当前位置:文档之家› 基因的分子生物学英文版答案molecular chapter12

基因的分子生物学英文版答案molecular chapter12

基因的分子生物学英文版答案molecular  chapter12
基因的分子生物学英文版答案molecular  chapter12

Chapter 12 Answers

The choice of promoter determines which stretch of DNA is transcribed and is the main step at which regualtion is imposed.

闭合复合物或在其它蛋白质因子作用下,或自发地发生结构改变,形成一开放复合物(open complex)a more energenetically favorable form.,此过程为不可逆过程,不需要ATP水解;在开放复合物中, 一段围绕转录起始点约14bp(+3~-11)的区段发生解链,形成“转录泡(transcription bubble)”结构。相应于最初的两个核苷酸随后进入酶活性位点,被催化形成磷酸二酯键并继续进行其它核苷酸的合成。在RNA链最初10个核苷酸的合成中,合成效率较低,经常释放小于10nt的RNA产物,此阶段称为Initial transcribing complex;一旦合成的RNA链长度>10nt, 聚合酶可以与DNA、RNA 形成稳定的三维复合结构,进入转录延伸阶段,这一转变过程称为启动子逃

离(promoter escape).

焦磷酸裂解编辑反应(pyrophosphorolytic editing), 通过重新加合一个焦磷酸基团使错误合成的核苷酸得以释放; 另一种称为水解编辑(hydrolytic editing), 在

一种Gre蛋白的协助下, 聚合酶可以从错误加合核苷酸处后退一个或几个核苷酸, 从而使RNA 3’OH端离开活性中心而被切割, 后退的聚合酶则利用重新位于活性中心

的3’OH进行延伸.

1. DNA replication and transcription are similar in a number of respects, starting with the central fact that both involve enzyme-mediated copying of a DNA template to create a new polynucleotide. Also, both reactions are carried out by complex molecular machines, containing multiple subunits, that carry out the diverse biochemical activities required for each process.

Replication and transcription differ in a number of ways, however. First, of course, is that transcription produces an RNA copy of the sequence, whereas replication produces a DNA copy. Also, replication generates a single copy of the entire genome, whereas transcription produces multiple copies of specific, limited sections of the genome.

Another difference is that replication initiates at multiple locations that, in some cases at least (in particular multi-cellular eukaryotes) have flexible sequence requirements, whereas transcription begins (and stops) at very precise sequences. Also, at a mechanistic level, DNA replication requires a primer sequence, and the new DNA strand remains hybridized to the template, whereas transcription can begin de novo and the new RNA is displaced from the template. Finally, replication contains multiple proofreading mechanisms, giving rise to a very high level of accuracy, whereas transcription has fewer, less stringent methods of proofreading and is correspondingly less accurate.

2. DNA replication is more accurate than transcription because of its multiple, rigorous proofreading mechanisms. As described in Chapter 8, DNA polymerase replication has two forms of proofreading activity: a kinetic form that increases the fidelity of the initial incorporation of the nucleotide, and a 5' to 3' exonuclease activity that can remove any misincorporated bases. These two proofreading mechanisms limit the error rate to about 10-7. In addition, if an incorrect nucleotide manages to get past these two proofreading mechanisms, a mismatch repair system can often detect the misincorporated base and repair it.

RNA polymerase also has proofreading mechanisms, although they are not as stringent as those used during DNA replication. These include phosphorolytic editing, in which the polymerase removes a single incorrectly incorporated nucleotide using its active site, and hydrolytic editing, in which the polymerase can backtrack and cleave

the newly synthesized RNA to remove an incorrectly incorporated nucleotide. These mechanisms give transcription an error rate of about 1 x 10-4.

It is logical that the cell dedicates more energy to ensuring the fidelity of DNA replication, because the DNA produced during replication represents the sole repository of genetic information in the cell. Any errors that are introduced into the DNA during replication will be present in all of the cell's descendents. In contrast, an error that occurs during transcription is much less serious. First, it may very well have no effect whatsoever, as the redundancy of the genetic code means that a significant proportion of the potential nucleotide changes within an mRNA will have no effect on the encoded amino acid sequence. Second, even if an error does change the protein sequence, perhaps even eliminating its function, this would still be tolerable for the cell because it can simply transcribe additional mRNAs, which would most likely not include the error.

3. The three basic phases of transcription are initiation, elongation, and termination.

In initiation, RNA polymerase binds to the promoter (along with other factors), leading to the unwinding of the DNA at the start site and initial synthesis (in a 5' to 3' direction) of an RNA, using one of the DNA strands as a template. The elongation phase of transcription begins when the polymerase synthesizes a short stretch of RNA and clears the promoter. During elongation, the polymerase moves along the gene, synthesizing RNA as it goes, and also unwinds the DNA ahead of the polymerase, separates the growing RNA chain from the DNA, proofreads the RNA, and re-anneals the DNA behind the enzyme. During the termination phase, the polymerase stops synthesizing RNA, releases the transcript, and leaves the DNA template.

Initiation, the most common locus of regulatory action, can be targeted in any of a number of ways. For example, many regulators affect the binding of polymerase to the promoter, and numerous others modulate the ability of the polymerase to unwind the DNA and initiate RNA synthesis. Elongation is a less common target for regulation, although a number of factors do affect this stage of transcription. For example, certain regulators act on the ability of polymerase to clear the promoter once a short transcript has been made. Other elements modulate various properties of the polymerase during elongation, such as its processivity (i.e. the likelihood that it will fall off the template), its rate of movement along the DNA template, or its proofreading activity. Finally, regulators that act on termination can target the processing of the transcript (such as polyadenylation), the cleavage of the RNA, and the termination of RNA synthesis by the polymerase enzyme.

4. The core bacterial polymerase contains two alpha subunits, one beta, one beta', and one omega subunit. The holoenzyme includes the core polymerase as well as a sigma factor.

The overall shape of the enzyme resembles a crab claw, with the pincers made up mostly of the two largest subunits, beta and beta'.

The sigma factor, which extends away from the holoenzyme, mediates the binding of RNA polymerase to the promoter. For example, 70, the most common E. coli sigma factor, binds to the –10 and –35 elements of promoters the promoter, specifically through its C terminal domain (which also extends away from the through its region 2 and region 4, respectively.

The alpha subunit also makes contacts with enzyme), which recognizes the UP promoter element.

5. A σ70 promoter contains two key 6-nucleotide sequences located approximately 10 and 35 nucleotides upstream of the transcription start site.

Neither the –10 nor the –35 element is absolutely fixed, and in fact they typically differ from the consensus by up to a few nucleotides. The spacing between the elements can also vary. Also, whereas most σ70 promoters include both –10 and –35 elements, one class of σ70 promoters lacks the –35 element. In this case, the –35 element is replaced by an extended –10 element that includes an additional short sequence at its upstream end.

While quite different at a structural level, there are clear functional similarities between σ70-prokaryotic promoters and eukaryotic Pol II promoters. For example, the –10 and –35 elements of prokaryotic promoters are bound by the sigma initiation factor in bacteria, with the –10 element serving as the site of DNA melting during transition to the open complex. Similarly, in eukaryotic Pol II promoters, the TATA element, BRE, Inr, and DPE are recognized by the general transcription factors (the eukaryotic equivalent of sigma), with the TATA element also unwinding during pre-initiation complex formation.

6. The transition to an open complex involves structural changes in both the RNA polymerase and the DNA at the promoter. In bacteria, for example, the "pincers" at the front of the enzyme clamp down on the DNA, and the sigma subunit shifts so that it no longer blocks DNA accessing the active site of the enzyme. The promoter, at the same time, unwinds, allowing access to the single stranded template and nontemplate strands.

The transition to an open complex is critical for replication initiation b ecause, first, it allows access to the template strand, but also because it represents an irreversible step towards initiation. The energetics of the transition are such that a closed complex will never revert to the open form, but will instead proceed irreversibly to initiation.

The transition to the open complex, and concomitant unwinding of the DNA, requires no outside source of energy in bacteria. Instead, the reaction is driven by a spontaneous conformational change in the DNA-polymerase complex. Unwinding of the DNA in eukaryotes, in contrast, requires hydrolysis of ATP, specifically by the helicase-like TFIIH factor.

7. RNA polymerase has clear affinity for promoters, as it binds specifically to them to initiate transcription. Because of that affinity, it would tend to stay put unless other equally strong forces pull the polymerase away from the promoter, or if the interaction between the polymerase and the promoter were altered in a way that decreased the affinity. As it happens, both of these appear to play a role in promoter clearance. First, the polymerase is pulled away from the promoter by RNA synthesis itself, which involves a significant loss of free energy. But the interaction between the polymerase and the promoter is also altered during the shift to elongation. In bacteria, for example, the sigma subunit—which makes the most extensive contacts with the promoter—is shed upon passage into the elongation phase. Without the sigma-mediated interactions with the promoter, the polymerase has much less affinity for the promoter. Similarly, in eukaryotes, the phosphorylation of the CTD decreases the affinity of the polymerase for the promoter, because the phosphorylation diminishes the interaction between the polymerase and promoter-bound initiation factors.

8. The polymerase keeps all of the strands (and individual nucleotides) separate by threading each of them through a distinct part of the enzyme. The bacterial holoenzyme, for example, has five different channels for keeping each of the involved polynucleotides and nucleotides separate. Ribonucleotides enter the enzyme through a particular NTP-uptake channel; an RNA-exit channel permits the growing RNA chain to leave the enzyme; the downstream DNA channel allows double-stranded DNA ahead of the enzyme to enter, and two different channels passing through the enzyme are dedicated to the single-stranded template and nontemplate strands.

9. RNA polymerase is able to initiate transcription in the absence of a primer because it can bind to the first nucleotide—generally an A—with especially high affinity. It accomplishes this by making specific contacts with the adenosine, holding it tightly in place to allow it to efficiently react with the incoming NTP.

The next most common initial nucleotide is G, which, as a purine, is most structurally similar to A.

10. CTD(羧基末端结构域) phosphorylation is involved in the regulation of multiple steps of transcription, including the transition from initiation to elongation, as well as termination. When Pol II initially binds to the promoter, CTD is unphosphorylated, and

interacts with initiation factors bound to the promoter. The tail is subsequently phosphorylated at multiple sites by a kinase present in TFIIH (and other kinases). This phosphorylation diminishes(减少) the interaction between the polymerase and the initiation factors, and instead promotes new interactions with other factors involved in elongation and RNA processing. Accordingly, the phosphorylation of the CTD takes place in concert with the shift to elongation, and is associated with a replacement of the polymerase-bound initiation factors with elongation/termination factors.

Pol I and Pol III can likely function without the CTD because of the major differences in the way they are regulated in comparison to Pol II. For example, the CTD contributes to the interactions between Pol II and initiation factors, but Pol I and Pol III rely on different initiation factors than Pol II. Also, CTD is involved in interactions with the Mediator Complex at Pol II promoters, whereas neither pol I nor pol III rely on the Mediator for transcription initiation.

11. DNA present in vivo differs from that used in in vitro systems because it is packaged into nucleosomes and higher order chromatin structures. These can interfere with the stable binding of polymerase and other transcription factors to the DNA, necessitating the presence of additional factors that can help promote polymerase binding. Mediator does just that, helping DNA-bound transcriptional activators interact with RNA polymerase to stabilize its binding to the DNA.

12. The elongation factors can help promote elongation in several ways. For example, some can help get elongation started in the first place, such as the CTD-phosphorylating activity of the P-TEFb kinase. Others can help speed up elongation, such as TFIIS and its role in limiting the pausing of the polymerase at certain sequences. Some factors can promote elongation by enhancing the processivity of the RNA polymerase—that is, the stability of the interaction between the polymerase and the DNA template. Finally, certain factors can help stimulate the proofreading activity of polymerase.

The elongation factors are recruited to the polymerase through CTD. Specifically, whereas general transcription factors have affinity for the unphosphorylated CTD, elongation factors have affinity for the phosphorylated form of the tail. Accordingly, phosphorylation of the CTD leads to the shedding(流出) of the general transcription factors and their replacement with elongation factors.

13. mRNA is processed in three major ways prior to being exported from the nucleus: 5' capping of the transcript, splicing, and 3' polyadenylation. In 5' capping, a modified guanine base is added to the 5' end of the transcript. Splicing involves the removal of introns from the transcript to generate the mature mRNA. Finally, 3' polyadenylation of the message involves cleavage of the RNA and the addition of numerous adenine residues at the 3' end.

These processing events are intricately linked to the polymerase's progress through elongation and termination. For example, the elongation factor hSPT5 recruits the capping enzyme to the mRNA early during transcription, and the capping machinery later dissociates when Ser5 of the CTD becomes dephosphorylated. Another elongation factor, TAT-SF1, helps recruit certain components of the splicing machinery. Recruitment of the splicing machinery is also triggered by phosphorylation of Ser2 within the CTD. Finally, 3' polyadenylation and RNA cleavage is triggered by CPSF and CstF, which travel along with the CTD during elongation, only to leave the polymerase and move onto the RNA when the polymerase reaches certain specific sequences at the 3' end of the gene.

西南大学1166 《分子生物学》第五次作业及参考答案

西南大学1166 《分子生物学》第五次作业及参考答案 论述题: 1. 基因与多肽链有什么关系? 2. hnRNA转变成mRNA的加工过程包括哪几步? 3. 作为蛋白质生物合成模板的mRNA有何特点? 4. 原核基因表达调控有什么特点? 5. 真核基因表达调控与原核生物相比有什么异同点。 6. 简述分子生物学在医药工业中的应用。 参考答案: 1.基因与多肽链有什么关系? 多肽链是基因的编码产物,基因的碱基序列与蛋白质分子中氨基酸的序列之间的对应关系是通过遗传密码实现的。 2. hnRNA转变成mRNA的加工过程包括哪几步? hnRNA转变成mRNA的加工过程包括:①5`端形成特殊的帽子结构(m7G5`ppp5`N1mpN2p-);②在链的3`端切断并加上多聚腺苷酸(polyA);③通过剪接除去由内含子转录而来的序列;④链内部的核苷被甲基化。 3. 作为蛋白质生物合成模板的mRNA有何特点? 信使核糖核酸具有以下特点:①其碱基组成与相应的DNA的碱基组成一致,即携带有来自DNA的遗传密码信息;②mRNA链的长度不一,因为其所编码的多肽链长度是不同的;③在肽链合成时mRNA应与核糖体作短暂的结合;④mRNA的半衰期很短,因此mRNA的代谢速度很快。 4.原核基因表达调控有什么特点? 原核生物大都为单细胞生物,没有核膜,极易受外界环境的影响,需要不断地调控基因的表达,以适应外界环境的营养条件和克服不利因素,完成生长发育和繁殖的过程。原核生物基因的表达调控存在于转录和翻译的起始、延伸和终止的每一步骤中。这种调控多以操纵子为单位进行,将功能相关的基因组织在一起,同时开启或关闭基因表达,既经济有效,又保证其生命活动的需要。调控主要发生在转录水平,有正、负调控两种机制。在转录水平上对基因表达的调控决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的相互作用。细菌的转录和翻译过程几乎在同一时间内相偶联。

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

分子生物学作业

分子生物学作业 一、名词解释 1.断裂基因 真核生物结构基因,由若干个编码区和非编码区相互间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因成为断裂基因。 2.单核苷酸多态性 单核苷酸多态性是由基因组DNA上的单个碱基的变异引起的DNA 序列多态性。是人群中个体差异最具代表性的DNA多态性,相当一部分还直接或间接与个体的表型差异、对疾病的易感性或抵抗能力、对药物的反应性等相关。单核苷酸多态性被认为是一种能稳定遗传的早期突变。 一、简答题 1.简述真核生物基因组的结构与功能特点。 ①真核生物基因组DNA与蛋白质结合形成染色体,储存于细胞核 内,除配子细胞外,体细胞内基因组是双份的(即双倍体),有两份同源的基因组。 ②真核生物的基因转录产物为单顺反子。即一个结构基因经过转 录生成一个mRNA分子,再翻译生成一条多肽链。 ③真核生物基因组存在重复序列,重复次数可达百万次以上。 ④真核生物基因组中不编码的区域多于编码的区域。 ⑤真核生物的大部分基因都含有内含子,因此,基因是不连续的

(断裂基因)。 ⑥真核生物基因组远远大于原核生物的基因组,具有多复制起始 点,而每个复制子的长度较小。 2.试述双向凝胶电泳技术的基本原理。 双向凝胶电泳技术是指第一向的固相pH梯度等电聚焦电泳与第二向SDS-PAGE组成的分离系统,也称双向聚丙烯酰胺凝胶电泳,简称2-DE。等电聚焦电泳是基于蛋白质等电点(pI)的差异进行分离,SDS-PAGE则是根据蛋白质分子量(Mw)的不同进行分离。 其中等电聚焦指:在电场中电泳基质形成一个从正极到负极不断增大的PH梯度,由于蛋白质为两性电解质,带负电荷的蛋白质分子向正极移动,待正电荷的蛋白质分子向负极移动,当蛋白质分子运动到各自的PI处时,所带净电荷变为零,于是停止迁移而留在该位置上,这种不同的蛋白质分别聚焦在各自的PI处,形成一条狭窄稳定的区带而彼此分开的现象就称为等电点聚焦。 SDS-PAGE是在PAGE系统中加入SDS和还原剂后所组成的电泳系统。SDS是一种阴离子去垢剂,疏水端能插入蛋白质分子内,破坏蛋白质分子内的氢键及疏水作用,改变蛋白质分子的三级和四级结构;还原剂则断裂蛋白质分子内的二硫键,使蛋白质分子去折叠,结构变得舒展。蛋白质分子与SDS充分结合后,形成带负电荷的蛋白质-SDS复合物,所带负电荷大大超过蛋白质分子原有的电荷量,消除了不同分子间原有电荷的差异。蛋白质-SDS复合物在聚丙烯酰胺凝胶电泳系统中的迁移率不再与电荷相关,而主

基因诊断与基因治疗

第二十一章基因诊断与基因治疗 基因诊断与基因治疗能够在比较短的时间从理论设想变为现实,主要是由于分子生物学的理论及技术方法,特别是重组DNA技术的迅速发展,使人们可以在实验室构建各种载体、克隆及分析目标基因。所以对疾病能够深入至分子水平的研究,并已取得了重大的进展。因此在20世纪70年代末诞生了基因诊断(gene diagnosis);随后于1990年美国实施了第一个基因治疗(gene therapy)的临床试验方案。可见,基因诊断和基因治疗是现代分子生物学的理论和技术与医学相结合的范例。 第一节基因诊断 一. 基因诊断的含义 传统对疾病的诊断主要是以疾病的表型改变为依据,如患者的症状、血尿各项指标的变化,或物理检查的异常结果,然而表型的改变在许多情况下不是特异的,而且是在疾病发生的一定时间后才出现,因此常不能及时作出明确的诊断。现知各种表型的改变是由基因异常造成的,也就是说基因的改变是引起疾病的根本原因。基因诊断是指采用分子生物学的技术方法来分析受检者的某一特定基因的结构(DNA水平)或功能(RNA水平)是否异常,以此来对相应的疾病进行诊断。基因诊断有时也称为分子诊断或DNA诊断(DNA diagnosis)。基因诊断是病因的诊断,既特异又灵敏,可以揭示尚未出现症状时与疾病相关的基因状态,从而可以对表型正常的携带者及某种疾病的易感者作出诊断和预测,特别对确定有遗传疾病家族史的个体或产前的胎儿是否携带致病基因的检测具有指导意义。 二. 基因诊断的原理及方法

(一)基因诊断的原理 疾病的发生不仅与基因结构的变异有关,而且与其表达功能异常有关。基因诊断的基本原理就是检测相关基因的结构及其表达功能特别是RNA产物是否正常。由于DNA的突变、缺失、插入、倒位和基因融合等均可造成相关基因结构变异,因此,可以直接检测上述的变化或利用连锁方法进行分析,这就是DNA诊断。 对表达产物mRNA质和量变化的分析为RNA诊断(RNA diagnosis)。 (二)基因诊断的方法 基因诊断是以核酸分子杂交(nucleic acid molecular hybridization)和聚合酶链反应(PCR)为核心发展起来的多种方法,同时配合DNA序列分析,近年新兴的基因芯片可能会发展成为一种很有用的基因诊断方法。 1.DNA诊断 常用检测致病基因结构异常的方法有下列几种。 ⑴斑点杂交:根据待测DNA 样本与标记的DNA探针杂交的图谱,可以判断目标基因或相关的DNA片段是否存在,根据杂交点的强度可以了解待测基因的数量。 ⑵等位基因特异的寡核苷酸探针(allele-specific oligonucleotide probe, ASO probe)杂交:是一种检测基因点突变的方法,根据点突变位点上下游核苷酸序列,人工合成约19个核苷酸长度的片段,突变的碱基位于当中,经放射性核素或地高辛标记后可作为探针,在严格杂交条件下,只有该点突变的DNA样本,才出现杂交点,即使只有一个碱基不配对,也不可能形成杂交点。一般尚合成正常基因同一序列,同一大小的寡核苷酸片段作为正常探针。如果受检的DNA样本只能与突变ASO探针,不与正常ASO探针杂交,说明受检二条染色体上的基因都发生这种突变,为突变纯合子;如果既能与突变ASO探针又能与正常ASO探针杂交,

分子生物学作业(完整版)

分子生物学作业 第一次 1、Promoter:(启动子)一段位于结构基因5…端上游、能活化RNA聚合酶的DNA序列,是RNA聚合酶的结合区,其结构直接关系转录的特异性与效率。 2、Cis-acting element:(顺式作用元件)影响自身基因表达活性的非编码DNA序列,组成基因转录的调控区包括:启动子、增强子、沉默子等 一、简述基因转录的基本特征。(作业)P35 二、简述蛋白质生物合成的延长过程。P58 肽链的延伸由于核糖体沿mRNA5 ′端向3′端移动,开始了从N端向C端的多肽合成。 起始复合物,延伸AA-tRNA,延伸因子,GTP,Mg 2+,肽基转移酶 每加一个氨基酸完成一个循环,包括: 进位:后续AA-tRNA与核糖体A位点的结合 起始复合物形成以后,第二个AA-tRNA在EF-Tu作用下,结合到核糖体A位上。 通过延伸因子EF-Ts再生GTP,形成EF-Tu?GTP复合物,参与下一轮循环。 需要消耗GTP,并需EF-Tu、EF-Ts两种延伸因子。 转位:P位tRNA的AA转给A位的tRNA,生成肽键; 移位:tRNA和mRNA相对核糖体的移动; 核糖体向mRNA3’端方向移动一个密码子,二肽酰-tRNA2进入P位,去氨酰-tRNA 被挤入E位,空出A位给下一个氨酰-tRNA。移位需EF-G并消耗GTP。 三、真核细胞mRNA分子的加工过程有哪些?P40 1、5’端加帽 加帽指在mRNA前体刚转录出来或转录尚未完成时,mRNA前体5’端在鸟苷酸转移酶催化下加G,然后在甲基转移酶的作用下进行甲基化。 帽子的类型 0号帽子(cap1) 1号帽子(cap1) 2号帽子(cap2) 2、3’端的产生和多聚腺苷酸花 除组蛋白基因外,真核生物mRNA的3?末端都有poly(A)序列,其长度因mRNA种类不同而变化,一般为40~200个A 。 大部分真核mRNA有poly(A)尾巴,1/3没有。 带有poly(A)的mRNA称为poly(A)+, 不带poly(A)的mRNA称为poly(A)-。 加尾信号: 3?末端转录终止位点上游15~30bp处的一段保守序列AAUAAA。 过程: ①内切酶切开mRNA3?端的特定部位; ②多聚A合成酶催化加poly(A)。 3、RNA的剪接

基因与分子生物学第二章复习题

《基因与分子生物学》第二章复习题 一、名词解释 1. 核小体:指由DNA链缠绕一个组蛋白核构成的念珠状结构,是用于包装染色体的结构单位。 2. DNA的高级机构:DNA双螺旋结构进一步扭曲盘绕形成的超螺旋结构。 3. DNA拓扑异构酶:通过改变DNA互绕值引起拓扑异构反应的酶。 4. 启动子:能被RNA聚合酶识别,结合并启动基因转录的一段DNA序列。 5. 复制叉:双链DNA在复制起点解开成两股链,分别进行复制。这时在复制起点呈现叉子 的形式,被称为复制叉。 6. 半不连续复制:前导链的连续复制和后随链不连续复制的DNA复制现象。 7. C值:一种生物单倍体基因组DNA的总量值称为C值。 8. 冈崎片段:DNA合成过程中,后随链的合成是不连续进行的,先合成许多片段,最后各 段再连接成为一条长链。这些小的片段叫做冈崎片段。 9. DNA二级结构:两条多核苷酸链反向平行盘绕所生成的双螺旋结构。 10. 半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。 11 C值矛盾:C值指一种生物单倍体基因组DNA的总量。一种生物单倍体的基因组DNA 的总量与其种族进化的复杂程度不一致的现象称为C值矛盾。 12 复制子:DNA复制从起点开始双向进行直到终点为止,每一个这样的DNA单位称为复制子或复制单元。 13 重叠基因:指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列为两个 或两个以上基因的组成部分。 14. 染色体: 由核蛋白组成、能用碱性染料染色、有结构的线状体,是DNA的主要载体 15. DNA的修复: 是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样, 重新能执行它原来的功能"或"使细胞能够耐受DNA的损伤而能继续生存 16. DNA的一级结构:就是指4种核苷酸的连接及排列顺序,表示了该DNA分子的化学结 构。 17. 基因:一段有功能的DNA序列。 18. 基因组:特定生物体的整套(单倍体)遗传物质的总和

关于分子生物学试题及答案

分子生物学试题(一) 一.填空题(,每题1分,共20分) 一.填空题(每题选一个最佳答案,每题1分,共20分) 1. DNA的物理图谱是DNA分子的()片段的排列顺序。 2. 核酶按底物可划分为()、()两种类型。 3.原核生物中有三种起始因子分别是()、()和()。 4.蛋白质的跨膜需要()的引导,蛋白伴侣的作用是()。5.真核生物启动子中的元件通常可以分为两种:()和()。6.分子生物学的研究内容主要包含()、()、()三部分。 7.证明DNA是遗传物质的两个关键性实验是()、()。 8.hnRNA与mRNA之间的差别主要有两点:()、()。 9.蛋白质多亚基形式的优点是()、()、()。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP-CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP-CRP的启动子S1对高水平合成进行调节。有G时转录从(S2 )开始,无G时转录从(S1 )开始。 12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA重组实验通常包含以下几个步骤: ①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA分子上(克隆载体),形一个新的重组DNA分子。 ②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。 ③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。 ④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。 13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。 14.PCR的反应体系要具有以下条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。 b、具有热稳定性的酶如:TagDNA聚合酶。 c、dNTP d、作为模板的目的DNA序列 15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。 16、转基因动物的基本过程通常包括: ①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中; ②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

基因工程、分子生物学和分子遗传学重要名词解释

基因工程、分子生物学和分子遗传学重要名词解释 5’Cap 5’-末端帽:有时简称帽,是在许多真核生物mRNA5`-末端发现的一种由7-甲基-鸟嘌呤核苷-5`-ppp –末端核苷构成的特殊构成的特殊结构。它是在转录后不久经酶催反应加入到TATA (Hogness)序列的附近,具有保护mRNA稳定性的功能。在原核生物的mRNA分子中不存在 5`-末端帽结构。 A protein A蛋白:他参与λDNA插入噬菌体头部和在粘性末端(cos)位点上裂解多联体DNA 的过程。 abortive lysgeny 流产溶原性:温和噬菌体感染敏感的宿主菌后,既不整合进宿主染色体中,也不进行复制,从而使每一个带有噬菌体的宿主菌分裂产生的两个细胞中,只有一个是溶原性的。abortive transduction 流产转导:这是得到不稳定转导子的一类转导,区别于得到稳定转导子的完全转导。在流产转导中,转导子分裂产生两个细胞时,只有其中的一个获得供体基因,另一 个细胞则仍属受体基因型。 Abundance of an mRNA mRNA丰度:是指每个细胞平均拥有的某一种特定mRNA的分子数,跟据丰度的差异可将分为两种不同的等级:其一是富裕型的,每个细胞拥有的平均考贝数为1000——10000,属于此型的mRNA约有100种;其二是稀少型的,每个细胞拥有平均考贝数仅有1——10个上下,属于这一类行的mRNA达10000多种。 Abzymes 抗体酶: 应用单克隆抗体技术生产的兼具抗体及酶催活性的工程蛋白质。也就是说,其行为如同蛋白酶一样,能够催化化学反应的一类新型的抗体。 Acceptor splicing site 受体拼接位点: 间隔子的右端和与其相连的表达子的左端之间的接合点。Acquired immunodeficiency syndrome, AIDS 获得性免疫缺损综合征: 由人类免疫缺损病毒(HIV)引起的一种疾病,他最早于1980年在美国洛杉叽发现。HIV病毒通过血液和精液在人群中传播,感染了这种病毒之后,会使人体出现严重的免疫抑制和淋巴结病(lymphadenopathy),并增加对机会病原体(opportunistic pathogen)的敏感性。这种综合征是由于HIV病毒的感染以及cd4类T细胞功能破坏所致。T细胞表面CD抗原CDS4是HIV病毒的受体。HIV病毒的感染使T细胞发生融合形成大的合胞体(syncytia)并最终裂解。AIDS是致命的,目前尚无法有效治 疗也无有效疫苗可用。 activator 活化物:1,在分子生物学中,活化物是一种蛋质,结合在某个基因上游DNA的一个位置上,激活从该基因开始的转录。2,在酶学中,活化物是一种小分子,与酶相结合从 而提高酶的催化活性。 Activator 激活物: 能够通过与结合在启动子上的RNA聚合酶发生相互作用,从而促使RNA聚合酶起动操纵子进行转录反应的一种正调节蛋白质。 Adaptor 接头:即DNA接头,是一类人工合成的非自我互补单链寡核苷酸短片段,当其同街接物(linker)自行退火时,就会形成具有一个平末端和一个粘性末端的双链的接头/衔接物结构。因此,同平端DNA分子连接之后,无需用核酸内切限制酶切割,就会提供符合预先设计要求的 粘性末端。 Adenovirus 腺病毒:一种具双链DNA的动物病毒,大小约为36kb。次种病毒在分子生物学研究中占有突出的位置,许多重要的分子生物学事件,诸如RNA剪辑,DNA复制及转录等,,都是腺病毒研究中发现的。现在腺病毒以被改造用作分离哺乳动物基因的克隆载体。Affinity chromatography 亲和层析:一种根据配体与特异蛋白质结合作用原理建立的层析技 术,该法主要应用于分离与纯化特异的蛋白质。 Agarose 琼脂糖:是从红色海藻的琼脂中提取的一种线性多糖聚合物,可用于配置核酸电泳凝胶。当琼脂糖溶液加热至沸点后冷确凝固,便会形成一种基质,其密度石油琼脂糖浓度决定的。可以被琼脂糖凝胶电泳分离的DNA片段的大小范围为0.2——50kb。经过化学上修饰的低熔点

现代分子生物学作业

现代分子生物学与基因工程作业 姓名________________班级_____________学号________________ 1、绝大多数的真核生物染色体中均含有HI、H2A、H2B、H3和H4五种组蛋白,在不同物种之间它们的保守性表现在() A.H3和H4具有较高的保守性,而H2A和H2B的保守性比较低 B. H2A和H2B具有较高的保守性,而H3和H4的保守性比较低 C. H1和H4具有较高的保守性,而H3和H2B的保守性比较低 D. H1和H3具有较高的保守性,而H4和H2B的保守性比较低 2、下列叙述哪个是正确的() A. C值与生物体的形态学复杂性成正相关 B. C值与生物体的形态学复杂性成负相关 C. 每个门的最小C值与生物体的形态学复杂性是大致相关的 C值指一种生物单倍体基因组DNA的总量。不同物种的C值差异很大,随着生物体的进化 3、真核DNA存在于() A. 线粒体与微粒体内 B. 线粒体与高尔基体内 C. 线粒体与细胞核内 D.细胞核与高尔基体内 E. 细胞核与溶酶体内 4、在核酸分子中核苷酸之间的连接方式是() A. 2‵-3‵磷酸二酯键 B. 2‵-5‵磷酸二酯键 C. 3‵-5‵磷酸二酯键 D.糖苷键 5、所有生物基因组DNA复制的相同之处是() A. 半保留复制 B. 全保留复制 C. 嵌合型复制 D. 偶联型复制 6、复制子是() A. 细胞分离期间复制产物被分离之后的DNA片段 B. 复制的DNA片段和在此过程中所需的酶和蛋白 C. 任何自发复制的DNA序列(它与复制起始点相连) D. 复制起点和复制叉之间的DNA片段 7、在原核生物复制子中,下列哪种酶除去RNA引发体并加入脱氧核糖核酸() A.DNA聚合酶I B.DNA聚合酶II C.DNA聚合酶III D. 连接酶

河南工业大学 基因分子与生物学 基因与分子生物学第三章复习题

一、名词解释: 1. 转录单元:是指一段从启动子开始至终止子结束的DNA序列,RNA聚合酶 从转录起始位点开始沿着模板前进,直到终止子为止,转录出一条RNA链。 2. 单顺反子:只编码一个蛋白质的mRNA分子称为单顺反子。 3. 多顺反子:编码多个蛋白质的mRNA分子。 4. 基因:一段有功能的DNA序列。 5. 编码链:与mRNA序列相同的那条DNA链称为编码链。 6. 内含子的变位剪接:在高等真核生物中,内含子通常是有序或组成性地从 mRNA前体中被剪接,然而,在个体发育或细胞分化时可以有选择性地越过某些外显子或某个剪接点进行变位剪接,产生出组织或发育阶段特异性mRNA,称为内含子的变位剪接。 7. 转录的不对称性:在RNA的合成中,DNA的二条链中仅有一条链可作为转 录的模板。 8. 启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。 9. 核心启动子:指保证RNA聚合酶Ⅱ转录正常起始所必需的、最少的DNA序 列,包括转录起始位点及转录起始位点上游TATA区 10. 因子:六聚体蛋白,通过水解核苷三磷酸、DNA\RNA解链,促使新生RNA 链从三元转录复合物中解离出来,从而终止转录 11. RNA的编辑:是指转录后的RNA在编码区发生碱基的突变、加入或丢失等 现象 12. SD序列:mRNA中用于结合原核生物核糖体的序列。 13. 转录:转录是以DNA中的一条单链为模板,游离碱基为原料,在DNA 依赖的RNA聚合酶催化下合成RNA链的过程。 14. 终止子:在一个基因的末端往往有一段特定顺序,它具有转录终止的功能, 这段DNA序列称为终止子。 15. mRNA帽子:真核细胞中mRNA 5' 端的一个特殊结构。它是由甲基化鸟苷 酸经焦磷酸与mRNA的5' 端核苷酸相连,形成5',5'—三磷酸连接的结构。 16. 模板链:双链DNA分子中,可作为模板转录为RNA的DNA链,该链与转 录的RNA链的碱基互补。 17. 基因表达:遗传信息从DNA到RNA再到蛋白质的过程。

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

(整理)分子生物学与基因工程复习题

一、名词解释 1、分子生物学 2、基因工程 3、DNA的变性与复性 4、细胞学说 5、遗传密码的简并性 6、DNA半保留复制、半不连续复制 7、SD序列 8、开放阅读框(ORF) 9、多顺反子 10、蓝白斑筛选 11、中心法则 12、限制修饰系统 13、断裂基因 14、单链结合蛋白 15、核酶 16、密码子家族 17、TA克隆 18、PCR 19、SNP 20、操纵子学说 21、DNA重组技术 22、减色效应-增色效应 23、可变剪接 24、反转录 25、同尾酶 26、加帽反应 27、蓝白斑筛选 28、表观基因组学 29、DNA的溶解温度 30、DNA的大C值 31、重叠基因 32、引物酶 33、逆转录 34、限制性内切酶 35、载体的选择标记 36、DNA甲基化

37、端粒 38、端粒酶 39、前导链 40、启动子 41、反式作用因子 42、同义密码子 43、多克隆位点(MCS) 44、基因组计划 45、C值悖论 46、顺式作用元件 47、胸腺嘧啶二聚体 48、寄主的限制修饰现象 49、拓扑异构酶 50、DNA的溶解 51、拓扑异构体 52、间隔基因 53、假基因 54、同源异型蛋白 55、翻译 56、多重PCR 57、抗终止作用 58、SD序列 59、空载tRNA 60、cDNA RACE 61、分子杂交 62、cDNA文库 63、载体 64、RT-PCR 65、反义RNA 66、延伸tRNA 67、起始tRNA 68、探针 69、反式剪接 70、增强子 71、动物基因工程 72、基因组 73、限制性内切酶 74、单顺反子

75、密码子 76、转录 77、RNA干扰 78、中心法则 79、回环模型 80、TATA box 81、前导链 82、目的基因 83、RFLP 84、RACE 二、判断 1、大肠杆菌DNA生物合成中,DNA聚合酶I主要起聚合作用。( ) 2、DNA半保留复制时,后随链的总体延伸方向与先导链的延伸方向相反。( ) 3、原核生物DNA的合成是单点起始,真核生物为多点起始。() 4、以一条亲代DNA(3’→ 5’)为模板时,子代链合成方向5’→ 3’,以另一条亲代DNA链 5’→ 3’为模板时,子代链合成方向3’→ 5’。() 5、RNA的生物合成不需要引物。() 6、大肠杆菌RNA聚合酶全酶由4个亚基(α2ββ’)组成。( ) 7、大肠杆菌在多种碳源同时存在的条件下,优先利用乳糖。 ( ) 8、在DNA生物合成中,半保留复制与半不连续复制指相同概念。() 9、逆转录同转录类似,二者均不需要引物。() 10、真核生物染色体核心组蛋白的乙酰化、组蛋白H1的磷酸化,都会使基因得以失活。() 11、在原核细胞中,起始密码子AUG可以在mRNA上的任何位置,但一个mRNA上只有一个起 始位点。( ) 12、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别mRNA上的密码子。( ) 13、表观遗传效应是不可遗传的。( ) 14、cAMP与CAP结合、CAP介导正性调节发生在有葡萄糖及cAMP较高时。( ) 15、DNA甲基化永久关闭了某些基因的活性,这些基因在去甲基化后,仍不能表达。 () 16、RNA聚合酶催化的反应无需引物,也无校对功能。( ) 17、基因是存在于所有生命体中的最小遗传单位 18、人类基因组中大部分DNA不编码蛋白质 19、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别 mRNA上的密码子。 ( )

分子生物学第7章作业与答案

第七章作业 一、名词解释 操纵子 弱化子 二、选择题 1. 在调控乳糖操纵子表达中,乳糖的作用是() A. 与RNA聚合酶结合诱导结构基因的表达 B. 与RNA聚合酶结合抑制结构基因的表达 C. 与抑制物结合诱导结构基因的表达 D. 与抑制物结合抑制结构基因的表达 2. 关于乳糖操纵子学说描述正确的是() A.乳糖操纵子学说是典型的负控诱导转录系统 B.cAMP-CRP是一个重要的负调节物 C.乳糖及其类似物可以与阻遏基因的编码产物结合启动结构基因的转录 D.在无葡萄糖存在情况下,cAMP-CRP增加,结构基因转录下降 3. 乳糖、色氨酸等小分子物质在基因表达调控中作用的共同特点是() A. 与DNA结合 B.与启动子结合 C.与RNA聚合酶结合影响其活性 D.与蛋白质结合影响该蛋白质结合DNA 三.判断题 1. 1953年Watson和Crick提出了操纵子学说。()2.原核生物基因表达的调控主要发生在转录水平上,真核生物基因表达的调控可以发生在各个水平上,但主要也是在转录水平上。()

四.简答题 1、下图是乳糖操纵子的调节模式图,图A是在有充足葡萄糖情况下的示意图,图B是在缺乏葡萄糖,但有乳糖的情况下的示意图。简述其调节机制。 答:a,乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。 b,阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶 c,CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP 发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。 d,协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。

河南工业大学 基因分子与生物学 第四章基因与分子生物学习题(全)

一、名词解释 1. 翻译:将mRNA链上的核苷酸从一个特定的起始位点开始,按每3个核苷酸代表一个氨基酸的原则,依次合成一条多肽链的过程。 2. 三联子密码:mRNA链上每三个核苷酸翻译成蛋白质多肽链上的一个氨基酸, 这三个核苷酸就称为密码子或三联子密码。 3. SD序列:原核生物mRNA上起始密码子上游7-12个核苷酸处一个富含嘌呤 的区域,这个区域在翻译过程中能与16S rRNA3’端富含嘧啶的区域相互补。 这个序列称为SD序列,也叫核糖体结合位点(RBS)。 4. 简并性:由一种以上密码子编码同一个氨基酸的现象,称为密码子的简并性。 5. 同工tRNA:由于一种氨基酸可能有多个密码子,因此有多个tRNA来识别这 些密码子,即多个tRNA代表一种氨基酸。这种代表相同氨基酸的tRNA称为同工tRNA。 6. 信号肽:常指新合成多肽链中用于指导蛋白质跨膜转移的N-末端氨基酸序列(有时不一定在N端),至少含有一个带正电荷的氨基酸,中部有一高度疏水区以通过细胞膜。 7. 摆动假说:tRNA上反密码子的第一个碱基与密码子的第三位碱基由于非Waston-Crick配对,使tRNA上反密码子识别不止一个密码子。这就是密码子摆动假说的主要内容。 8. 编码链与反义链:在转录过程中,把与mRNA序列相同的那条称为编码链或有意链,另一条根据碱基互补配对原则指导mRNA合成的DNA链称为模板链或称反义链。 9. 错意突变:是指翻译过程中,由于一个碱基的改变而引起了氨基酸的改变,即一个正常意义的密码子变成错意密码子,从而使多肽链上相应位置上的氨基酸发生了改变。 10. 单顺反子:只编码一条多肽链的mRNA被称为单顺反子。 11. 同工tRNA:代表同一种氨基酸的tRNA称为同工tRNA。 12. 无义突变:在蛋白质的结构基因中,一个核苷酸的改变可能使代表某个氨基 酸的密码子变成终止密码子(UAG、UGA、UAA),使蛋白质合成提前终止,

分子生物学与基因工程复习资料

分子生物学与基因工程 绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA 的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由上个世纪50 年 代,Watson 和Crick 提出了的DNA 双螺旋模型; 60 年代,法国科学家Jacob 和Monod 提出了的乳糖操纵子模型; 70 年代,Berg 首先发现了DNA 连接酶,并构建了世界上第一个重组DNA 分子; 80 年代,Mullis 发明了聚合酶链式反应( Polymerase Chain Reaction , PCR)技术; 90 年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代” 3、分子生物学与基因工程的专业地位与作用。 核酸概述 1、核酸的化学组成 2、核酸的种类与特点:DNA 和RNA 的区别 1) DNA 含的糖分子是脱氧核糖,RNA 含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T), RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代

替; (3)DNA 通常是双链,而RNA 主要为单链; (4)DNA 的分子链一般较长,而RNA 分子链较短。 3、DNA 作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA 含量是恒定的,而生殖细胞精子的DNA 含量则刚好是体细胞的一半。多倍体生物细胞的DNA 含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA 在代谢上较稳定。 (3)DNA 是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。 (4)DNA 通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA 。 (5)在各类生物中能引起DNA 结构改变的化学物质都可引起基因突变。直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA 的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100OC)时,它就失去生理活性。这时DNA 双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。 简而言之,就是DNA 从双链变成单链的过程。增色效应:它是指在DNA 的变性过程中,它在260 nm 的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA 如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复

相关主题
相关文档 最新文档