当前位置:文档之家› 超高分辨率显微镜技术

超高分辨率显微镜技术

超高分辨率显微镜技术
超高分辨率显微镜技术

超高分辨率显微镜技术

为了更好地理解生命过程和疾病发生机理,生物学研究需要观察细胞内器官等细微结构的精确定位和分布,阐明蛋白等生物大分子如何组成细胞的基本结构,重要的活性因子如何调节细胞的主要生命活动等,而这些体系尺度都在纳米量级,远远超出了常规的光学显微镜(激光共聚焦显微镜等)的分辨极限。为了解决生命科学研究面临的这一难题,超高分辨率显微技术应时而生,并且一经问世就得到了广泛的响应,2008年Nature Methods将这一技术列为年度之最。

为了达到纳米量级的分辨率和极快速的成像,超高分辨率显微镜引入了许多突破时代的创新技术,了解这些技术将带领我们走入超高分辨率显微镜的奇妙世界。

3D-SIM(结构照明技术):

荧光样品通过不同方向和相位的光源照射,并且在成像后利用特点的运算方法重构,产生突破光学极限的超高分辨率图像。

●完全兼容现有荧光分子和荧光染料、不改变任何实验流程

●轴向分辨率提高到80-120nm,空间分辨率提高到激光共聚焦显微镜观察极限的8

倍。

搭载3D-SIM技术的DeltaVision OMX超高分辨率显微镜已经成功运用到了很多样品,比如微生物、脊椎动物细胞、组织切片甚至整个胚胎等。大大提高的分辨率在鉴定和研究亚细胞结构中成效显著,比如对微管和肌动蛋白的观察中可以解析到单根微管纤维。

Monet (单分子成像与定位技术):

通过在极短时间内对单个或几个荧光分子的激发和获取发射光信号,上千次获取后重构图像,从而获得突破百纳米极限的超高分辨率图像。这种技术需要使用独特的光敏蛋白来做荧光染料,通过独特的算法可以分辨衍射极限上重叠的荧光团位置。

●搭载PALM的DeltaVision OMX可在极短时间内完成图像获取和重构

●能够处理极大密度的图像,使高浓度标记的和更高激活能量的样品的成像变成

可能。

超高速成像:

研究者对于成像速度进入“亚秒时代”的需求已经十分的迫切。以往的速度瓶颈主要在曝光时间以及CCD成像速度,利用高效光路和改进的新型照相机,大大提高了成像速度。

●DeltaVision OMX可同时观察四个荧光通道。

●每个荧光通道的成像速度达到了前所未有的200帧/秒(512×512像素,5ms

曝光)。

这种惊人的使细胞内超快速过程的观察成为可能。研究人员能够在三维空间内追踪活细胞内的标记蛋白,而分辨率接近分子水平。这意味着使用者可以开始回答新型的研究问题,如细胞中的某些结构如何工作,它们如何相互作用,以及事件持续多长时间。

超高分辨率显微镜问世以来,得到了研究者的强烈响应,自2008年9月问世的佼佼者DeltaVision OMX,已有几十台安装在哈佛医学院、耶鲁大学、MIT、冷泉港、牛津大学等世界顶尖研究机构,帮助科研工作者取得一系列重大科研成果并发表在Nature、Cell、Science、Neuron等顶级刊物上。比如加州大学戴维斯分校的Hsing-Jien Kung教授领导的生物光子学科学技术中心(CBST)的生物医学科研人员近来使用这种工具首次对活的肿瘤细胞内部的纳米尺寸的区室的运动进行了成像。这些区室捕捉细胞器和高分子从而提供给溶酶体,它们是一个称为自噬的细胞间回收过程的关键组成部分。Kung认为高分辨率、活细胞成像技术的开发可以让我们加快对这种难以捉摸的过程的理解,为自噬调控剂的开发铺平了道路。相信不久的将来,超高分辨率显微镜将会带来整个细胞生物学的革命。

电子显微镜的景深和显微镜的分辨率

电子显微镜的景深和显微镜的分辨率 显微镜由于电子的波动性,当它通过小孔光阑时会发生衍射现象。衍射结果表现为每个物点形成的像是一个圆斑(周围的副光环可忽略不计)。定义这个衍射圆斑的半径为衍射像差。在像方或物方可分别表示为: (Ar&ff),=0.611/a(1一22a) (1rdff)o=0.61A/ao(1一22b) 式中各符号的意义同前。可以看出加大光阑孔径角as,可以减小衍射差。但实际工作中还应注意这样会带来的不利影响。 景深和焦探(11) 景深就是在保持像清晰的前提下,可允许物面在轴上的移动距离,或者说可允许物上不同部位处的凹凸差。根据图1-10,理想情况下物点P成像在Q点.如果物面在P点前后P’P"之间移动,则在Q看到的物有一定横向宽度。如果透镜有各种像差。该系统实际存在一个对物的可分辨极限(分辨率8)。显微镜价格只要P’P,,间平面上的物点宽度小于或等于s,则在Q处的成像效果与P点处几何物点造成的像斑是相同的,即其清晰度相同。因此可允许的物在轴上最大距离PP"称景深Do,它由下式定出: D0二 (1一23) 式中d一电子光学系统对物的分辨率; ao一电子束的物方有效孔径角. 对于100kV的电镜,偏光显微镜如果分辨率为lnm,物镜孔径角为5X10-1rad,则景深Do=200nm.这表示样品厚度或表面凹凸起伏不超过200nm时,能得到均匀清晰的图像.由此可见景深也常常成为对样品厚度的限制因素之一。

把景深这一特性转换到像方便可得到焦深Df。它就是为了得到清晰度相同的像,可允许的图像显示或记录平面的轴向位移量。参照(1一23)可得: Df=B;/a(1一24) 式中S;一像方的分辨率;a;一电子束的像方有效孔径角。 显微镜像方分辨率S;受观察荧光屏的分辨率所限制。通常荧光屏的分辨率为505m。如电镜最高放大倍数M=10`X,电子束孔径角ao=5X10-’rad,则最长焦深(D1),o,==100M。即使在最低放大倍数M=10’X,相应的ao=1X10-’rad时,最低焦深(Df).二50cm。可见电镜的焦深值很大.这就说明了在透射电镜中为什么我们只对荧光屏调焦,而把像记录在其下方的电子感光板或其上方的35mm胶片上时,总能得到清晰的像。 本文由广州深华实验室仪器设备整合发布

1若H-800电镜的最高分辨率是05nm

一、选择题 1.若H-800电镜的最高分辨率是0.5nm,那么这台电镜的有效放大倍数是()。 A. 1000; B. 10000; C. 40000; D.600000。 2. 可以消除的像差是()。 A. 球差; B. 像散; C. 色差; D. A+B。 3. 可以提高TEM的衬度的光栏是()。 A. 第二聚光镜光栏; B. 物镜光栏; C. 选区光栏; D. 其它光栏。 4. 电子衍射成像时是将()。 A. 中间镜的物平面与与物镜的背焦面重合; B. 中间镜的物平面与与物镜的像平面重合; C. 关闭中间镜; D. 关闭物镜。 5.选区光栏在TEM镜筒中的位置是()。 A. 物镜的物平面; B. 物镜的像平面 C. 物镜的背焦面; D. 物镜的前焦面。 二、正误题 1.TEM的分辨率既受衍射效应影响,也受透镜的像差影响。() 2.孔径半角α是影响分辨率的重要因素,TEM中的α角越小越好。() 3.有效放大倍数与仪器可以达到的放大倍数不同,前者取决于仪器分辨率和人眼分辨率,后者仅仅是仪器的制造水平。() 4.TEM中主要是电磁透镜,由于电磁透镜不存在凹透镜,所以不能象光学显微镜那样通过凹凸镜的组合设计来减小或消除像差,故TEM中的像差都是不可消除的。() 5.TEM的景深和焦长随分辨率Δr0的数值减小而减小;随孔径半角α的减小而增加;随放大倍数的提高而减小。() 三、填空题 1.TEM中的透镜有两种,分别是静电透镜和电磁透镜。 2.TEM中的三个可动光栏分别是第二聚光镜光栏位于第二聚光镜焦点上,物镜光栏位于 物镜的背焦面上,选区光栏位于物镜的像平面上。 3.TEM成像系统由物镜、中间镜和投影镜组成。 4.TEM的主要组成部分是照明系统、成像系统和观察记录系统;辅助部分由真空系统、 循环冷却系统和控制系统组成。 5.电磁透镜的像差包括球差、像散和色差。 四、名词解释 1.景深与焦长—— 2.电子枪—— 3.点分辨与晶格分辨率—— 4.消像散器—— 5.选区衍射—— 6.分析型电镜—— 7.极靴——

电子显微镜的最新技术和发展趋势

电子显微镜的最新技术和发展趋势分析 按照中心布置,在校图书馆电子文献库检索(电子显微镜的最新技术和发展)检索到相关文献,其中全国分析测试学会微观结构专业评议组新一代电子显微镜的发展趋势及应用特点和中科院电子显微镜实验室姚骏恩院士电子显微镜现状与展望;国家生物医学分析中心张德添教授为“2009中国科学仪器发展年会” 介绍了电镜的最新技术;主要电镜公司的产品简介整理如下: 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率 球差系数:常规的透射电镜的球差系数 Cs约为mm级;现在的透射电镜的球差系数已降低到 Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为 0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.08nm.

透射电子显微镜的现状与展望

透射电子显微镜的现状与展望 透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射枪扫描透射电镜及能量选择电镜等,透射电镜将又一次面临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射枪扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。 电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖。电子与物质相互作用会产生透射电子,弹性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200—500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子枪类型区分的,如场发射枪电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究。近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有了长足的发展。下面见介绍部分透射电镜和扫描电镜的主要性能 1.高分辨电子显微学及原子像的观察 材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。观察试样中单个原子像是科学界长期追求的目标。一个原子的直径约为1千万分之2—3mm。因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。70年代初形

扫描电子显微镜的分辨率测量及分辨率标样

扫描电子显微镜的分辨率测量 及分辨率标样 1.扫描电子显微镜的分辨率测量 1.1扫描电镜的分辨率 分辨率是形貌结构类放大仪器最重要的性能指标,它以能分辨的两点或两线间的最小间距为指标,分辨间距越小性能越好,分辨率越高。它是光学显微镜和电子显微镜的最重要的指标。对扫描电镜而言它首先决定于整个仪器的设计,诸如:电子透镜的最小球差设计、电子的色差降到最低、仪器固定象散的减少以及附加象散的消除等。这一切取决于扫描电镜电子光学系统的设计、高压和透镜电源的稳定度指标、电子透镜极靴材料的磁性能、材料的均匀性及极靴的机械加工精度与加工过程中的无磁化处理等。当一台仪器制造完成以后,这些决定扫描电镜的分辨率先天条件就决定了,它们成为了不可改变的固定条件。所以我们说,仪器的先天条件就决定了扫描电镜的分辨率,规定了这台仪器所能达到的最优分辨率,实际使用中往往低于这个分辨率指标。每一台扫描电镜在长期使用过程中它在每次观察物质结构的放大图象时,它的图象清晰度和实际分辨率可能时高时低,这一切又与仪器的调试对中状态、使用条件和环境等诸多因素有关。这些因素有: (1)仪器电子光路尤其是物镜上下极靴孔以及物镜光栏的清洁程度高低 有关,应该保证污染脏物导致的象散降到最低。 (2) 电子光学系统的合轴对中处于最佳状态,尽量减少轴外电子束成象, 减少各种象差,尤其是球差,它与孔径角的三次方成正比。 (3) 电网电压稳定有利于电源稳定度,使包括色差在内的象差降到最低。 电网的电压波动过大,还会造成杂散磁场影响扫描电镜透镜聚焦场的 稳定性从而影响分辨率,所以应该避开用电高峰,不在电网电压波动 过大时拍摄分辨率照片。 (4) 避免外界强烈的机械震动,可能造成样品台和样品的微扰动而使分辨 率下降,尤其是临街并有大型货车通过,或有其它强烈震动源将对分 辨率造成影响。 (5) 用一个大小合适而又清洁的新的物镜光栏对获得扫描电镜的最优分辨 率有好处。

相关主题
文本预览
相关文档 最新文档