优点: 强度和重量的比值增大。这是纤维混凝土具有优越经济性的重要指标,也是它具有,阔应用前景的重要保证。 抗拉强度和主要由主拉应力控制的抗剪、抗弯强度明显提高。

变形性能明显改善。钢纤维混凝土弹性阶段的变形性能与其他条件相同的素混凝土没有监菩差别,受压弹性模量和泊松比与素混凝土基本相同。韧性足衡量蠼性变形性能的重要指标,钢纤维混凝土的韧性比素混凝土大大提高。 抗裂和抗疲劳性能有较大改善。由于钢纤维对混凝土的阻裂作用,钢纤维混凝土比素混凝土具有更好的软化后性 能和抗疲劳性能。 3钢纤维和钢纤维混凝土的性能 3.1钢纤维基本性能 钢纤维按其制造方式分为切断钢纤维、剪切钢纤维、切削钢纤维和熔抽钢纤维四种。 钢纤维抗拉强度高,但与水泥沙浆的界面粘结性较差。对

混凝土膨胀剂应用技术规范GBJ50119

混凝土膨胀剂应用技术规范GBJ50119-2003 中国混凝土与水泥制品网[2006-11-10]收藏本页打印本页 中华人民共和国国家标准 混凝土膨胀剂应用技术规范GBJ50119-2003 8.1 品种 8.1.1 混凝土工程可采用下列膨胀剂: 1. 硫铝酸钙类; 2. 硫铝酸钙-氧化钙类; 3. 氧化钙类。 8.2 适用范围 8.2.1 膨胀剂的适用范围应符合表8.2.1的规定。 表8.2.1 膨胀剂的适用范围 8.2.2 含硫铝酸钙类、硫铝酸钙-氧化钙类膨胀剂配制的膨胀混凝土(砂浆)不得用于长期环境温度为80℃以上的工程。 8.2.3 含氧化钙类膨胀剂配制的膨胀混凝土(砂浆)不得用于海水或有侵蚀性水的工程。 8.2.4 掺膨胀剂的混凝土只适用于钢筋混凝土工程和填充性混凝土工程。 8.2.5 掺膨胀剂的大体积混凝土,其内部最高温度控制应参照有关规范,混凝土内外温差宜小于25℃。 8.2.6 掺膨胀剂的补偿收缩混凝土刚性屋面宜用于南方地区,其设计、施工应按GB50207《屋面工程质量验收规范》进行。 8.3 掺膨胀剂混凝土(砂浆)的性能要求 8.3.1 施工用补偿收缩混凝土,其性能应满足表8.3.1的要求,限制膨胀率与干缩率的检验应按附录B方法进行;抗压强度的试验应按《普通混凝土力学性能试验方法标准》GB/T50081进行。 表8.3.1 补偿收缩混凝土的性能

8.3.2 填充用膨胀混凝土(砂浆);其性能应满足表8.3.2的要求,限制膨胀率与干缩率的检验按附录B 法进行。 表8.3.2 填充用膨胀混凝土的性能 8.3.3 掺膨胀剂混凝土的抗压强度试验应按《普通混凝土力学性能试验方法标准》GB/T50081进行。填充用膨胀混凝土的强度试件应在成型后第三天拆模。 8.3.4 灌浆用膨胀砂浆:其性能应满足表8.3.4的要求。灌浆用膨胀砂浆用水量按砂浆流动度为250±10mm 的用水量,采用40×40×160mm试模,无振动成型。拆模、养护、强度检验应按《水泥胶砂强度检验方法(ISO法)》GB/T17611进行。竖向限制膨胀率的测定方法应按附录C进行。 表8.3.4 灌浆用膨胀砂浆性能 8.3.5 自应力混凝土:掺膨胀剂的自应力混凝土的性能应符合《自应力硅酸盐水泥》JC/T218的规定。 8.4 设计要求 8.4.1 掺膨胀剂的补偿收缩混凝土的膨胀效能在限制条件下才能产生予压应力,构造(温度)钢筋的设计和特殊部位的附加筋的处理,对控制结构的有害裂缝十分重要。 8.4.2 墙体易于出现纵向收缩裂缝,其水平构造筋的配筋率宜在0.4~0.6%,水平筋的间距应小于150mm,并宜于在墙体的中部或顶端设一道暗梁。 8.4.3 墙体与柱子连接部位宜插入Φ8~Φ10,长度1500~1800mm加强钢筋,插入柱子100~120mm,插入边墙1200~1500mm,其配筋率提高10~15%。 8.4.4 结构开口部、突出部位和出入口部位应增加附加筋。 8.4.5 楼面采用细而密的配筋,钢筋间距小于150mm,配筋率为0.6%左右;现浇钢筋混凝土防水屋面应配双层钢筋网,构造筋间距小于150mm,配筋率宜大于0.5%。楼面和屋面后浇缝最大间距不宜超过40 m。 8.4.6 地下室和水工构筑物的底板和边墙的后浇缝最大间距不超过60m,后浇缝回填时间为14d。底板可不作外防水,但边墙要作附加防水层。 8.5 施工 8.5.1 掺膨胀剂混凝土所采用的原材料应符合下列规定: 膨胀剂:应符合JC476《混凝土膨胀剂》标准的规定;膨胀剂运到工地(或砼搅拌站)应进行限制膨胀率检测,合格后方可入库、使用。 水泥:应符合现行通用水泥国家标准,不得使用硫铝酸盐水泥、铁铝酸盐水泥和高铝水泥。 8.5.2 掺膨胀剂的混凝土的配合比设计应符合下列规定: 1.胶凝材料最少用量(水泥、膨胀剂和掺合料的总量)应符合8.5.2的规定; 2.水胶比不宜大于0.5;

纤维混凝土

纤维混凝土 1.技术原理 纤维混凝土是指掺加短钢纤维或合成纤维作为增强材料的混凝土,钢纤维的掺入能显著提高混凝土的抗拉强度、抗弯强度、抗疲劳特性及耐久性;合成纤维的掺入可提高混凝土的韧性,特别是可以阻断混凝土内部毛细管通道,因而减少混凝土暴露面的水分蒸发,大大减少混凝土塑性裂缝和干缩裂缝。 2.施工工艺和方法 (1)原材料 1)水泥:钢纤维混凝土应采用普通硅酸盐水泥和硅酸盐水泥;合成纤维混凝土优先采用普通硅酸盐水泥和硅酸盐水泥,根据工程需要,选择其他品种水泥; 2)骨料:钢纤维混凝土不得使用海砂,粗骨料最大粒径不宜大于钢纤维长度的2/3;喷射钢纤维混凝土的骨料最大粒径不宜大于10mm; 3)纤维:纤维的长度、长径比、表面性状、截面性能和力学性能等应符合国家有关标准的规定,并根据工程特点和制备混凝土的性能选择不同的纤维。 (2)配合比 纤维混凝土的配合比设计应注意以下几点: 1)钢纤维混凝土中的纤维体积率不宜小于0.35%,当采用抗拉强度不低于1000MPa的高强异形钢纤维时,钢纤维体积率不宜小于0.25%;各类工程钢纤维混凝土的钢纤维体积率选择范围应参照国家与有关标准。控制混凝土早期收缩裂缝的合成纤维体积率宜为0.06%~0.12%。 2)纤维混凝土的最大胶凝材料用量不宜超过550kg/m3;喷射钢纤维混凝土的胶凝材料用量不宜小于380kg/m3。 (3)混凝土制备 纤维混凝土的搅拌应采用强制式搅拌机;宜先将纤维与水泥、矿物掺合料和粗细骨料投入搅拌机干拌60s~90s,而后再加水和外加剂搅拌120~180s,纤维体积率较高或强度等级不低于C50的纤维混凝土宜取搅拌时间范围上限。当混凝土中钢纤维体积率超过1.5%或合成纤维体积率超过0.2%时,宜延长搅拌时间。 3.质量保证措施 (1)纤维要选择合适的掺量,合成纤维会使混凝土强度降低,在同时满足抗裂性能和力学性能的前提下确定掺量,一般积率不超过0.12%。 (2)钢纤维或合成纤维掺量过多时,都会使坍落度损失增加,选择合适的掺量和调整配合比,使纤维的掺入对混凝土工作性不产生负面的影响; (3)纤维混凝土的轴心抗压强度、受压和受拉弹性模量、剪变模量、泊松比、

微膨胀混凝土应用问题思考

微膨胀混凝土应用问题思考 发表时间:2018-12-05T14:25:53.707Z 来源:《科技新时代》2018年10期作者:吴龚正 [导读] 混凝土在各项工程中的应用十分广泛,其种类丰富,不同类型的工程所应用的混凝土种类也具有很大差别。珠江水利委员会珠江水利科学研究院广东省佛山市 528000 摘要:混凝土在各项工程中的应用十分广泛,其种类丰富,不同类型的工程所应用的混凝土种类也具有很大差别。其中,微膨胀混凝土以其抗裂性较高、能够补偿收缩变形、抵消拉应力等优势极大地提高了其抗渗透性能,在具体工程应用中具有不可替代的重要作用。就此,笔者在本文中以微膨胀混凝土的机理为切入点,着重阐述微膨胀混凝土应用中的问题与大家共同探讨。 关键词:微膨胀混凝土;机理;应用问题;应用思考 1.引言 通过众多微膨胀混凝土在实际工程中的应用及相关文献资料我们了解到,微膨胀混凝土在不同体系及施工设计中具有不同的作用显示。但由于微膨胀混凝土也具有自身弊端,因此需要采取相应措施如无留置缝等方式进行弥补,切实提高混凝土的安全性与耐久性。做好微膨胀混凝土的问题分析与实际应用过程中的思考工作极为重要,亟待相关工程人员加以重视。 2.微膨胀混凝土的机理 微膨胀混凝土主要是在普通混凝土中通过增加一定膨胀剂,从而弥补混凝土本身具有的收缩性能,进而实现提升混凝土相关性能的目的的特殊类型的混凝土。相关资料及文献均明确表明微膨胀混凝土就是利用它限制膨胀补偿限制收缩的原理来进行裂缝避免的工作,而微膨胀混凝土只有在湿养期内获得足够的、均匀的限制膨胀率,才能真正储备一定数量的弹性压缩作为收缩补偿,以弹性伸长恢复因弹性收缩所减少的尺寸。 微膨胀混凝土具有总收缩值比普通混凝土大、具有明显的湿胀干缩可逆性等特点,以及补偿收缩抗裂性好的机理。其在结构未承载时,工程中由于不可避免的存在着结构边界的约束作用,而混凝土中配置一定的钢筋,从而使得各类变性都处于受挖状态,因此,其当前所处的物理力学状态使普通混凝土存在由于温差效应、干缩蠕动等原因产生拉应力,而微膨胀混凝土在强度增长过程中能够产生一定的体积膨胀,从而补偿了混凝土各种收缩变形,内部产生的拉应力和压应变抵消了相应产生的拉应力。长期以来,由于人们对微膨胀混凝土的思考一直处于补偿收缩的角度,因此对其机理的认知和分析较为片面,笔者就应变值此详细加深阐述。 首先,只有当净膨胀率的负值出现时,混凝土结构体的抗拉极限强度和极限应变值才能提升较多。而混凝土浇筑初期的膨胀量达到高峰值是决定净膨胀率负值出现时间推迟的关键原因。因此,净膨胀率出现负值时,微膨胀混凝土抗应力和抗应变能力都可以被抵抗掉;其次,微膨胀混凝土在受约束状态下的净膨胀率会发生变化。主要体现在100d左右龄期时的e=f(t)公示回延长时间,e为正值,混凝土结构体内产生压应变,而后期e会逐渐转变为负值,其内部边由产生压应变转化为产生拉应变。所以其净膨胀率的计算方式以膨胀值和收缩值计算时应以相减之差作为依据;最后,微膨胀混凝土的抗裂能力应当从多个角度如整个发展过程的延续时间、净膨胀率的变化幅度以及峰值大小等因素来考虑,而不是仅以膨胀值的大小作为衡量依据。总的来说,微膨胀混凝土在机理理解与计算上均存在一定漏洞,应加以完善和整改,逐渐改变传统认知与计算误区,在微膨胀混凝土的使用与技术理解上做好更加妥善的处理。 3.微膨胀混凝土应用中的问题 3.1水灰比对混凝土抗渗性的影响 混凝土早期的养护及防护工作对于混凝土实际应用后的性能显示具有极大影响,而早期的养护工作则主要指的是对水泥的养护。由于混凝土的微膨胀量大部分均于养护早期发生,因此在塑性状态孔隙率过大时,其能量的大部分消耗在压缩塑性大量孔隙和释放不受约束的方向去,而受限制的方向则出现裂缝有效压应变和预压应力的初始峰值显著降低的时候,忽视水灰比必然导致混凝土抗渗性和抗裂性的大幅度下降。只有控制好水灰比才能使混凝土抗渗性处于正常范围内。水灰比过高会导致孔隙率过大,使钙矾石结晶颗粒的填孔效果受到影响,而过低则会导致混凝土的抗渗性和抗裂性受到不同程度的损害,如何做好水灰比的控制工作以及混凝土浇筑后的早期养护,是保障混凝土抗渗性能的关键。 3.2水泥的强度、用量及振捣问题 除水灰比以外,水泥的相关用量、强度等重要指标也对微膨胀混凝土的性能有着十分重要的影响。水工地下防水抗渗混凝土对于水泥的标准具有较为严格的要求。水泥的标号不应低于42.5,水泥组成成分也需要控制其标准,如粗骨料粒径不得大于30毫米。并且水泥用量不得低于320kg/m3,需要保证浇筑时间的间隔控制在60分钟以内,连续浇筑最佳。更需要注意的一点是,膨胀剂的选择与掺量的控制是十分重要的,不同工种和不同施工条件下的膨胀剂选择需有所不同,特别是在掺量大于14%且结构处于非强化受限状态时,自由强度等不利因素的影响不可忽视。只有严格按照以上标准并根据工程实际情况进行设计试配与掺量调整,才能减少不相容状态的出现,以更好地补偿在自由状态时混凝土强度的损失。 3.3规定试验方法与实际工程存在差异 微膨胀混凝土在试验时具有规定的方法,且此方法具有一定的理论依据,都是在具有理想纵向限制器的情况下使用六面体模具进行三向理想限制条件的准备。不论是理想的试验条件还是规定的试验方法,都具有较高的模拟性,而与实际工程具有很多的不符之处。一项实际工程或大或小,大到一个地下室、一个地铁站,小到一层屋面的钢筋混凝土结构物等,都与规定的试验方法与条件具有极大差异,实际工程不可能如试件那样先在理想的模具结硬到某个标准后再进行湿养膨胀的计算。再加之实际工程不像单个试件一样在一段时间内即可完成,实际工程在不同时间和环境下需要分为若干部分去完成,不仅可能无法达到理想试件的状态,反而可能出现与之完全相反的对立作用,对混凝土产生限制性裂缝具有极大影响。 3.4施工工艺与措施的区别与控制措施 为尽可能地减少微膨胀混凝土在使用时出现的问题,部分工程可根据实际情况进行无缝设计与处理,这对施工工艺和措施的挑战较大。无缝设计主要包含后浇带的设计、在结构混凝土中增加UEA等方式。其中,后浇带主要通过在荷载变化大、温度变化大等位置进行设置,从而达到减少建筑物不均匀沉降造成的不利影响,能够很好地扩大伸缩间距,是取消结构中永久伸缩缝的有效措施,但同时也存在清理与凿毛带来的麻烦,造成工期延长等问题;而在增加UEA膨胀剂则有利于限制膨胀,缩短工期,但操作要求较高且成本相对较大。两种方式应相互结合,根据实际工程情况进行选择,最终以提高施工效率、保障施工安全、增强结构性能为目标。

混凝土膨胀剂原理

混凝土膨胀剂原理 1.膨胀水泥混凝土的几种膨胀机理阐述如下: ( 1) 结晶态膨胀组分由于晶体生长穿透周围物质而向外生长( 晶体生长理论) 。 ( 2) 凝胶态膨胀组分由于吸水而体积增大( 吸水肿胀理论) 。 ( 3) 在水化过程中通过膨胀成分的分离而形成共存孔。在各种情况下, 对于与“化学收缩”共存的“膨胀”而言,“硬化结构中孔的形成”或“低密度凝胶态水化物的形成”是需要的。为了定量考察孔和凝胶态水化物的形成, 需作进一步研究和讨论, 包括化学收缩和自收缩( 或自膨胀)。在由钙钒石或CH 形成发生膨胀的情况下在膨胀成分表面发生的局部化学反应理论比进入溶液反应理论更为广泛地被接受。膨胀中重要的因素不仅仅是膨胀组分的水化, 而且在于其周围水化物的形成, 其驱动力来自于膨胀组分的物质传递。也就是说膨胀不会发生, 除非硬化基体结构由于水泥水化而形成。同样重要的是膨胀剂与水泥二者的水化必须在适当的时间发生。混凝土变形与开裂的关系是: 材料中两质点间相向变形( 受压) 不会开裂; 背向变形( 受拉) 会引起开裂。据此推知, 混凝土自由收缩不会开裂, 限制收缩会引起开裂; 混凝土自由膨胀会引起开裂, 限制膨胀不会引起开裂。 2.抗裂防水剂作用原理: 针对混凝土不同阶段的收缩特性和防水需要, 采用了四个方面的措施。 ( 1) 对混凝土的塑性收缩进行补偿。对于硬化前的混凝土, 抗裂防水剂中含有塑性膨胀组分, 可以补偿混凝土的塑性收缩。 ( 2) 与膨胀剂一样, 在约束下, 硬化后的混凝土产生微膨胀, 产生 的预压应力, 补偿混凝土的热胀和冷缩。 ( 3) 由于掺加了减缩组分和密实防水组分, 进一步改善了混凝土的收缩性, 可降低混凝土的后期收缩, 进一步提高混凝土的密实性和防水性。 ( 4) 防水机理。掺加抗裂防水剂的混凝土, 除了产生大量的钙矾石填充混凝土的毛细孔外, 引入了进口的有机防水组分, 通过成膜原理, 进一步封闭混凝土的毛细孔隙, 使得混凝土抗渗性比膨胀混凝土的抗渗性得到进一步提高。

纤维混凝土在水工建筑中的应用

纤维混凝土在水工建筑中的应用 摘要:近年,随着大型、多功能水利工程的建设,大量新材料、新工艺、新技术应运而生。而且随着水利工程的普及与重视,如何运用高科技元素来提高水利工程的性能,如何实现大型、多功能多样化的水利工程,便成为水利系统的展望目标,同时也成为水利事业的一项重点工作。可是在实际的水工建筑中经常会出现混凝土结构裂缝以及被腐蚀和碳化等缺陷,从而影响了水利工程的安全与建设。针对此问题,一种新材料破壳而出——纤维混凝土,将纤维混凝土运用于水工建筑中,在很大程度上改善了混凝土结构裂缝等缺陷。 关键词:水利工程;钢纤维;聚丙烯纤维;异型塑钢粗合成纤维;丙乳硅粉钢纤维 1 钢纤维混凝土在水工建筑中的应用 1.1 钢纤维混凝土的特性 钢纤维混凝土的物理和力学性能与普通混凝土相比具有很大优越性,比如具有较高的抗弯、抗拉、抗剪和抗扭强度。尤其是强度和重量比值增大,这是钢纤维混凝土优越经济性的重要标志(如表1所示)[1]。 在普通混凝土中加入适当的钢纤维,其抗剪强度提高50%~100%,抗拉强度提高25%~50%,抗弯强度提高40%~80%;其收缩性能也能得到明显改善,收缩值一般会降低7%~9%;同时,具有优良的冲击韧性(即抗冲击性能材料抵抗冲击或震动荷载作用的性能),一般可提高2~7倍;其耐久性能、耐冻融性、耐热性、耐磨性、抗气蚀性和抗腐蚀性都能得到显著提高。但是在抗渗性能上与普通混凝土相比没有明显变化。 1.2 钢纤维混凝土在水利水电工程中的应用 1.2.1 在支护工程中的应用 钢纤维混凝土之所以在支护工程中得到应用,是由缘于其较高的抗拉、抗弯、抗剪强度,能围岩和土体的较大变形作用下保持优良的整体性能。如若使用钢纤维混凝土喷射衬砌,可使围岩减少衬砌厚度。 1.2.2 在储水、防渗、输水管道工程中的应用 钢纤维混凝土之所以可在在储水、防渗、输水管道工程中的应用是因为其具有良好的抗裂性能、较低的收缩率。一般钢纤维混凝土运用在储水和防渗结构中可用作防水层,必要时也可代替钢筋混凝土用于结构层中。 1.2.3 在溢洪道等承受高速水流工程中的应用

C40纤维混凝土设计书

中铁大桥局股份有限公司新广州站及相关工程ZQ-2标 C40桥涵防水层 细石纤维混凝土配合比设计书 计算: 复核:

C40细石聚丙烯纤维网混凝土配合比设计 一、配合比设计依据 1、《客运专线高性能混凝土暂行技术条件》科技基[2005]101号; 2、《客运专线桥梁混凝土桥面防水层暂行技术条件》科技基[2005] 101号。 3、《普通混凝土配合比设计规程》JGJ55—2000; 4、《铁路混凝土工程施工技术指南》TZ210-2005; 5、《铁路混凝土工程施工质量验收补充标准》铁建设[2005]160号; 6、《铁路混凝土结构耐久性设计暂行规定》铁建设[2005]157号; 二、混凝土配合比设计技术条件及参数 根据《客运专线高性能混凝土暂行技术条件》和《客运专线桥梁混凝土桥面防水层暂行技术条件》科技基[2005]101号的规定,该标段混凝土的设计使用寿命为100年。碳化环境类别为T2,侵蚀环境类别为H1。拟定如下混凝土设计参数: 1、设计混凝土强度等级:C40; 2、劈拉强度:≥3.5MPa; 3、抗冻融循环:≥300次; 4、电通量:≤1000C; 5、抗渗:P20; 6、混凝土坍落度:170±20mm(泵送或吊斗浇注)。 三、原材料的品种、规格和主要技术指标 1、水泥:红水河牌P·O 42.5,广西华润红水河水泥有限公司生产。 2007年11月12日水泥取样由大桥局新广州站及相关工程项目部中心试验室和广州铁诚工程质量检测有限公司检验。结果如下:

2、粉煤灰: 根据《客运专线桥梁混凝土桥面防水层暂行技术条件》科 技基[2005]101号的要求应采用Ⅰ级粉煤灰,需水量比应不大于100%,质量符合GB1596规定。故此采用漳州后石电厂益材Ⅰ级F 类粉煤灰。2007年10月17日粉煤灰取样由大桥局新广州站及相关工程项目部中心试验室和广州铁诚工程质量检测有限公司检验。结果如下:

相关主题
文本预览
相关文档 最新文档