当前位置:文档之家› 大学物理答案第5章

大学物理答案第5章

大学物理答案第5章
大学物理答案第5章

第五章 热力学基础

5-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。利用理想气体物态方程即可求解本题。位于湖底时,气泡内的压强可用公式

gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0?103 kg·m -3)。

解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。由分析知湖底处压强为

gh

p gh p p ρρ+=+=021。

利用理想气体的物态方程可得空气泡到达湖面的体积为

()3

51

01

20121212m 1011.6-?=+==

T p V T gh p T p V T p V ρ

5-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降

到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。从氧气质量的角度来分析。利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。

解:根据分析有

RT V Mp m RT V Mp m RT V Mp m 3331

22111===

;;

则一瓶氧气可用天数

()()5

.93

31

213

21=-=-=

V p V p p m m m n

5-3 一抽气机转速ω=400r ?min -1,抽气机每分钟能抽出气体20升。设容器的容积

V 0=2.0升,问经过多长时间后才能使容器内的压强由1.01×105 Pa 降为133Pa 。设抽气过程中温度始终不变。

分析:抽气机每打开一次活门, 容器内气体的容积在等温条件下扩大了V ,因而压强有所降低。活门关上以后容器内气体的容积仍然为V 0 。下一次又如此变化,从而建立递推关系。

解:抽气机抽气体时,由玻意耳定律得: 活塞运动第一次:

)

(0100V V p V p +=

00

1p V V V p +=

活塞运动第二次:

)

(0201V V p V p +=

02

0100

2p V V V p V V V p ????

??+=+=

活塞运动第n 次:

)

(001V V p V p n n +=-

n

n V

V V p p ???

?

??+= 0

V

V V n

p p n n +=000

ln

抽气机每次抽出气体体积

l 05.0l )400/20(==V l 0.20=V

Pa 1001.150?=p Pa 133=n p

将上述数据代入(1)式,可解得 276=n 。则

s 40s 60)400/276(=?=t

5-4 l.0 mol 的空气从热源吸收了热量2.66?105J ,其内能增加了4.18?105J ,在这过程中气体作了多少功?是它对外界作功,还是外界对它作功?

解:由热力学第一定律得气体所作的功为

J

1052.15?-=-=E Q W ?

负号表示外界对气体作功。

5-5 1mol 双原子分子的理想气体,开始时处于P 1=1.01×105Pa ,V 1=10-3m 3的状态。然后经本题图示直线过程Ⅰ变到P 2=4.04×105Pa ,V 2=2×10-3m 3的状态。后又经过程方程为PV 1/2=C (常量)的过程Ⅱ变到压强P 3=P 1=1.01×105Pa 的状态。求:(1)在过程Ⅰ中的气体吸收的热量;(2)整个过程气体吸收的热量。

解:(1)在过程I 中气体对外作的功 2/))((12211V V p p A -+= 在过程I 中气体内能增量

)

(2

5)(251122121V p V p T T R E -=-=?

在过程I 中气体吸收的热量

J E A Q 3

111002.2?=+=? (2)在过程II 中气体对外作的功

O

V

习题5-5图

)

(222332

223

2

3

2

V p V p V dV

V p pdV A V V V V -===

?

?

常量=2

1

pV

可算得3

331032m V -?=,带入上式得

J A 3

21085.4?= 整个过程中气体对外作功

J A A A 3

21101.5?=+=

整个过程中气体内能增量

J

T T R E 3131083.7)(2

5?=-=?

整个过程中气体吸收的热量

J A E Q 4

1029.1?=+=?

5-6 如本题图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J 。当系统从状态C 沿另一曲线返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?

分析:已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化为CA E ?,则由热力学第一定律即可求得该过程中系统传递的热量Q CA 。由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化AC E ?,而CA AC E E ?-=?,故可求得Q CA 。

解:系统经ABC 过程所吸收的热量及对外所作的功分别为

J

126J,326ABC ABC ==W Q

则由热力学第一定律可得由A 到C 过程中系统内能的增量

J

200ABC ABC AC =-=?W Q E

由此可得从C 到A ,系统内能的增量为

J

200CA -=?E

从C 到A ,系统所吸收的热量为

J

252CA CA CA -=+?=W E Q

习题5-6图

式中负号表示系统向外界放热252 J 。这里要说明的是由于CA 是一未知过程。上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热。

5-7 空气由压强为1.52?105 Pa ,体积为5.0?10-

3 m 3,等温膨胀到压强为1.01?105 Pa ,然后再经等压压缩到原来的体积。试计算空气所作的功。

解:空气在等温膨胀过程中所作的功为

???? ??=???? ??=

2111121T ln ln p p V p V V RT M m

W

空气在等压压缩过程中所作的功为

()

212p d V V p V p W -==?

利用等温过程关系2211V p V p =,则空气在整个过程中所作的功为

()J

7.55ln 11122111p T =-+=+=V p V p p p V p W W W

5-8 如本题图所示,使l mol 氧气(1)由A 等温地变到B ;(2)由A 等体地变到C ,

再由C 等压地变到B ,试分别计算氧气所作的功和吸收的热量。

分析:从p -V 图上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()?=V V p W d 求出。考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同B A T T =,故0=E ?,利用热力学第一定律E W Q ?+=,可求出每一过程所吸收的热量。

解:(1)沿AB 作等温膨胀的过程中,系统作功

J 1077.2ln ln 3A B A A A B AB ?=???

? ??=???? ??=

V V V p V V RT M m

W

由分析可知在等温过程中,氧气吸收的热量为

J

1077.23AB AB ?==W Q

(2)沿A 到C 再到B 的过程中系统作功和吸热分别为

()J

100.23C B C CB CB AC ACB ?=-==+=V V p W W W W

J

100.23ACB ACB ?==W Q

5-9 一定量的某单原子分子理想气体装在封闭的气缸里,此气缸有可活动的活塞(活

塞与气缸壁之间无摩擦且无漏气)。已知气体的初压强P 1=1atm,体积V 1=10-3m 3

,现将该气体在等压下加热直到体积为原来的两倍,然后在等体下加热,到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,试求:在整个过程中气体内能的改变、吸收的热量和所作的功。

解: 因为14T T =,所以内能增量为零。

习题5-8图

J p p V V V p Q 2111111106.5)2(223

)2(25?=-+-=

J Q A 2106.5?==

5-10 有1mol 刚性多原子分子的理想气体,原来的压强为1.0atm,温度为27℃,若经过一

绝热过程,使其压强增加到16atm 。试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时气体的分子数密度。

解:(1) ()

K p p T T 60012112==γ

γ

-

J T T R i

M E 31210479.7)(2?=-μ=

?

(2) J E A 3

10479.7?=-=?

(3)

3

262

2

/1096.1m kT p n 个?==

5-11 有一绝热的圆柱形的容器,在容器中间放置一无摩擦、绝热的可动活塞,活塞

两侧各有ν摩尔同种单原子分子理想气体,初始时,两侧的压强、体积、温度均为(P 0,V 0,T 0)。气体的定容摩尔热容量为C V =3R/2。现将一通电线圈放在活塞左侧气体中,对气体缓慢加热。左侧气体膨胀,同时压缩右方气体,最后使右方气体体积为V 2=V 0/8。求:(1)左、右两侧气体的终温是多少? (2)左侧气体吸收了多少热量? 解:(1)右则气体经历一绝热过程,初态()000T V P 、终态()222T V P , 由方程 122100--=γγV T V T 得出右侧气体末态温度:

0013/501

20

248T T T V

V T ==???

? ??=--γ

由理想气体物态方程,右侧气体终态压强为

00

22

00232P T V T V P P ==

由于活塞是可动的,左、右两侧的压强应相同:02132P P P ==, 左侧末态体积: 02018

15

2V V V V =-= 左侧气体末态温度: 00000111608

15

32T T T V P V P T =?== (2)

0002193622

3

)2(U U W V P T R T T T C U Q V =?=-+=???=→νν +=+右

左右左左 5-12 如本题图所示,有一除底部外都是绝热的气筒,被一位置固定的导热板隔成相等的两部分A 和B ,其中各盛有一摩尔的理想气体氮。今将334.4J 的热量缓慢地由底部供给气体,设活塞上的压强始终保持为1.01?105Pa ,求A 部和B 部温度的改变以及各吸收的热量(导热板的热容可以忽略)。若将位置固定的导热板换成可以自由滑动的绝热隔板,重复上述讨论。

解:(1)导热板固定,A 中气体为等容加热;B 中气体为定压膨胀,且为准静态的,搁板导热,T T T B A ?=?=?

()T C C T C T C Q V P A V B P ?+=?+?=

K R Q R

R Q C C Q T V P 71.631.864

.33462

527≈?==+=+=

? J

T R T C Q V A 4.13971.631.825

25=??=?=?= J Q Q Q A B 1954.1394.334=-=-=

(2)隔板活动,A 气体等压膨胀;隔板绝热,B 中气体温度不变。

0=B Q 0=?B T T C Q Q P A ?==

K R Q C Q T P 50.1131.874.334272≈??===

?

5-13 0.32 kg 的氧气作如本题图所示的ABCDA 循环,设V 2=2V 1,T 1=300K ,T 2=

200K ,求循环效。(氧气的定体摩尔热容的实验值为C V = 21.1 J·mol -1·K -1) 分析:该循环是正循环。循环效率可根据定义式Q W /=η来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量。

解:根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为

()()()()J 1076.5ln ln ln 312212121

21CD AB ?=-=

+=+=V V T T R M

m

V V RT M

m

V V RT M m W W W

由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中0=E ?,则AB AB W Q =。等体升压过程中W = 0,则DA DA E Q ?=

,所以,循环

习题5-

13

习题5-12图

过程中系统 吸热的总量为

()()J 1084.3ln 421m V,1

21DA

AB DA AB ?=-+=

?+=+=T T C M m

V V RT M m E W Q Q Q

由此得到该循环的效率为

%15==W η

5-14 如本题图所示,某理想气体循环过程的V -T 图。已知该气体的定压摩尔热容

C P = 2.5R ,定体摩尔热容C V = 1.5R ,且V C =2V A 。试问:(1)图中所示循环是代表致冷机还是热机?(2)如是正循环(热机循环),求出循环效率。 分析:以正、逆循环来区分热机和致冷机是针对p -V 图中循环曲线行进方向而言的。因此,对图中的循环进行分析时,一般要先将其转换为P -V 图。由图可以看出,BC 为等体降温过程,CA 为等温压缩过程;而AB 过程为等压膨胀过程。这样,就可得出p -V 图中的过程曲线,并可判别是正循环。

解:(1)根据分析,将V -T 图转换为相应的p -V 图,如图所示。图中曲线行进方向是正循环,即为热机循环。

(2)根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程。BC 为等体降压过程,CA 为等温压缩过程,均为放热过程。故系统在循环过程中吸收和放出的热量分别为

()A B m p,1T T C M m

Q -=

()()A C A C B m V,2ln V V RT M m T T C M m Q +-=

CA 为等温线,有C A T T =;AB 为等压线,且因A C 2V V =,则有2B A T T =。故循环效率为

()()%

3.12/2ln 11A m p,A A m V,12=+-=-=T C RT T C Q η

5-15 有一以理想气体为工作物质的热机,其循环如本题图所示,试证明热机效率为

()()1

112121

---=p p V V γ

η

分析:该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程。其中CA 过程系统吸热,BC 过程系统放热。本题可从效率定义

C A B C 1211Q Q Q -=-=η。出发,利用热力学第一定律和等体、等压方程以及

m V,m p,/C C =γ的关系来证明。

证:该热机循环的效率为

习题5-14

T

V

C A

B C 1211Q Q Q Q -=-=η

其中

()()C A m V,CA B C m p,BC ,T T C M m Q T T C M m Q -=-=

则上式可写为

1

1

11C A C B C

A B C ---=---=T T T T T T T T γ

γ

η

在等压过程BC 和等体过程CA 中分别有

2

C 1A 2C 1B ,P T P T V T V T ==

代人上式得

1

1

12121---=p p V V γ

η

证毕。

5-16 汽油机可近似地看成如图所示的理想循环,这个循环也叫做奥托(Otto )循环,其中DE 和BC 是绝热过程。证明此热机的效率为

1

)(

1-γ-=ηB

C V V 证:(1)该循环仅在C

D 一过程中吸热,EB 过程中放热。则热机效率为

()()C

D B

E C D m V,B E m V,CD

EB 111T T T T T T C M m T T C M m

Q Q ---=---=-=η

(2)在过程BC 和DE 中,分别应用绝热方程

C TV =-1γ,有

1

C

C 1B B --=γγV T V T 1C

D 1B

E --=γγV T V T

由上述两式可得

习题5-15图

习题5-16图

1

B C C D B E -???

?

??=--γV V T T T T

将此结果代人(1)中。即可得

()1B C 1--=γηV V

5-17 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17℃、如

果每天有2.51×108 J 的热量通过热传导等方式自室外流人室内,则空调一天耗电多少?(设该空调致冷机的致冷系数为同条件下的卡诺致冷机致冷系数的60%)

分析:耗电量的单位为kW ?h ,1kW ?h = 3.6?106 J 。因为卡诺致冷机的致冷系数为

()212k T T T e -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温

度)。所以,空调的致冷系数为

()

212k 6.0%60T T T e e -=?=

另一方面,由致冷系数的定义,有

()

212Q Q Q e -=

其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量。若Q '为室外传进室内的热量,则在热平衡时Q Q '=2。由此,就可以求出空调的耗电作功总值21Q Q W -=。

解:根据上述分析、空调的致冷系数为

()7

.86.0212=-=T T T e

在室内温度恒定时,有Q Q '=2。由()212Q Q Q e -=可得空调运行一天所耗电功

h

kW 0.8J 1089.27221?=?='==-=e Q e Q Q Q W

5-18 设一质量为m 克的物体具有恒定的比热c 。(1) 当此物体由温度T 1加热到T 2时,其熵的变化为多少?(2)当温度下降却时这物体的熵是否减小?如果减小,那么在这样的过程中宇宙的总熵是否减小?

解: (1) T

mcdT

T dQ ds ==-∵ 则

?

??==2

1

212

1

T T T T S S

T

dT mc T mcdT

ds 1

2

12ln

T T mc S S =-∴ (2)冷却时T 2

(3) 物体冷却时,周围环境的熵增加,宇宙的总熵不会减小

5-19 一黄铜棒的一端与127℃的热库接触,而另一端与27℃的热库接触。试问:

(1) 当有1200卡的热量通过这棒时,在这传导过程中所发生的熵的总变化为多大? (2) 在这传导过程中棒的熵是否改变? 解:(1) K .J 2.4k /c a l 0.1)3

1

41(1230012004001200S =+=+-=+-=

×△

(2)在这传导过程中棒的熵不改变。

5-20 让一摩尔的单原子理想气体由压强为P 与体积为V 的初态,经历两个不同过程

改变到压强为2P 与体积为2V 的终态。(1)先让此理想气体等温地膨胀到体积加倍为止,然后在恒定体积下将压强增大到终态。(2)先让此理想气体等温地压缩到压强加倍为止,然后在恒定压强下将体积增大到终态。试分别对此两个过程计算理想气体熵的变化。

解:熵是态函数 △S=S f - S i 与路线无关

υ

υ

d R T dT C T pdv dE T dQ ds V +=+==

2ln 42ln 4ln 2

3

2ln ln 232ln ln 23 ln

ln 112212R R R R V P V P R V V R T T V V R T T C d R T dT

C S S i

f i f T T V V i f f

i

f i =+=+=+=

+=+=-??υυυυ

5-21 如本题图所示,一长为0.8m 的圆柱形容器被一薄的活塞分隔成两部分。开始时

活塞固定在距左端0.3m 处。活塞左边充有1mol ,5?105N ?m -2的氦气,右边充有1?105N ?m -2的氖气。它们都是理想气体。将气缸浸入1升水中,开始时整个物体系的温度均匀地处于25?C 。气缸及活塞的热容可不考虑。放松以后振动的活塞最后将位于一新的平衡位置,试问(1)水温升高多少?(2)活塞将静止在距气缸左边多大距离位置?(3)物体系的总熵增加多少?

解:(1)系统处于新的平衡位置后:

11Q W u A +-=? 11Q W u B -=? 0=?+?=?B A u u u T T =' 温度不变

(2)设新平衡后,活塞位于距A 处x ,(活塞截面为S )

A 端:'

11010T PV T V P = P x S S =??3.01055

B 端:22020PV V P = ()S x P S -=??8.05.01015

两式相除:x

x

-=

8.03 m x 6.0=

(3)整个气体的熵变等于氦气的熵变和氖气的熵变之和。注意温度始终不变。利用理想气体熵变公式,则

V

V R νV V R νS S S S e S

S

e d d Ne

25.05.0H 6.03.0N He ??

+=?+?=?

习题5-21图

-1K J 22.3)5/2ln()3/1(2ln ?=+= R R

5-22 如本题图所示,图中1→3为等温线,1→4为绝热线,1→2和4→3均为等压线,2

→3为等体线。1mol 的氢气在1点的状态参量为V 1=0.02m 3,T 1=300K ,在3点的状态参量为V 3=0.04m 3,T 3=300K 。试分别用如下三条路径计算S 3-S 1:(1)1→2→3;(2)1→3;(3)1→4→3。

解:(1)“21-”为等压过程,K 600)/(1122=?=T V V T 。而“32-”为等体过程。

注意到2H 为双原子分子,2/7m ,R C p =,2/5m ,R C V =。所以在“321--”过程中的熵变为

T Q T Q

S S d d )3()2()

2()

1(13??

+=- T

Q C T T C V p d d 300600m ,600300m ,??+=2ln ?=R (2)“31-”为等温过程。其熵变

2ln )/ln(/d 23)

3()

1(13?===-?

R V V R T Q S S

(3)“341--”过程是由“41-”的绝热过程,

1

4

41

1

1--=γγV T V T (1)

和“34-”的等压过程

3434//V V T T = (2)

所组成的。联立(1)式、(2)式,考虑到K 3001=T ,得

到“4”点的温度

K 30025/24?=-T

其熵变

)()(431413S S S S S S -+-=-

????-=+=30023005

/234

d 25d 0T T

R T Q T T

2ln 2ln 25

5/2?=?=

R R

习题5-22图

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学物理习题答案--第一章

第一章作业解 1-7液滴法是测定液体表面张力系数的一种简易方法。将质量为m 的待测液体吸入移液管,然后让液体缓缓从移液管下端滴出。可以证明 d n mg πγ= 其中,n 为移液管中液体全部滴尽时的总滴数,d 为液滴从管口落下时断口的直径。请证明这个关系。 证:当液滴即将滴下的一刻,其受到的重力与其颈部上方液体给予的张力平衡 F g m =' d r L F πγπγγ===2 n m m = ', d n m πγ= 得证:d n mg πγ= 1-8 在20 km 2的湖面上下了一场50 mm 的大雨,雨滴半径为1.0 mm 。设温度不变,雨水在此温度下的表面张力系数为7.3?10-2N ?m -1。求释放的能量。 解:由 S E ?=?γ 雨滴落在湖面上形成厚为50 mm 的水层,表面积就为湖面面积,比所有落下雨滴的表面积和小,则释放的表面能为: )4(2 S r n E -?=?πγ 其中,3 43 r Sh n π= 为落下的雨滴数,r 为雨滴半径 J r h S E 8 3 3 6 2 1018.2)110 0.110503( 102010 3.7)13( ?=-???????=-=?---γ 1-9假定树木的木质部导管为均匀的圆柱形导管,树液完全依靠毛细现象在导管内上升,接触角为45°,树液的表面张力系数1 2 10 0.5--??=m N γ。问要使树液到达树木的顶部,高 为20 m 的树木所需木质部导管的最大半径为多少? 解:由朱伦公式:gr h ρθ γcos 2= 则:cm gh r 5 3 2 10 6.320 8.91012 /210 0.52cos 2--?=??????= = ρθ γ 1-10图1-62是应用虹吸现象从水库引水的示意图。已知虹吸管粗细均匀,其最高点B 比水库水面高出m h 0.31=,管口C又比水库水面低m h 0.52=,求虹吸管内的流速及B点处的

大学物理试卷及答案

2005─2006学年第二学期 《 大学物理》(上)考试试卷( A 卷) 注意:1、本试卷共4页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试; 5、可用计算器,但不准借用; 6、考试日期: 7、答题答在答题纸上有效, 答在试卷上无效; b =2.897×10?3m·K R =8.31J·mol ?1·K ?1 k=1.38×10?23J·K ?1 c=3.00×108m/s ? = 5.67×10-8 W·m ?2·K ?4 1n 2=0.693 1n 3=1.099 g=9.8m/s 2 N A =6.02×1023mol ?1 R =8.31J·mol ?1·K ?1 1atm=1.013×105Pa 一.选择题(每小题3分,共30分) 1.在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大. (B) 间距变小. (C) 不发生变化. (D) 间距不变,但明暗条纹的位置交替变化. 2. 热力学第一定律只适用于 (A) 准静态过程(或平衡过程). (B) 初、终态为平衡态的一切过程. (C) 封闭系统(或孤立系统). (D) 一切热力学系统的任意过程. 3.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) 角动量守恒,动能不变. (B) 角动量守恒,动能改变. (C) 角动量不守恒,动能不变. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 4.质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧串联连接在水平光滑导轨上作微小振 动,则该系统的振动频率为 (A) m k k 212+π =ν. (B) m k k 2 121+π=ν . (C) 2 12 121k mk k k +π=ν. (D) )(212 121k k m k k +π=ν 5. 波长? = 5500 ?的单色光垂直照射到光栅常数d = 2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 (A) 2. (B) 3. (C) 4. (D) 5.

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

大学物理期末试卷(带答案)

大学物理期末试卷(A) (2012年6月29日 9: 00-11: 30) 专业 ____组 学号 姓名 成绩 (闭卷) 一、 选择题(40%) 1.对室温下定体摩尔热容m V C ,=2.5R 的理想气体,在等压膨胀情况下,系统对外所做的功与系统从外界吸收的热量之比W/Q 等于: 【 D 】 (A ) 1/3; (B)1/4; (C)2/5; (D)2/7 。 2. 如图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A B 等压过程; A C 等温过程; A D 绝热过程 . 其中吸热最多的 过程 【 A 】 (A) 是A B. (B) 是A C. (C) 是A D. (D) 既是A B,也是A C ,两者一样多. 3.用公式E =νC V T (式中C V 为定容摩尔热容量,ν为气体摩尔数)计算理想气体内能 增 量 时 , 此 式 : 【 B 】 (A) 只适用于准静态的等容过程. (B) 只适用于一切等容过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程. 4气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,问气体 分 子 的 平 均 速 率 变 为 原 来 的 几 倍 ? p V V 1 V 2 A B C D . 题2图

【 B 】 (A)2 2 / 5 (B)2 1 / 5 (C)2 1 / 3 (D) 2 2 / 3 5.根据热力学第二定律可知: 【 D 】 (A )功可以全部转化为热, 但热不能全部转化为功。 (B )热可以由高温物体传到低温物体,但不能由低温物体传到高温物体。 (C )不可逆过程就是不能向相反方向进行的过程。 (D )一切自发过程都是不可逆。 6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央 明纹极大的位置,则此玻璃片厚度为: 【 B 】 (A) 5.0×10-4 cm (B) 6.0×10-4cm (C) 7.0×10-4cm (D) 8.0×10-4cm 7.下列论述错误..的是: 【 D 】 (A) 当波从波疏媒质( u 较小)向波密媒质(u 较大)传播,在界面上反射时,反射 波中产生半波损失,其实质是位相突变。 (B) 机械波相干加强与减弱的条件是:加强 π?2k =?;π?1)2k (+=?。 (C) 惠更斯原理:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面 (D) 真空中波长为500nm 绿光在折射率为1.5的介质中从A 点传播到B 点时,相位改变了5π,则光从A 点传到B 点经过的实际路程为1250nm 。 8. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长 的透射光能量。假设光线垂直入射,则介质膜的最小厚度应为: 【 D 】 (A)/n λ (B)/2n λ (C)/3n λ (D)/4n λ P O 1 S 2 S 6. 题图

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理(吴柳主编)上册课后习题答案

大学物理(吴柳主编) 上册课后习题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

说明: 上册教材中,第5,6,7等章的习题有答案; 第1,2,4,8章的习题有部分答案; 第3,9,10,11章的习题没有答案。 为方便学生使用,现根据上学期各位老师辛苦所做的解答,对书上原有的答案进行了校对,没有错误的,本“补充答案”中不再给出;原书中答案有误的,和原书中没有给出答案的,这里一并给出。错误之处,欢迎指正! 第1章 1.4. 2.8×10 15 m 1.5.根据方程中各项的量纲要一致,可以判断:Fx= mv 2/2合理, F=mxv , Ft=mxa , Fv= mv 2/2, v 2+v 3=2ax 均不合理. 第2章 2.1 (1) j i )2615()2625(-+-m; )/]()2615()2625[(45 1151020)2615()2625(s m j i j i t r v -+-=++-+-=??= (2)52m; 1.16m/s 2.2 (1) 4.1 m/s; 4.001m/s; 4.0m/s (2) 4m/s; 2 m.s -2 2.3 3m; m 3 4π ; 140033-s .m π方向与位移方向相同; 1.0m/s 方向沿切线方向 2.5 2π (m); 0; 1(s) 2.6 24(m); -16(m) 2.8 2 22 t v R vR dt d +=θ 2.10 (1) 13 22 =+y x (2) t v x 4sin 43ππ-=;t v y 4 cos 4π π=;t a x 4cos 1632ππ-=;t a y 4sin 162ππ-= (3) 2 6= x ,22=y ;π86- =x v ,π82=y v ;,2326π-=x a 2 322π-=y a 2.12 (1) ?=7.382θ,4025.0=t (s),2.19=y (m) (2) ?=7.382θ,48.2=t (s),25.93=y (m)。 2.14 (1) 22119x y - = (2) j t i v 42-=;j a 4-= (3) 0=t 时,j r 19=; 3=t 时,j i r +=6。(4)当9=t s 时取“=”,最小距离为37(m )。

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理课后习题答案(上)

《大学物理》练习题 No .1 电场强度 班级 ___________ 学号 ___________ ___________ 成绩 ________ 说明:字母为黑体者表示矢量 一、 选择题 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q 0的大小成反比; (B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0. 2.如图1.1所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷q , P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强 的大小为: [ D ](A) x q 04πε. (B) 2 04x q πε. (C) 3 02x qa πε (D) 30x qa πε. 3.图1.2所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为 ( x < 0)和 ( x > 0),则xOy 平面上(0, a )点处的场强为: [ A ] (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 真空中一“无限大”均匀带负电荷的平面如图1.3所示,其电场的场强 分布图线应是(设场强方向向右为正、向左为负) ? [ D ] 5.在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是 [ C ] (A) f 12的大小不变,但方向改变, q 1所受的总电场力不变; (B) f 12的大小改变了,但方向没变, q 1受的总电场力不变; (C) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化; -q -a +q a P (x,0) x x y O 图1.1 +λ -λ ? (0, a ) x y O 图1.2 σ -x O E x 02εσ O 02εσ-E x O 0 2εσ-E x 02εσO 02εσ -O E x 02εσ(D)图1.3

大学物理答案第17章

大学物理答案第17章

17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 a f x λ 2=? 代入数据得 mm x 461.510 1.0101.54610 5023 9 2 =????=?--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 λθk a =sin 依题意有 m a μλ 26.70872 .0108.6325sin 9 =?==- 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 λθk a =sin

依题意有 011 5.234.0sin 5 2 sin 20sin 50===→=--θθ 中央波束的角宽为0 475 .2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 2 ) 12(sin λ θ+=k a 依题意有 2)122(2)132(2 1λλ+?=+? 代入数据得 nm 6.4287 60057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。星体的像照亮了几个这样的细胞?

大学物理试卷及答案

2005─2006学年第二学期 《 大学物理》(上)考试试卷( A 卷) 注意:1、本试卷共4页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试; 5、可用计算器,但不准借用; 6、考试日期: 7、答题答在答题纸上有效, 答在试卷上无效; b =×10?3m·K R =·mol ?1·K ?1 k=×10?23J·K ?1 c=×108m/s ? = ×10-8 W·m ?2·K ?4 1n 2= 1n 3= g=s 2 N A =×1023mol ?1 R =·mol ?1·K ?1 1atm=×105Pa 一.选择题(每小题3分,共30分) 1.在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大. (B) 间距变小. (C) 不发生变化. (D) 间距不变,但明暗条纹的位置交替变化. 2. 热力学第一定律只适用于 (A) 准静态过程(或平衡过程). (B) 初、终态为平衡态的一切过程. (C) 封闭系统(或孤立系统). (D) 一切热力学系统的任意过程. 3.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) 角动量守恒,动能不变. (B) 角动量守恒,动能改变. (C) 角动量不守恒,动能不变. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 4.质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧串联连接在水平光滑导轨上作微小振 动,则该系统的振动频率为 (A) m k k 212+π =ν. (B) m k k 2 121+π=ν . (C) 2 12 121k mk k k +π=ν. (D) )(212121k k m k k +π=ν 5. 波长? = 5500 ?的单色光垂直照射到光栅常数d = 2×10-4cm 的平面衍射光栅上,可能观 察到的光谱线的最大级次为 (A) 2. (B) 3. (C) 4. (D) 5. 6.某物体的运动规律为d v /dt =-k v 2t ,式中的k 为大于零的常量.当t =0时,初速为v 0,则

相关主题
文本预览
相关文档 最新文档