当前位置:文档之家› 双背压凝汽器

双背压凝汽器

双背压凝汽器
双背压凝汽器

双背压凝汽器简介

凝汽器是凝汽式汽轮机的一个十分重要的设备,其工作性能直接影响着整个汽轮机组的经济性和安全性,当机组容量达到600MW甚至更大等级时,由于材料、叶片制造工艺、机组空间布置等方面的限制,采用多压凝汽嚣成了现代大型电站凝汽器研制发展的一个必然的重要方向,采用多背压可以降低热耗、减小凝汽器表面积,减少冷却水量、改进设备布置和运行。

黄岛电厂两台670MW机组就是采用双背压凝汽器,本文以此为例简单介绍双背压凝汽器的优越性、典型结构及运行中的特殊故障。

黄岛电厂670MW机组凝汽器的主要参数:

型式:双背压、双壳体、单流程、表面式

冷却面积:38000m2

凝汽器平均背压:4.4/5.4kpa

冷却水流量:68300t/h

冷却面积: 36600 m2

循环水允许温升:≤10.28

冷却水设计温度/最高水温:20/33℃

循环倍率(实际工况凝汽量)55

冷却管规格:φ25×O.5mm(主凝结区) φ25×0.7mm(空冷区及顶部迎汽区)

一、多背压凝汽器的优越性

所谓多背压凝汽器就是由一个串联的冷却水冷却来自汽轮机低压缸两个或以上排出口的

蒸汽,使得蒸汽在分隔开的多个不同绝对压力的凝汽器汽室中凝结成水。多压凝汽器与单压凝汽器相比具有以下优越性:

(1)多压凝汽器从根本上改善了蒸汽负荷的不均匀性,从而提高了凝汽器的传热性能。

(2)多压凝汽器在传热过程中,冷却水温度除了在进口处和出口处与单压凝汽器相等外,当中过程均比单压凝汽器低,因此多压凝汽器的传热性能优于单压凝汽器。

(3)把低压侧温度较低的凝结水设法送往高压侧回热,利用高压汽室中的蒸汽将它加热到比单背压凝汽器凝结水温度更高的温度,则送往锅炉的凝结水温度将高于平均温度,从而可使整个系统循环热效率进一步提高。

(4)多背压凝汽器的平均背压低于相同条件下单背压凝汽器的背压,这样就增大了汽轮机

在低压缸处的焓降,提高了整个机组的经济性。一般来说采用双背压凝汽器,机组热效率可提高0.15%~0.25%。如图1:

单压凝汽器和双压凝汽器的平均排汽温度之差为:

当循环水进口温度超过某一分界温度时,排汽温度差为正值,且循环水进口温度越高,排汽温度差越大。此外。排汽温度差还与循环水温升有关,而循环水温升等于525/m,m越小,排汽温度差越大。另据研究表明:多压凝汽器的数目越多,冷却倍率越小,采用多压凝汽器的效益越大。所以在缺少冷却水和气温较高的地区采用多压凝汽器是比较有利的,一般可提高装置效率0.15-0.25%

图1

(5)在保持汽轮机功率(或热耗)不变的情况下,多压凝器亦可根据设计需要同时减少冷却面积和冷却水流量,以提高经济效益。

(6)多压凝汽器可以改善凝汽器布置。多压凝汽器允许采用较长的冷却管,由长冷却管构成的凝汽器比短冷却管构成的凝汽器横截面小,壳体重量轻,并且土建工作量小,甚至容许使

用单壳体而不必采用双壳体,因此可以减少凝汽器建设的初始投资。

由于压力等级越多机组制造与安装难度越大,因此目前世界上大容量机组以采用双背压设计为主,我国从九十年代末开始,双背压凝汽器得到迅速发展,双背压是指汽轮机有两个不同的排汽压力,这样的汽轮机,被称为双背压汽轮机,相对应的,这样的凝汽器被称为双背压凝汽器。

二、 双压凝汽器的工作原理

右图为最简单的凝汽设备原则性系统图。汽轮机的排

汽进入凝汽器后,其热量被循环水不断地带走,因而排汽

不断地凝结成水并流入凝汽器底部,进入新的水循环。由

于蒸汽凝结成水时,体积会骤然缩小(在0.005MPa 压力

下,体积约缩小28000倍),所以凝汽器内就会形成高度

的真空。真空泵不断地将漏入凝汽器的空气抽出,确保真

空不会因漏气而降低。

黄岛厂670MW 机组为三缸四排汽汽轮机,凝汽器为双壳体、双背压(对每壳体而言为单背压)、单流程(对每壳体而言为单流程)、回热式。低压缸排汽分别进入A 、B 凝汽器,循环水串行通过A 、B 凝汽器,从低背压凝汽器A 进入,出水进入高背压凝汽器B ,排出后进入虹吸井。由于循环水进水温度的不同,所以形成了高、低汽室。也就是说高低背压凝汽器只是壳体是整体的,其水侧是双进双出的,正常运行中可半边解列进行清洗。凝汽器循环水布置如下图:

双背压凝汽器就是两组独立的凝汽器,其性能曲线与单压凝汽器相同。(如下图)由图可

见,在一定冷却水量和进水温度下,凝汽器的真空值随机组负荷的增加而减少;当汽轮机的负

荷与冷却水量不变时,凝汽器的真空值随进水温度的增加而降低。

三、双背压双壳体凝汽器凝结水的输送和回热、抽汽系统的典型设计。

(1)不凝结气体的排出及空冷区抽汽管道的布置

凝汽器的一个主要任务是在汽轮机排汽口建立和维持一定的真空度,需要在汽轮机组起动时建立真空及抽除在运行中从真空系统不严密处漏入的空气和非凝结气体以维持真空度.抽汽系统的好坏真接影响到凝汽器性能。在凝汽器中布置了抽汽管道将空冷区的不凝结气体引出,然后接到真空泵。对于双壳体凝汽器。由于每个壳体有两个独立的管束,相应地就有两个独立的空冷区,这样一共有四个空冷区。双背压双壳体凝汽器空冷区抽汽管道的结构布置常用有两种方法:串联和并联。前者应用在双背压凝汽器中往往引起两个汽室的工作相互干扰,造成抽汽量不均、不足甚至抽不出,影响传热性能,在以前的机组中已经发生过类似情况;而后者虽然解决了串联抽汽带来的弊端,但分别布置抽汽系统,使系统复杂化,投资较大。在黄岛电厂凝汽器设计时进行了优化,取两者所长,在凝汽器壳体内采用了并联抽汽方式,即各空冷区抽气管道并联引出壳体后并入一根母管,共用三台水环式真空泵,两运一备,简化了系统,减少了一台真空泵的投资,又兼顾了安全性。

(2)凝结水的内部输送和再热

双背压凝汽器设计中的一个重要问题,是如何将低背压凝汽器中凝结水送往高背压凝汽器中去回热,也就是说再热除氧系统如何设计,一个好的再热系统能够使凝汽器在设计工况运行下可以达到80%甚至更好的再热率。再热除氧系统的设计有两种方法。一种是辅助泵输送法,

即采用大流量低扬程凝结水泵,把凝结水从低背压凝汽器打到高背压凝汽器中去回热;另一种是重力输送法,即在凝汽器热井位置,采用几何位差的方法,根据连通管原理,凝结水依靠重力自流到高背压凝汽器中回热。由于第一种方法需增设辅助泵,系统复杂化,布置比较困难,而且具有耗功,增加维修费用的缺点,所以通常用第二种方法,但该方法需要增加热井高度。

黄岛电厂的双背压凝汽器采用的是后一种方法。这种再热除氧系统由四个部分组成:假底板、连通管系、再热喷嘴、壳体连通管。在低背压凝汽器A的热井内安置了假底板,将低背压凝汽器A的热井分隔为上下两层,上层为低背压凝汽器A的凝结水储存盘,下层通过壳体连通管与高背压凝汽器B的汽侧相连。低背压凝汽器A假底板上的凝结水,绝大部分经2根连通管(连通管入口设有滤网)引向高背压凝汽器B管束下方的8根支管,支管上布满小孔,水从小孔喷出,与高背压凝汽器B管束淋下的温度高的凝结水混合在一起,下落的过程中,这些凝结水又同时被低压缸B的排汽加热到相应的饱和温度,并使凝结水得到除氧,还有极少部分会从假底板与连通管之间的缝隙直接流到底部(结构上四角留有孔洞,相当于呼吸孔)。另外为了使左右热井的凝结水最终合流流出时不致产生死区,把总凝水出口管布置在高背压侧壳体的外侧下部,这样不仅使左右壳体的凝结水混合均匀,而且使热井的每一部分都得到充分利用,减小了热井的空间。

四、双背压凝汽器的工作过程及故障。

凝汽器铜管布置如下图所示:

蒸汽在凝汽器中的流动是有序的,如上图,内部管束布置成楔形,汽轮机低压缸排出的蒸

汽进入凝汽器后,一部分蒸汽在经管束向下方流动,凝结的水滴落到空冷区的挡板上后进入管束迎流区,一部分蒸汽沿两侧直接从管束底部向上通过管束迎流区凝结同时加热从上方流下的凝结水,一方面除氧,另一方面减少凝结水过冷度。真空泵的抽吸作用使空冷区形成较低的压力,引导蒸汽向该区域流动,最后管束中所有不凝结气体流经该区域后,不断被抽走。

实际生产过程中出现因补水或开凝泵再循环(特别是高负荷时)造成过低背压凝汽器真空迅速下降,而高背压真空不变的现象,在停机清理了内部的滤网后,问题解决。分析认为(如下图):当运行中由于某种原因造成大量固体杂质进入低背压凝汽器假底板上部空间,部分堵塞再热连通管入口的滤网,使连通管通通流量下降,低背压凝汽器内的凝结水不能快速的全部输送到高背压侧,造成假底板上水位升高(这也会提高连通管入口的压头,增加了连通管的流量,水位升高的一定位置会达到一个平衡状态),当水位接近或淹没管束迎流区的管束时,就堵塞了蒸汽从下向上流动的通路,使上方管束流下来的凝结水得不到加热,同时被管束迎流区内的循环水冷却,由此会造成凝结水过冷度加大,假底板上方的凝结水温低。

严重时,当假底板上方的水位浸没至空冷区,甚至达到抽气管口附近时,真空就会缓慢下降,而真空泵分离器水位会缓慢上升,很像凝汽器满水的象征,而从水位计无法观察到(水位计装于底部热井)。

滤网堵塞后假底板上方水位会随负荷升高而上升,当达到一个临界位置时,如果大量向凝汽器内补水或开启凝泵再循环,造成这个水位迅速升高并漫过管束迎流区、空冷区管束甚至封住真空管口,减少了凝汽器的冷却面积,而低压缸排汽并没减少,而且所有蒸汽都进入上部主凝结区,就会造成低背压凝汽器过负荷;同时因破坏了空冷区的低压,再加上大量补水或再循环的水流进入,会破坏蒸汽在凝汽器中的有序流动,会造成蒸汽流动紊乱,不能迅速的全部进入管束区冷却,这样就造成了低背压凝汽器真空迅速下降。但是,因为抽真空管道是并联布置的,此时还没有大量的水进入抽汽母管,高背压凝汽器的真空却不会下降。因此凝汽器运行中必须保证水质。另可考虑从结构上消除在凝汽器内部发生故障的几率,使杂质能到达凝泵入口滤网处并被过滤出来。

图2

1——假底板2——连通管系3———喷头4———壳体连通管5——凝结水出口6——管束区

汽机双背压的机理

一、双背压的原因是循环水造成的,也一是一个低压凝汽器循环水出来到的高压凝汽器,所以会产生双背压;这样的话可以给电厂循环水管路的布置在一定情况下提供方便,要知道循环水管路都是很粗大的,布置起来不是很方便; 二、又背压的平均压力要比单背压低,这是教科书上说的,有分析,经济性要比单背压好; 三、也有的厂把设计为双背压的汽轮机当单背压用,比如浙江宁海电厂; 还有一个原因,做成一个太大太重了,从喉部的连接到底部的支撑都不如做成2个方便 就是减少布置循环水管路,接约材质,并且对运行也没有什么多大影响 双背压凝汽器的概念: 背压,是指汽轮机排汽压力,我们公司现有的110MW、220MW机组都是单背压的,即所有低压缸的排汽压力都相等。双背压是指汽轮机有两个不同的排汽压力,这样的汽轮机,被称为双背压汽轮机,相对应的,这样的凝汽器被称为双背压凝汽器。 双背压凝汽器的优点: 1.根据传热学原理,双背压凝汽器的平均背压低于同等条件下单背压凝汽器的背压,因此汽机低压缸的焓降就增大了,从而提高了汽轮机的经济性。 (我们四期工程可研报告中,双背压分别为4.4/5.4KPA,平均背压为4.9 KPA)。 2. 双背压凝汽器的另一个优点就是低背压凝汽器中的低温凝结水可以进入高背压凝汽器中去进行加热,既提高了凝结水温度,又减少了高背压凝汽器被冷却水带走的的冷源损失。低背压凝汽器中的低温凝结水通过管道利用高度差进入高背压凝汽器管束下部的淋水盘,在淋水盘内,低温凝结水与高温凝结水混合在一起,再经盘上的小孔流下,凝结水从淋水盘孔中下落的过程中,凝结水被高背压低压缸的排汽加热到相应的饱和温度。 正因为双被压凝汽器能够提高机组的经济性,所以被广泛应用到600MW三缸四排汽汽轮机中。邹县的600MW亚临界机组,平圩发电厂600MW亚临界机组等,从收资的五家电厂的情况看, 600MW超临界机组也都配置了双背压凝汽器。 600MW三缸四排汽汽轮机设有四台凝汽器,每两台一组,两台低背压凝汽器为一组,两台高背压凝汽器为一组,分别布置在低压缸的下方。不同的背压是由凝汽器不同的循环水进水温度来形成的,循环水管道为串联布置,从两台低背压凝汽器进入,出水进入两台高背压凝汽器排出后进入虹吸井。也就是说每组凝汽器的水侧是双进双出的。每组凝汽器只是壳体是整体的,正常运行中可半边解列进行清洗。 双背压凝汽器工作过程 凝汽器正常工作时,冷却水由低压侧的两个进水室进入,经过凝汽器低压侧壳体内冷却水

背压式、抽背式及凝汽式汽轮机的区别

背压式、抽背式及凝汽式汽轮机的区别 1、背压式汽轮机 背压式汽轮机是将汽轮机的排汽供热用户运用的汽轮机。其排汽压力(背压)高于大气压力。背压式汽轮机排汽压力高,通流局部的级数少,构造简略,同时不用要巨大的凝汽器和冷却水编制,机组轻小,造价低。当它的排汽用于供热时,热能可得到充足使用,但这时汽轮机的功率与供热所需蒸汽量直接联系,因此不或许同时餍足热负荷和电(或动力)负荷变更的必要,这是背压式汽轮机用于供热时的部分性。 这种机组的主要特点是打算工况下的经济性好,节能结果昭着。其它,它的构造简略,投资省,运行可靠。主要缺点是发电量取决于供热量,不克独立调理来同时餍足热用户和电用户的必要。因此,背压式汽轮机多用于热负荷整年安稳的企业自备电厂或有安稳的根本热负荷的地区性热电厂。 2、抽汽背压式汽轮机 抽汽背压式汽轮机是从汽轮机的中间级抽取局部蒸汽,供必要较高压力品级的热用户,同时保留必定背压的排汽,供必要较低压力品级的热用户运用的汽轮机。这种机组的经济性与背压式机组相似,打算工况下的经济性较好,但对负荷改变的合适性差。 3、抽汽凝汽式汽轮机 抽汽凝汽式汽轮机是从汽轮机中间抽出局部蒸汽,供热用户运用的凝汽式汽轮机。抽汽凝汽式汽轮机从汽轮机中间级抽出具有必定压力的蒸汽提供热用户,平常又分为单抽汽和双抽汽两种。此中双抽汽汽轮机可提供热用户两种分别压力的蒸汽。 这种机组的主要特点是当热用户所需的蒸汽负荷猛然下降时,多余蒸汽可以通过汽轮机抽汽点以后的级持续扩张发电。这种机组的长处是灵敏性较大,也许在较大范畴内同时餍足热负荷和电负荷的必要。因此选用于负荷改变幅度较大,改变屡次的地区性热电厂中。它的缺点是热经济性比背压式机组的差,并且辅机较多,价钱较贵,编制也较庞杂。 背压式机组没有凝固器,凝气式汽轮机平常在复速机后设有抽气管道,用于产业用户运用。另一局部蒸汽持续做工,最后劳动完的乏汽排入凝固器、被冷却凝固成水然后使用凝固水泵把凝固水打到除氧器,除氧后提供汽锅用水。两者区别很大啊!凝气式的由于尚有真空,因此监盘时还要注意真空的境况。背压式的排气高于大气压。趁便简略说一下凝固器设置的作用:成立并维持汽轮机排气口的高度真空,使蒸汽在汽轮机内扩张到很低的压力,增大蒸汽的可用热焓降,从而使汽轮机有更多的热能转换为机械功,抬高热效果,收回汽轮机排气凝固水

凝汽式汽轮机汽耗率高的

凝汽式汽轮机汽耗率高的 原因分析及处理措施 动力厂汽机车间发电站 周光军 【摘要】动力厂汽机车间 1#、2#、4#汽轮发电机自1999年1月份以来出现排汽温度高,汽轮机汽耗率大幅度增加、轴承润滑油乳化严重等现象,通过调整了汽轮机通流间隙,改造轴封结构并完善循环水水质处理工作,从而较好地解决上述问题。 【关键词】汽轮发电机、汽耗率、润滑油乳化 1、概述 动力厂汽机车间共有4台汽轮发电机组,其中3#为背压式,1、2、4#为凝汽式。1机1979年、2机1992年、4机1993年投产以来,运行状况一直比较稳定,各项技术指标良好。但自1999年1月初开始,该机组出现了排汽温度高、汽耗率、轴承润滑油乳化严重等问题。凝汽机组纯凝汽工况下,发电负荷6000时,耗汽量28时,排汽温度达63,汽耗率增加12,润滑油月消耗增加30,滤油工作量很大。 2、问题原因分析 2.1机组真空、循环水系统参数变化较大 2.1.1首先对1997年至2003年来每年5至8月份,真空系统的有

关数据进行比较,见表1 年份循环水入 口温度 (℃) 循环水出 口温度 (℃) 真空值 (MPa) 端差值 (℃) 汽耗率 不抽汽抽汽 1997 28.4 34.6 0.06 6.7 5.28 7.43 1998 27.5 35.3 0.061 8.2 5.32 7.55 1999 26.8 37.9 0.062 10.6 5.41 7.78 2000 27.2 39.8 0.063 14.3 5.56 8.01 2001 27.5 41.7 0.06 20.1 5.88 8.36 2002 27 39 0.058 20.3 5.89 8.33 2003 27 40 0.06 21 5.78 8.35 (表1) 从表1可以发现,机组平均温升为13℃,由此所造成的汽耗率增加是显而易见的。 2.1.2通过统计数据发现,机组凝汽器的疏通周期自1995年以来基本为半年左右,至2000年基本根据机组负荷变化的情况进行清扫,没有固定的疏通周期,时间较长,主要原因有: 发电循环水的补充水源由水电厂3、4干线工业水供给,水质较差;由于机组采用的是如图1所示的供汽方式,对于轴封供汽的温度和压力难以准确把握,运行中往往由于供汽压力较大,温度较高,造

凝汽器介绍(600MW)

东方汽轮机厂凝汽器介绍 2000年2月

东方汽轮机厂凝汽器介绍 一东方汽轮机厂凝汽器概况 东方汽轮机厂是国内生产大型电站汽轮机及其配套辅机的主要厂家之一,从建厂至今,共配套提供了各类凝汽器300多台套,功率范围1.5MW~600MW,凝汽器面积从140~36000m2,按冷却管材分有铜管、不锈钢管、钛管凝汽器,按背压分有单、双背压凝汽器,按冷却介质分有淡水、半海水、海水凝汽器。另外,还为300~600MW国外机组配套凝汽器共8套,产品不仅在国内使用,还出口到马来西亚等多个国家,运行实绩良好。 东方汽轮机厂获得国家颁发的一、二类压力容器制造许可证,获得美国机械工程师协会颁发的ASME压力容器设计制造授权证书和U法规钢印,通过了ISO9001质量体系认证;东方汽轮机厂凝汽器开发的发展与水平建立在试验和与高等院校及国外公司的技术交流与合作上;是国内唯一进行过大型凝汽器传热性能及水室流场工业性试验的凝汽器制造厂家;是国内唯一采用大型数值计算程序对壳侧汽相流场进行流场的速度、压力、温度、空气浓度、相对传热系数及热负荷进行计算的凝汽器制造厂家,通过该手段可以优化凝汽器排管;东方汽轮机厂与德国BALCKE-DüRR公司及日本日立公司就300MW及600MW具体工程凝汽器设计、制造进行过广泛技术合作。 二东方汽轮机厂凝汽器特点 东方汽轮机厂凝汽器设计、制造、安装执行的标准为:HEI标准(美国传热协会)、DB3.18.10-1998《凝汽器加工装配技术条件》及

其它相关标准。 凝汽器排管设计是影响凝汽器性能的决定性因素之一,东方汽轮机厂排管设计手段进程:早期手工绘图,经验设计;经过实物对比试验,以验证各排管的优劣;70年代为优化排管,东方汽轮机厂曾用二种排管实物进行了电站工业性试验,这也是国内的制造厂中唯一的一家;在取得电站实测数据的基础上开发了准三维凝汽器汽相流场及传热特性数值模拟计算程序。该程序是可得到凝汽器汽相流速、温度、压力、传热系数、热负荷等重要参数分布图,据此调整管束排列,达到最优化排管,实现设计和排管自动化。该方法目前世界上仅有几家大公司具备,国内仅东汽一家。东方汽轮机厂已广泛用于300~600MW 凝汽器排管设计中。 东方汽轮机厂采用的模块排管,经数值计算程序模拟完全符合优化管束排列的判别标准,经国外工业性试验证明总体传热系数比HEI 计算值提高15~30%。 东方汽轮机厂有二种风格的喉部结构型式:一种为衍架支撑,壳板无加强肋,便于电站布置;一种为喉部壳板采用足够强度和刚度的工字钢,内部支撑杆少,对降低蒸汽流阻有利。在尺寸较大的设备(如低压加热器)和管道(抽汽管等)采用消除下方旋涡的措施。东汽厂凝汽器喉部扩散角合理,曾在70年代作过吹风试验;按ASME标准制作和布置了四个网状探头测量排汽压力;喉部内的低压加热器和抽汽管均有不锈钢罩隔热、防冲罩。所有支撑板均采用使汽阻最小的结构。 东方汽轮机厂凝汽器空冷区采用了在抽空气通道区布置有冷却水管,适当放大孔与管间的间隙,蒸汽至抽汽口的流动是沿抽空气通道区的冷却管流动,并由此造成空气与水间的逆流换热,它既有助于

中小型凝汽式或抽凝式汽轮机改造成背压式汽轮机的一种新方法

第26卷,总第149期2008年5月,第3期 节能技术 E NERGY CONSERVATI ON TECHNOLOGY Vol 26,Sum No 149 May 2008,No 3 中小型凝汽式或抽凝式汽轮机改造成背压式汽轮机的一种新方法 张玉峰1,管立君1,赵肃铭2 (1 石家庄双联化工有限责任公司,河北 石家庄 050200;2 哈尔滨工业大学,黑龙江 哈尔滨 150001) 摘 要:将凝汽式或抽凝式汽轮机改造成背压式汽轮机,由于排汽温度提高导致后汽缸热膨胀过大而影响汽轮机的正常运行。本文提出了一种新的改造方法,降低了后汽缸的温度,实现了改造后汽轮机的安全运行。 关键词:凝汽式汽轮机;抽凝式汽轮机;背压式汽轮机;压力匹配器;喷水冷却装置 中图分类号:TK266 文献标识码:A 文章编号:1002-6339(2008)03-0276-03 New Method of Transforming Condensing/Extraction S team Turbine into Back -Pressure S team Turbine ZHANG Yu-feng 1,GUAN Li-jun 1,Z HAO Su-ming 2 (1 Shijiazhuang Shuanglian Chemical Industry Group Co Ltd,Shijiazhuang 050200,C hina; 2 Harbin Institute of Technology Harbin 150001,China)Abstract:Transforming condensing or extraction-condensing steam turbine into back-pressure steam turbine will increase the temperature of exhaust,which would cause the excessive expansion of cylinder and have im pact on the nor mal operation of turbine In this paper,a new approach of transformation is proposed And it guarantees the safe operation of turbine by reducing the temperature of back cylinder Key words:transforming condensing stea m turbine;extrac tion-condensing steam turbine;back-pressure stream turbine;heat pump;steam-te mperature reducer 收稿日期 2008-03-26 修订稿日期 2008-04-06作者简介:张玉峰(1969~),男,段长。 1 前 言 中、小型凝汽式汽轮发电机组由于其发电煤耗高,按照国家能源政策的要求,属于被淘汰机型,中、小型抽凝式汽轮发电机组虽属热电联产机组,但对其供热量也有明确的规定,即热电比必须大于1,热效率必须大于45%,否则也属于关停机组之列。但我国目前许多企业自备发电站,有大量这类机组存在,其中有些还有相当长的使用寿命,弃置可惜,继续使用发电煤耗居高不下,处于随时被关停的境地。更换适合企业供热要求的新背压机组,不少企业或 者缺乏资金,或者考虑到企业长期规划要求而暂时搁置。因此,想到要将这类机组改造成符合政策要求的热电比大、热效率高的背压式汽轮发电机组,这样既能顾及到企业长期发展规划,又能满足企业的供热需求。不改变原机组的位置和主要结构形式,用很少的投资,就实现了汽轮机的排汽全部被生产所使用,从而大大提高了能源的有效利用率,是一种投资少,周期短,见效快的一种节能改造方式。 2 将凝汽式或抽凝式汽轮机改造成背压式汽 轮机组存在的问题、解决途径及改造方法 该类型汽轮机的共同特点是排汽排在冷凝器中,形成较高的真空,因此汽轮机的后汽缸和排汽管 ! 276!

双离合器变速箱工作原理详解word精品文档29页

双离合器变速箱工作原理详解 2010年10月11日17:13腾讯汽车我要评论(1) 字号:T|T 离合器位于发动机与变速器之间,是发动机与变速器动力传递的“开关”,它是一种既能传递动力,又能切断动力的传动机构。它的作用主要是保证汽车能平稳起步,变速换挡时减轻变速齿轮的冲击载荷并防止传动系过载。在一般汽车上,汽车换档时通过离合器分离与接合实现,在分离与接合之间就有动力传递暂时中断的现象。这在普通汽车上没有什么影响,但在争分夺秒的赛车上,如果离合器掌握不好动力跟不上,车速就会变慢,影响成绩。 为了解决这个问题,早在上世纪80年代,汽车工程界就弄出了一个双离合系统变速器,简称DSG(英文全称:Direct Shift Gearbox),装配在赛车上,能消除换档离合时的动力传递停滞现象。例如布加迪EBl6.4 Veyron的新型7速变速器是装置了双离合器,从一个档位换到另一个档位,时间不会超过0.2秒。现在,这种双离合器已经从赛车应用到一般跑车上。奥迪汽车公司的新型奥迪TT跑车和新奥迪A3都已经装置了这种DSG。这些汽车装配DSG的目的是可以比自动变速器更加平顺地换档,不会有迟滞现象。 奥迪这种双离合系统变速器是一个整体,有6个档位,离合器与变速器装配在同一机构内,两个离合器互相配合工作。这好比喻一辆车有两套

离合器,正司机控制一套,副司机控制另一套。正司机挂上1档松开离合踏板起步时,这时副司机也预先挂上2档但踩住离合踏板;当车速上来准备换档,正司机踩住离合踏板的同时副司机即松开离合踏板,2档开始工作。这样就省略了档位空置的一刹那,动力传递连续,有点象接力赛。双离合系统两套离合器传动系统,通过电脑控制协调工作。 当汽车正常行驶的时候,一个离合器与变速器中某一档位相连,将发动机动力传递到驱动轮;电脑根据汽车速度和转速对驾驶者的换档意图做出判断,预见性地控制另一个离合器与另一个档位的齿轮组相连,但仅处于准备状态,尚未与发动机动力相连。换档时第1个离合器断开,同时第2个离合器将所相连的齿轮组与发动机接合。除了空档之外,一个离合器处于关闭状态,另一个离合器则处于打开状态。 两根传动轴分别由第一、第二离合器控制与发动机动力的连接与断开,分别负责1、3、5档和2、4、6档的档位变换。考虑到零件使用寿命,设计人员选择了油槽膜片式离合器,离合器动作由液压系统来控制。 自动双离合器变速箱的换档控制方法 一种用于对一个自动化的双离合器变速箱进行换档控制的方法,该双离合器变速箱包含一个第一分变速装置,其配有一个第一变速箱输入轴、一个第一发动机离合器和一个第一档组;该变速箱还包含一个第二分变速装置,其配有一个第二变速箱输入轴、一个第二发动机离合器和一个第二档组,利用此方法,在一个负载档和一个分配给同一分变速装置的目标档

凝汽式和背压式汽轮机区别

凝汽式汽轮机 科技名词定义 中文名称: 凝汽式汽轮机 英文名称: condensing steam turbine 定义: 蒸汽在汽轮机本体中膨胀做功后排入凝汽器的汽轮机。 所属学科: 电力(一级学科);汽轮机、燃气轮机(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 凝汽式汽轮机,就是指蒸汽在汽轮内膨胀做功以后,除小部分轴封漏气之处,全部进入凝汽器凝结成水的汽轮机。 目录 简介 运行特性 排汽压力与机组功率 编辑本段 简介 实际上为了提高汽轮机的热效率,减少汽轮机排汽缸的直径尺寸,将做过部分功的蒸汽从汽轮机内抽出来,送入回热加热器,用以加热锅炉给水,这种不调整抽汽式汽轮机,也统称为凝汽式汽轮机。

火电厂中普遍采用的专为发电用的汽轮机。凝汽设备主要由凝汽器、循环水泵、凝结水泵与抽气器组成。汽轮机排汽进入凝汽器,被循环水冷却凝结为水,由凝结水泵抽出,经过各级加热器加热后作为给水送往锅炉。 汽轮机的排汽在凝汽器内受冷凝结为水的过程中,体积骤然缩小,因而原来充满蒸汽的密闭空间形成真空,这降低了汽轮机的排汽压力,使蒸汽的理想焓降增大,从而提高了装置的热效率。汽轮机排汽中的非凝结气体(主要就是空气)则由抽气器抽出,以维持必要的真空度。 汽轮机最常用的凝汽器为表面式。冷却水排入冷却水池或冷却水塔降温后再循环使用。靠近江、河、湖泊的电厂,如水量充足,可将由凝汽器排出的冷却水直接排入江、河、湖泊,称为径流冷却方式。但这种方式可能对河流湖泊造成热污染。严重缺水地区的电厂,可采用空冷式凝汽器。但它结构庞大,金属材料消耗多,除列车电站外,一般电厂较少采用。老式电厂中,有的采用混合式凝汽器,汽轮机排汽与冷却水直接混合接触冷却。但因排汽凝结水被冷却水污染,需要处理后才能作为锅炉给水,已很少采用。 背压 科技名词定义 中文名称: 背压 英文名称: back pressure 定义: 工质在热机中做功后排出的压力。一般指汽轮机的排汽压力。 所属学科: 电力(一级学科);通论(二级学科) 本内容由全国科学技术名词审定委员会审定公布 目录

东汽N-3400型凝汽器说明书

版本号:A 东 方 汽 轮 机 厂 第 全 册 N-34000型凝汽器说明书 M700-053000ASM 编号 2003年02月

编号M700-053000ASM 编制 校对 审核 会签 审定 批准

目录 序号章-节名称页数备注1 0-1 N-34000型凝汽器说明书16

0-1 N-34000型凝汽器说明书 1概述 凝汽器是汽轮机辅助设备中最主要的一个部套,它的作用是用循环冷却水使汽轮机排出的蒸汽凝结,在汽轮机排汽空间建立并维持所需要的真空,并回收纯净的凝结水以供锅炉给水。 1.1 特征 1.1.1凝汽器是模块式双背压凝汽器,冷却水为海水。 1.1.2回热管系消除凝结水过冷和减小含氧量,提高机组循环热效率。 1.1.3水室为弧型结构,水力特性、受力特性好,为防腐,与海水接触的水室内表面采用了衬胶处理。 1.1.4冷却水管为钛管,端管板为钛复合板。 1.2 凝汽器的主要特性参数 冷却面积:17000/17000m2 冷却水设计进口温度:20℃ 冷却水设计压力:0.25MPa(g) 冷却水设计流量:73652t/h 设计背压: 4.9 kPa(a)(平均)[LP/HP 4.35/5.51 kPa(a)] 冷却水介质:海水 此外,装配好后无水时凝汽器重量约750t(含低加)。凝汽器正常运行时的水重约450t,汽室中全部充满水时的水重约1550t。 2结构简介 本凝汽器是系双壳体、单流程、双背压表面式凝汽器。由两个斜喉部、两个壳体(包

括热井、水室,回热管系),循环水连通管及底部的滑动、固定支座等组成的全焊结构(见

双离合器自动变速器综述

双离合器自动变速器 摘要本文以国家对双离合器自动变速器的自主开发研究为幕,分别介绍了双离合器自动变速器国内外发展状况,以国内研究的方向,特点,内容为例,介绍了此项技术对我国的重要意义。 关键词双离合器自动变速器发展使用 一、双离合器自动变速器技术发展起来的原因及国家支持 任何一种技术,一种产品的开发都是以需要为目的的,都是对原有同类产品性能提高而产生的,与此双离合器自动变速器也不例外。那么双离合器到底有什么有什么优点呢?这当然要和普通的变速器相比较。 车辆的经济性、动力性、驾乘舒适性不仅取决于发动机,而且在很大程度上依赖于变速器及变速器与发动机的匹配。最早出现的手动挡变速器(MT) ,通过离合器和手动换挡拨叉来实现挡位的变换,这种变速器具有结构简单、外形紧凑,传动效率高,可靠性高,成本低等优点,应用较为广泛。由于车辆在换挡过程中,必须分离离合器,导致动力中断,影响了车辆的动力性和驾乘舒适性。由液力变矩器和行星齿轮机构组成的液力自动变速器(AT) 能够实现动力换挡,克服了手动挡变速器换挡过程中动力中断的缺点,并且实现了自动换挡。钢带无级变速器(CVT) 则是通过改变带轮的工作半径,使变速器传动比无级变化,,能使发动机始终工作在最佳工作点,使车辆的性能大大提高。随着世界能源危机的出现,城市道路的日渐拥堵,汽车动力传动装置也在发生变化。当代汽车的发展更注重燃油经济性、排放以及驾乘舒适性,一种在传动效率和生产成本等方面优于传统自动变速器(AT) 的新技术—电控机械式自动变速器(AMT) 被开发出来,由于其具有目前汽车工业发展所要求的高燃油经济性、低排放和保护现有手动变速器生产投资的优点,受到了各大汽车厂的重视。AMT的工作原理决定了它在换挡过程中首先要分离离合器,然后将变速器摘空挡,再选挡、换挡,最后接合离合器。这样,当离合器分离后,直到离合器再重新接合之前,发动机的动力将不能被传递到车轮去驱动车辆运行,所以换挡过程中产生了动力传递的中断,车辆必然产生减速度,换挡时间长,给车辆的加速性、舒适性等带来不利影响。为了既可以充分利用AMT所具有的优点,又可以消除其中断动力换挡的缺点,一种新型自动变速器就应运而生了,这就是双离合器自动变速器(Dual ClutchTransmission) ,简称DCT。由于双离合器自动变速器对汽车的动力性,经济性,乘坐舒适性都有很好的改善,再加上比较适合我国以手动变速器为主导的市场,所以目前,这种自动变速器已成为许多汽车厂家关注的热点。 由以上论述可以知道国家对双离合器自动变速器的大力支持,作为“十一五”重点支持项目,作为自己的自主创新点,请看下面的一段材料引至中国科技部。 “十一五”国家863计划重点项目“汽车开发先进技术”依据《国家中长期科学和技术发展规划纲要》的任务要求设置。 项目总体目标是开发出满足“十一五”末期国家汽车相关标准、法规的轿车以及重型商用车整车产品、适应于轿车的直喷汽油机和双离合器自动变速器,以及适应于重型商用车的柴油机和机械自动变速器等关键零部件和总成。 项目将加强以企业为主体的自主创新,产学研结合,以轿车开发技术和重型商用车开发技术为主线,以关键零部件开发技术和基础共性技术为支撑,产业链协同发展。通过自主创新,突破汽车设计、开发的关键核心技术,提升我国

比亚迪6速双离合变速箱原理及使用分析解析

比亚迪6速双离合变速箱原理及使用

有其不可避免的设计缺陷,光凭升级软件是治标不治本的。而作为使用者,驾驶员的正确使用也很关键。其实我国很多汽车驾驶员仅仅只会开车,很多人并不懂得车子的一些工作原理,一些易损零件的使用寿命。甚至很多人都不清楚机油四滤寿命时候更换,更别说什么刹车片,刹车盘,轮胎,刹车油,助力油,防冻液,雨刷器片,还有等等许多车上的东西需要多久多少里程去更换。其实这些手册都有写,可是又有几个人买车回去能够仔细阅读呢,很少。更别说会有很多人懂得双离合变速箱的工作原理以及如何正确使用了。另外,关于驾校也都是糊弄人的,就教你怎么把车开走,怎么应付考试,其他的一概不交,所以我们的驾驶员经过驾校培训出来以后也都是车盲。干式双离合变速箱与传统的变速箱不同,因为其结构特点和设计特点导致了同样在拥挤的道路条件下,频繁的起步换挡跟车的时候,AT变速器的车子不会有什么问题,而DSG干式双离合的车子,会因为频繁的起步跟车档位不断的在之间来回切换,而执行机构不停的动作,离合器不停的摩擦,最后就容易出现,瞬时的温度升高,变速箱报警,出现故障。 可是大家说了,国内很多地方的道路条件都是这样,怎么办?其实很简单,我们可以避免这种情况。首先,不停的起步跟车,我们可以使用双离合变速箱的模式,就是运动档,又或者是手动模式。这样就相当于在起步跟车龟速前进的时候,双离合变速箱始终是在1档前进,当档位一直保持在1的时候,就不存在离合器的不断切换,也不存在执行机构的不停动作,这样就不会发生因为不停切换档位而造成的变速箱过热报警故障了。因为无论是手动模式还是自动的运动模式,肯定是提高了换挡的转数,而在这个模式下,龟速跟车前进,作为驾驶员,只要把转数控制在2000以内,跟车前进毫无问题,并且因为1档不换挡的模式跟车前进,就不会有问题了。另外,在停车等信号的时候,双离合变速箱的车,也不要像AT车那样,挂在D上,脚踩刹车。这个时候要换成N,然后松开刹车,拉手刹车制动。这样可以保证变速箱的离合器处于休息状态,把磨损降低到最小。这样电脑默认的就是在1档状态下,油门控制转数完成跟车,电脑是不会自动的频繁给你换的,去完成剩下的操作。就不会使离合器和执行机构频繁动作,也不会因为频繁动作而造成温度过高和过度磨损。如果驾驶员不知道这些,就知道一直用D模式,那么干式双离合变速箱出故障也是迟早的事。这就相当于开MT的车,频繁的半离合起步,久而久之,离合器过度磨损,导致寿命大大缩短,一个道理。很多开MT车的驾驶员,有的不注意平时的操作,离合器片会过度磨损,过早的导致报废更换,而有的驾驶员正确操作,同样的离合器,开到车子报废也不需要更换。车子耐用不出故障,光靠可靠的设计和使用耐用的零件材质是不够的,作为操作者,驾驶员的操作是否正确也很重要,正确的驾驶方式只要保证,干式双离合变速箱没有那么容易出故障。 总结一下就是,开秦在及其拥挤的路上,用电(EV模式)或打开((S PORT)运动模式,劲量避免发动机频繁起动。

探究凝汽式或抽凝式汽轮机改造成背压式汽轮机的方法

探究中小型凝汽式或抽凝式汽轮机 改造成背压式汽轮机的方法 摘要:由于中小型凝汽式或抽凝式汽轮在使用过程中具有发电煤耗高的缺陷,须将其改造成为热电比大与热经济性好的背压式汽轮机。然而在改造过程中,由于该类型汽轮机的排气温度会逐渐增高,造成汽缸后部热膨胀增大形成,最终会影响改造后汽轮机运行安全。针对这一问题,本文设计了一种新的改造方案,控制后汽缸温度,保障汽轮机正常、安全运行。 关键词:中小型;凝气式汽轮机;抽凝式汽轮机;背压式汽轮机 现阶段,受我国能源政策以及汽轮机自身因素等的影响,大多企业自备电站中,许多凝汽式或抽凝式汽轮机长期处于闲置的状态。例如,凝汽式汽轮机发电的热电比与热电效率非常低,不能满足国家的政策要求而被迫停运;抽凝式汽轮机的抽汽参数满足不了供热需要而被长期闲置。因此,为满足企业的供热需求与长期的规划需要,有必要将这些汽轮机组改造成为性能良好的背压式汽轮机组,在保证较少投资的前提下,提高汽轮机组的能源利用率。 一、改造具体实例与改造难题分析 (一)改造具体实例 1.原汽轮机改造的基本情况。某化工生产厂拥有一台C15-4.9/ 0.981型的抽凝式汽轮机组,0.00805MPa为该机组的平排汽压力,0.495MPa为其抽汽压力,3.435 MPa,435.5℃为其进汽参数。这一抽凝式汽轮发电机组共有7级汽轮机,分别分布在抽汽口前后的高低压段中。其中,有1个压力级和1个双列调节级的汽轮机分布在抽汽口前的高压段中,而抽汽口低压段中分布有4个压力级和1个双列的低压调节级。当该发电机组的抽汽流量与额定进汽量分别为5.5t/h,1 2.5 t/h的情况下,其发电功率达1550KW。 2.汽轮机组改造要求。由于该化工厂的实际化工生产量持续增加,从而导致了蒸汽量紧张的问题出现;同时,该抽凝式发电机组长期的运行环境为纯凝

背压式汽轮机

背压式汽轮机 排汽压力大于大气压力的汽轮机称为为背压汽轮机。排汽可用于供热或供给原有中、低压汽轮机以代替老电厂的中、低压锅炉。当背压汽轮机用于供给原有中、低压汽轮机以代替老电厂的中、低压锅炉时,又被称为前置式汽轮机,这样不但可以增加原有电厂的发电能力,而且可以提高原有电厂的热经济性。供热用背压式汽轮机的排汽压力设计值视不同供热目的而定;前置式汽轮机的背压常大于2兆帕,视原有机组的蒸汽参数而定。排汽在供热系统中被利用之后凝结为水,再由水泵送回锅炉作为给水。一般供热系统的凝结水不能全部回收,需要补充给水。 1、运行原理 背压式汽轮机发电机组发出的电功率由热负荷决定,因而不能同时满足热、电负荷的需要。背压式汽轮机一般不单独装置,而是和其他凝汽式汽轮机并列运行,由凝汽式汽轮机承担电负荷的变动,以满足外界对电负荷的需要。前置式汽轮机的电功率由中、低压汽轮机所需要的蒸汽量决定。利用调压器来控制进汽量,以维持其排汽压力不变;低压机组则根据电负荷需要来调节本身的进汽量,从而改变前置式汽轮机的排汽量。因此,不能由前置式汽轮机直接根据电负荷大小来控制其进汽量。 由于供热背压式机组的发电量决定于热负荷大小,宜用于热负荷相对稳定的场合,否则应采用调节抽汽式汽轮机。 背压式汽轮机的排汽压力高,蒸汽的焓降较小,与排汽压力很低的凝汽式汽轮机相比,发出同样的功率,所需蒸汽量为大,因而背压式汽轮机每单位功率所需的蒸汽量大于凝汽式汽轮机。但是,背压式汽轮机排汽所含的热量绝大部分被热用户所利用,不存在冷源损失,所以从燃料的热利用系数来看,背压式汽轮机装置的热效率较凝汽式汽轮机为高。由于背压式汽轮机可通过较大的蒸汽流量,前几级可采用尺寸较大的叶片,所以内效率较凝汽式汽轮机的高压部分为高。 在结构上,背压式汽轮机与凝汽式汽轮机的高压部分相似。背压式汽轮机多采用喷嘴调节配汽方式,以保证在工况变动时效率改变不大。因背压机常用于热负荷较稳定的场合,一般采用单列冲动级作为调节级。 2、常见故障及解决方案 背压式汽轮机在运行过程中,气缸由于铸造缺陷、受应力作用变形、隔板及汽封套或挂耳压板的膨胀间隙不合适、气缸密封剂杂质过多、螺栓紧力不足或紧固顺序不正确等原因,结合面常会出现变形、渗漏等现象,影响机组的安全运行。背压式汽轮机渗漏处理方法 针对气缸变形和泄漏的问题,首先要用长平尺和塞尺检查汽缸结合面的变形情况,再根据泄漏程度采取不同的解决方法: 1.汽缸变形较大或漏汽严重的结合面,采用研刮结合面的方法

宁海电厂百万机组凝汽器双背压抽气系统改造分析

宁海电厂百万机组凝汽器双背压抽气系统改造分析摘要:由于高、低背压凝汽器抽空气管路采用串联布置方式, 导致高背压凝汽器抽气排挤低压凝汽器抽气,致使低压凝汽器抽气不能达到设计要求,造成真空值和高、低背压凝汽器背压差值偏低,降低了系统经济性。采取了相应措施,对双背压凝汽器抽气系统进行了改造,经济效益明显。 关键词:双背压凝汽器;抽气系统;端差;真空;改造方案 中图分类号:tm62文献标识码:a 文章编号: abstract: because of the high and low back pressure condenser time tracheal road series arrangement, leading to high back pressure condenser lashing out low pressure condenser suction causes low pressure condenser that suction can’t meet the design requirements, creates a vacuum value and the high and low back pressure of condenser low pressure differential and reduce the system efficiency. taken measures, to double back pressure condenser suction system was reformed, and the economic benefit is obvious. key words: double back pressure condenser; suction system; poor; vacuum; reform plan 0 概述 宁海电厂二期工程扩建2×1000mw超超临界燃煤机组汽轮机为

背压式、抽背式及凝气式汽轮机区别

关于背压式、抽背式及凝气式汽轮机区别 2010-04-07 21:25 1、背压式汽轮机 背压式汽轮机是将汽轮机的排汽供热用户使用的汽轮机。其排汽压力(背压)高于大气压力。背压式汽轮机排汽压力高,通流部分的级数少,结构简单,同时不需要庞大的凝汽器和冷却水系统,机组轻小,造价低。当它的排汽用于供热时,热能可得到充分利用,但这时汽轮机的功率与供热所需蒸汽量直接相关,因此不可能同时满足热负荷和电(或动力)负荷变动的需要,这是背压式汽轮机用于供热时的局限性。 这种机组的主要特点是设计工况下的经济性好,节能效果明显。另外,它的结构简单,投资省,运行可靠。主要缺点是发电量取决于供热量,不能独立调节来同时满足热用户和电用户的需要。因此,背压式汽轮机多用于热负荷全年稳定的企业自备电厂或有稳定的基本热负荷的区域性热电厂。 2、抽汽背压式汽轮机 抽汽背压式汽轮机是从汽轮机的中间级抽取部分蒸汽,供需要较高压力等级的热用户,同时保持一定背压的排汽,供需要较低压力等级的热用户使用的汽轮机。这种机组的经济性与背压式机组相似,设计工况下的经济性较好,但对负荷变化的适应性差。 3、抽汽凝汽式汽轮机 抽汽凝汽式汽轮机是从汽轮机中间抽出部分蒸汽,供热用户使用的凝汽式汽轮机。抽汽凝汽式汽轮机从汽轮机中间级抽出具有一定压力的蒸汽供给热用户,一般又分为单抽汽和双抽汽两种。其中双抽汽汽轮机可供给热用户两种不同压力的蒸汽。

这种机组的主要特点是当热用户所需的蒸汽负荷突然降低时,多余蒸汽 可以经过汽轮机抽汽点以后的级继续膨胀发电。这种机组的优点是灵活性较大, 能够在较大范围内同时满足热负荷和电负荷的需要。因此选用于负荷变化幅度较 大,变化频繁的区域性热电厂中。它的缺点是热经济性比背压式机组的差,而且 辅机较多,价格较贵,系统也较复杂。 4、小结 背压式汽轮机的排汽全部用于供热,虽然发电少了,但是机组总的能量利用 效率可以达到70~85,所以背压式是能量利用最好的机组。凝汽式汽轮机系统 目前能量利用率最多只有45%。背压式汽轮机一般只适合50MW以下机组,主 要原因是受排汽热力管网制约,因为热力管网的输送距离蒸汽一般在4km,热 水一般10km,因此无法采用大机组。对于季节性采暖机组一般采用抽汽凝汽式。 目前的国家产业政策是300MW以下不上全凝汽式汽轮机(除了煤矸石电厂或循 环流化床),上纯凝汽式汽机一般都是600MW以上机组。 凝气式汽轮机指的是蒸汽在汽缸内做完功后全部排入凝汽器被凝结成水的汽轮机。 背压式汽轮机指的是蒸汽在汽缸内做完功后以高于大气压的压力排出,供工业或者采暖用的汽轮机。 冲动式汽轮机是指蒸汽仅在喷嘴中进行膨胀的汽轮机,在冲动式汽轮机的动叶片中,蒸汽并不膨胀作功,而只是改变流动方向。 反动式汽轮机是指蒸汽不仅在喷嘴中,而且在动叶片中也进行膨胀的汽轮机,反动式汽轮机的动叶片上不仅受到由于汽流冲击而产生的作用力,而且受到蒸汽在动叶片中膨胀加速而产生的作用力。 凝气式汽轮机指的是蒸汽在汽缸内做功后排入凝汽器被冷却成凝结水的汽轮机。 抽汽凝结式式汽轮机指的是部分做功的蒸汽在一种压力或者两种压力下被从汽缸内抽出供工业或者采暖用汽,其余的蒸汽仍然在做功后排入凝汽器的汽轮机。 多级背压式汽轮机指的是汽轮机内级数很多,蒸汽在汽缸内做功后以高于大气压的压力送往热用户的汽轮机。

13第十三章 凝汽器抽气系统

第1章凝汽器抽气系统 1.1. 概述 凝汽器抽气系统也称为真空系统,其作用就是用来建立和维持汽轮机机组的低背压和凝汽器的真空;正常运行时不断地抽出由不同途经漏入汽轮机及凝汽器的不凝结气体。 对于600MW汽轮机组,目前真空系统的设备主要采用水环式真空泵和汽水分离器相结合。 在高压和低压凝汽器汽室侧聚集的不凝结气体通过真空泵抽出排至大气。凝汽器壳体上还设至1只带有滤网和水封的真空破坏阀。凝汽器水室侧还设有水室真空泵,以便在循环水系统运行时在凝汽器内形成虹吸,以及在长时间运行后抽取水室顶部的空气,保证凝汽器的换热效果。 1.2. 系统特点 双背压凝汽器的抽气区按气体/蒸汽混合物的冷却要求进行设计的。在额定工况下,空气排气口的温度较凝汽器入口压力下的饱和蒸汽温度低4℃。抽气系统为串联抽出系统,即空气由高压凝汽器流向低压凝汽器,经抽气管道抽出。 我公司的汽室真空泵和水室真空泵均为平圆盘单级水环式真空泵,由纳西姆工业(中国)公司生产。汽室真空泵型号为2BW4 353-0MK4;水室真空泵型号为2BE1 253-0BY4。 机组正常运行时,保证两台汽侧真空泵运行就能满足汽轮机在各种负荷工况下,抽出凝汽器内的空气及不凝结气体的需要。汽室真空泵部分运行参数如下: 图13-1 汽室真空泵运行参数 机组启动时,三台真空泵并列运行就可以满足启动时间的要求。三台真空泵运行,可以在下述时间内达到规定的凝汽器压力:

启动抽气时间(分钟)凝汽器压力Mpa(a) 15 0.034 30 0.01 45 0.0034 启动工况凝汽器背压-抽真空时间表如下(3泵运行): 图13-2 凝汽器背压-抽真空时间表 1.3. 水环式真空泵 1.3.1. 水环式真空泵结构 水环式真空泵主要部件是叶轮和壳体, 叶轮是由叶片和轮毂构成,叶片有径向平板 式,也有向前(向叶轮旋转方向)弯式。壳 体内部形成一个圆柱体空间,叶轮偏心地装 在这个空间内,同时在壳体的适当位置上开 设吸气口和排气口。吸气口和排气口开设在 叶轮侧面壳体的气体分配器上,形成吸气和 排气的轴向通道。 壳体不仅为叶轮提供工作空间,更重要 的作用是直接影响泵内工作介质(水)的运 动,从而影响泵内能量的转换过程。 水环泵工作之前,需要向泵内注入一定图13-3 水环式真空泵原理图

双离合器自动变速器技术方案介绍

双离合器自动变速器技术方案介绍 二、DCT(双离合器自动变速器)介绍: 2.1主要工作原理: 工作原理简图一:双离合器自动变速器。 工作原理简图二:双中间轴型的双离合器自动变速器。

工作原理简图三:双离合器自动变速器。 工作原理简图四:两轴式双离合器自动变速器。 工作原理简图五:三轴式双离合器自动变速器。 LuK公司制造的:采用干式离合器的双离合器变速箱,它具有以下特点: · 干式离合器和电子机械离合器作动器 · 平行轴设计和普通啮合齿轮组 · 具有电子机械作动器和作动联锁同步追踪离合器 · 具有很好的舒适性和很高的效率

博格华纳(Borgwarner)公司生产的双离合器解剖图 某双离合器自动变速器解剖图:

德国大众双离合器直接换档自动变速器解剖图: 2.2主要优缺点: 双离合器式自动变速器也是基于平行轴式手动变速器发展而来的,它继承了手动变速器传动效率高、安装空间紧凑、质量轻、价格低等许多优点; 实现了换挡过程的动力换挡,即在换挡过程中不中断动力,保留了AT、CVT等换挡特性好的优点; 换挡迅速平稳,不仅保证了车辆的加速性,而且车辆不再产生由

于换挡引起的急剧减速情况,缩短了换挡时间,2个离合器的切换时间通常仅在0.3-0.4 S左右,所以不易被驾驶室乘员感觉到,极大地提高了换挡舒适性,保证了车辆具有良好的动力性与换挡特性。 由于双离合器式自动变速器特定的内部结构和独特功能,使其具有比传统变速器更好的燃料经济性。并且,由于控制方式的改进、换挡时间的缩短,对车辆油耗和排放等方面也有所改善。 由于双离合器式自动变速器是在原传统的手动变速器基础上进行自动化的,从而以结构简单的平行轴式结构达到了结构复杂的旋转轴(行星齿轮)式自动变速器的效果,但结构更加紧凑,成本更低; 在离合器切开的情况下,挡位要预先啮合,可以有较充足的转速同步时间,原来的同步器还可以改用啮合套,其结构更为简单; 成本远远低于AT、CVT等自动变速器; 还可以充分利用原有手动变速器的生产设备,只需增加少量的生产设备即可,生产继承性好,很适合现有的手动变速器生产厂将产品升级到自动变速器。 2.2主要技术及应用简析: 2.2.1关于传动轴的问题 通常在较高扭矩的车辆中,双离合器应用更为有利。这是因为,它的2个传动轴一般情况下是同心的,即中间的一个传动轴是实心的,而套在它外面的则是一个空心的,由于轴的刚度、强度以及结构尺寸等方面的原因,较大的传动轴轴径有利于双离合器式自动变速器的设计,多适合发动机排量较大的车辆。 对于较小发动机排量的车辆,如果要开发设计双离合器式自动变速

双压凝汽器抽真空系统布置方式优化研究

双压凝汽器抽真空系统布置方式优化研究 摘要:本文从介绍双压凝汽器抽真空系统连接方式出发,阐述了采用双压运行的优点和目前存在的问题。文中以信阳电厂660MW汽轮机机组的双压凝汽器抽空气系统为实例,结合现场试验,确定双压凝汽器运行方式和改造方案,分析其节能效果,系统优化后显著提高了经济效益和社会效益,可为同类型机组的抽真空管路改造提供参考。 关键词:双压凝汽器;抽空气系统;连接方式;优化 1.双压凝汽器抽真空系统连接方式 1.1串联抽真空系统 串联布置型式是指高、低压凝汽器的空气抽出管路采用串联方式,即高压凝汽器的抽空气管路直接接入低压凝汽器中,通过低压凝汽器的抽气管路间接地对高压凝汽器抽气。该布置方式的抽空气管路大多布置在凝汽器内部,可减少设备投资和所需场地。但由此带来的问题是凝汽器内聚集的空气不能彻底抽尽,易引起两个汽室之间的互相干扰,影响换热效果。 1.2并联抽真空系统 该布置型式常采用三台真空泵的配置型式即从高、低压凝汽器分别接出抽空气管路,汇合成一根母管后进入真空泵组。优点是可节省一台真空泵,管路连接较简单。但因高、低压侧抽气管相互交叉,易因抽气管道压力差出现排挤现象,导致低压侧抽气受阻,严重时低压侧抽不出空气,影响双压凝汽器的节能效果。 1.3单独抽真空系统 高、低压凝汽器分别配备两套100%容量的水环式真空泵组,高压侧的2个抽气管道汇集后连接到真空泵,低压侧的2个抽气管道汇集后连接到另外一组真空泵,高低压侧抽真空管道互不相连,四台真空泵两运两备,此为单独抽真空系统。此方式避免了抽气存在背压差而出现的排挤现象,提高凝汽器真空。但单独抽真空系统一般配置4台真空泵,增加了初期投资成本。 2.信阳电厂660MW超超临界机组真空系统改造 2.1信阳电厂超超临界机组改造前真空系统介绍 信阳电厂660MW超超临界机组采用N-31000-1型凝汽器,双背压、双进双出、单流程、横向布置结构。设计循环水温20℃,凝汽器平均背压为0.0049MPa,高、低压背压凝汽器抽空气管道连接在一起,凝汽器抽气管道现场布置采用串联方式。改造前为真空系统设计两台100%容量的水环式真空泵,正常运行时一运

相关主题
文本预览
相关文档 最新文档