当前位置:文档之家› a comparative study on arsenic

a comparative study on arsenic

a comparative study on arsenic
a comparative study on arsenic

ORIGINAL PAPER

A comparative study on arsenic and humic substances

in alluvial aquifers of Bengal delta plain(NW Bangladesh), Chianan plain(SW Taiwan)and Lanyang plain(NE Taiwan):implication of arsenic mobilization mechanisms A.H.M.Selim Reza?Jiin-Shuh Jean?Huai-Jen Yang?

Ming-Kuo Lee?Hua-Fen Hsu?Chia-Chuan Liu?Yao-Chang Lee?

Jochen Bundschuh?Kao-Hong Lin?Chi-Yu Lee

Received:7April2010/Accepted:16July2010

óSpringer Science+Business Media B.V.2010

Abstract Humic substances in groundwater and aquifer sediments from the arsenicosis and Blackfoot disease(BFD)affected areas in Bangladesh(Bengal delta plain)and Taiwan(Lanyang plain and Chianan plain)were characterized using?uorescence spectro-photometry and Fourier transform infrared(FT-IR) spectroscopy.The results demonstrate that the mean concentration of As and relative intensity of ?uorescent humic substances are higher in the Chianan plain groundwater than those in the Lanyang plain and Bengal delta plain groundwater.The mean As concentrations in Bengal delta plain,Chianan plain,and Lanyang plain are50.65l g/l(2.8–170.8 l g/l,n=20),393l g/l(9–704l g/l,n=5),and 104.5l g/l(2.51–543l g/l,n=6),respectively.Aver-age concentrations and relative?uorescent intensity of humic substances in groundwater are25.381QSU (quinine standard unit)and17.78in the Bengal delta plain,184.032QSU and128.41in the Chianan plain, and77.56QSU and53.43in the Lanyang plain. Moreover,FT-IR analysis shows that the humic substances extracted from the Chianan plain ground-water contain phenolic,alkanes,aromatic ring and amine groups,which tend to form metal carbon bonds with As and other trace elements.By contrast,the spectra show that humic substances are largely absent from sediments and groundwater in the Bengal delta plain and Lanyang plain.The data suggest that the reductive dissolution of As-adsorbed Mn oxyhydrox-ides is the most probable mechanism for mobilization of As in the Bengal delta plain.However,in the Chianan plain and Lanyang plain,microbially med-iated reductive dissolution of As-adsorbed amor-phous/crystalline Fe oxyhydroxides in organic-rich sediments is the primary mechanism for releasing As to groundwater.High levels of As and humic substances possibly play a critical role in causing the unique BFD in the Chianan plain of SW

Taiwan.

A.H.M.Selim RezaáJ.-S.Jean(&)á

H.-J.YangáC.-C.LiuáJ.Bundschuh

Department of Earth Sciences,National Cheng Kung

University,Tainan,Taiwan

e-mail:jiinshuh@https://www.doczj.com/doc/ea17409700.html,.tw

M.-K.Lee

Department of Geology and Geography,Auburn

University,Auburn,AL,USA

H.-F.Hsu

Department of Chemistry,National Cheng Kung

University,Tainan,Taiwan

Y.-C.Lee

National Synchrotron Radiation Research Center,Hsinchu

Science-Based Industrial Park,101Hsin-Ann Road,

Hsinchu30076,Taiwan

K.-H.Lin

Sustainable Environment Research Center,National

Cheng Kung University,Tainan,Taiwan

C.-Y.Lee

Department of Geosciences,National Taiwan University,

Taipei,Taiwan

123 Environ Geochem Health

DOI10.1007/s10653-010-9335-5

Keywords ArsenicáAlluvial aquiferáHumic substancesáBlackfoot disease(BFD)áArsenicosisáBangladesháTaiwan

Introduction

Many shallow alluvial aquifers in various parts of the world,including Bangladesh,West Bengal(India), Taiwan,Argentina,Chile,China,Hungary,Mexico, Romania,Vietnam,Cambodia,and many parts of the USA,have been associated with problems of As occurring at[50l g/l in groundwater(e.g.,Smedley and Kinniburgh2002).Arsenic is derived from weathering of As-rich minerals in headwaters(Saun-ders et al.2005)and is believed to enter the groundwater following reductive dissolution of Fe(III)oxyhydroxides under anaerobic conditions in alluvial sediments(e.g.,Polizzotto et al.2008;Nath et al.2008a;Wang et al.2007).Reza et al.(2010) also reported that reductive dissolution of MnOOH and FeOOH mediated by anaerobic bacteria repre-sents an important mechanism for releasing arsenic into the groundwater.Tens of millions of people in Bangladesh and West Bengal are at risk from ingestion of As-contaminated groundwater(BGS and DPHE2001).In Taiwan,a peripheral vascular gangrene disease,known as the Blackfoot disease (BFD),was?rst reported in the Chianan plain(Tseng et al.1961)where many people consumed well water with high As content in the1960s(Tseng1977, 1985),but others consider that it is caused by a combination of high As and humic acid(HA) contents(Lu1975,1990a,1990b).Many studies in Taiwan showed that the consumption of As-rich well water led to diabetes(Lai et al.1994),hypertension (Chen et al.1995a,1995b)and cancers of the nasal cavity,lung,liver,bladder,kidney,and prostate(Wu et al.1989;Chen and Wang1990).At present,even though As-rich well water has not been used for drinking purposes since the1970s because drinking water since then has been supplied by tap water originating from surface water sources,groundwater is still indirectly ingested by most inhabitants in southwest Taiwan,as it is still extensively provided to meet irrigation,aquacultural and industrial needs. In the aquacultural sector,in particular,bioaccumu-lation of As occurs in farmed?sh such as Tilapia (Han et al.1998;Liao and Ling2003).Higher As levels were found in tissues of certain?sh species farmed in ponds fed by As-rich groundwater(Huang et al.2003),causing a potential cancer risk for consumption(Liu et al.2005;Jang et al.2006).

There are still intense debates on the etiology of BFD,largely because of its contrasting occurrence in the Chianan and Lanyang plains,two of the main affected areas in Taiwan.Although related hydroge-ology and groundwater geochemistry seems to be similar in these two coastal plains,BFD has not been reported in the Lanyang plain(Hsu1998;Peng2001). The etiology of the BFD is rather complicated,not just by the toxicity of As,but by the presence of complex organometallic compounds in the Chianan plain groundwater.The organometallic compounds form as a result of humic substances(HSs)in sediments combining with free radicals,As and other metal groups,fatty acids,phthalate esters and some unknown components(Lu1975).Lu(1990b)sug-gested HSs as the principal cause of BFD.However, the presence of As and other trace elements in groundwater provides clues that HSs may not be the sole causative factors for BFD(Nath et al.2008b).In Bangladesh,Anawar et al.(2002)also found high concentrations of?uorescent compounds in ground-water that also contained high concentration of As and other trace elements.

HAs,one of the major components of HSs,are derived from the decay of animal and plant remains during humi?cation.They are brownish-black,multi-phenolic,large polymer molecules composed mainly of C,H,O and N.There are many kinds of activated functional groups,bridging bonds and sponge net-work textures in HAs,serving to adsorb and complex a variety of metals,metallic oxides,salts,clay minerals,lanthanides,radioactive elements and some other non-metallic elements.They are hydrophilic substances capable of hydrogen bonding and dissolve more readily in water than hydrophobic solvents.A unique?uorescent substance in HA compounds was found in drinking water from the BFD areas(Lu 1975,1990b).The metal of Ca,Mg and especially of Fe,Al and Mn play roles in bridging the complex-ation of As(V)with humic substances(Lin et al. 2004).Redman et al.(2002)revealed the in?uences of diverse natural organic matter samples on the sorption of arsenic onto hematite.They used FT-IR techniques to observe the sorption of natural organic

Environ Geochem Health

123

matter onto arsenic-contaminated hematite.So far, the pathogenesis of BFD remains a subject of dispute in view of its apparently different symptoms from those of typical arsenicosis.The main objectives of this research were to compare geochemical charac-teristics of groundwater and sediments from typical BFD and arsenicosis-affected areas.The goals were to(1)understand the As mobilization processes and(2)determine whether any combination of high As and HA levels might be uniquely present in the BFD-affected areas.

Site description

The northwestern part of Bangladesh is situated close to the present course of the Ganges River,adjacent to the national border with West Bengal,India(Fig.1a). The surface geology comprises mainly alluvial sand of the active Ganges?oodplain in the south and alluvial silt and clay in the north.The northeastern part of the study area forms part of the fault bounded Barind Tract,which has been uplifted by some50m relative to the neighboring Holocene alluvium (Ahmed and Burgess1995).The contact of the Barind Tract with the younger alluvial sediments is not well understood but is thought to be steeply dipping and fault bounded.Vertical variation in lithology is apparent within layers of alternating micaceous sand,silt and clay.Sediment color is mixed brown,olive brown and grey.Groundwater in the area is mostly abstracted from shallow depths \50m in the Holocene alluvial sediments.

The Chianan plain is bounded by the Peikang River to the north and the Erjen River to the south and has an area of around2,400km2.It extends 40km from east to west and60km from north to south.Two major rivers,the Pachang River and the Tsengwen River(Fig.1b),?ow from the northeast to the west through the northern part and the southern part of the plain,respectively.The BFD areas are located in the coastal alluvial Chianan plain in southwestern Taiwan(Fig.1b)with an altitude less than50m and is covered by alluvial deposits derived from the eastern foothill area through?uvial trans-portation.Regional geological studies revealed that the sedimentation rate has been high since the Pliocene.Alluvial deposits of clay,silt and?ne-grained sand covered extensively over the Chianan plain in past.Sediment washed into the plain is mainly?ne-grained clastic,making the alluvium mainly clay and silt.Surface and subsurface waters in the areas are of high salinity.Wells in the areas penetrate to a depth between100and280m into the aquifer belonging to the‘Gutingkeng’Formation which is composed of shallow sea to deep sea sediments with abundant organic ooze and a very high concentration of HAs(Yu2001).The ground-water catchment is surrounded by the Taiwan Strait to the west and the Central Mountain to the east.Fast erosion upstream and a sharp change of river gradient has caused thick muddy sediments to be deposited in the upper plain and led to poor hydraulic properties in the aquifers.Moreover,the hydrogeological pro-?les of the Chianan plain exhibit no obvious continuous layer structures(Wang et al.2007).The top aquifer(0–60m)was formed mostly in the Holocene.The deposits in deep aquifers(60–300m) were classi?ed as Miocene to Pleistocene sand and silt mixed with the muddy sediments of the marine sequence.

The Lanyang plain(Fig.1b)is in northeastern Taiwan,which is the alluvial fan formed by the Lanyang River.The area is triangular,next to the Paci?c Ocean in the east.The main river,the Lanyang River,?ows through the middle of the area from west to east(Fig.1b).The area is approximately400km2with each side being about30km.The groundwater?ows from west to east in the north,but?ows northeastward in the south.The mountains to the northwestern and southwestern parts of the plain form the groundwater recharging areas.The thickness of alluvium is in the range100–400m.The bedrock of the north bank of the Lanyang River is characterized by an Eocene to Oligocene sedimentary terrain,while the bedrock of the south bank is characterized by a Miocene sedi-mentary terrain(Chen2000).The surface layer is covered by sediments from the Quaternary,consisting of silty sand,silty clay,slate,metamorphic sandstone, schist,and shale,and is partitioned into upstream, midstream,and downstream areas(Chen2000). Materials and methods

Drilling and sediments collection

Two boreholes were drilled and installed in the Bengal or Ganges delta plain of northwestern Bangladesh

Environ Geochem Health

123

and one in the Chianan plain,southwestern Taiwan for collecting undisturbed samples (Fig.1).Sediment core samples from these boreholes were collected with split-spoon samplers with rotary drill rigs in January and May of 2008,respectively.The drill sites are located in Rajarampur and Jorgachi in northwest-ern Bangladesh and the Budai Township in the Chianan plain of SW Taiwan.The lengths of Rajarampur,Jorgachi,and Budai cores were about 50m,50m,and 150m,respectively.

Sediment

Fig.1Study areas of a Ganges delta plain in northwestern Bangladesh,and b Chianan plain and Lanyang plain in southwest and northeast Taiwan

Environ Geochem Health

123

samples were collected with continuous core recov-ery in plastic PVC tubes.

Groundwater sampling and analysis

Thirty-one Groundwater samples were collected from the three study areas for chemical analysis(Fig.1). At least three well volumes of groundwater were pumped before sampling.Dissolved O2,temperature, pH,electrical conductivity(EC),redox potential(Eh) and total dissolved solids(TDS)were measured in the ?eld using a?ow-through cell and hand-held meters. Groundwater samples for the analysis of trace elements and other cations were?ltered using acetate-cellulose membrane?lters(0.45l m)and acidi?ed with HNO3to pH2.Samples were delivered to the laboratory within24h.The alkalinity and anions such as NO3-,SO42-and Cl-were deter-mined with a Dionex ion chromatograph(CA,USA). Cations and trace elements were measured using inductively coupled plasma-mass spectrometry(ICP-MS,Agilent CE7500,Japan).Groundwater samples including blank,spike,duplicate,and check samples (standard solutions from Merck)were measured sequentially.For trace elements,the detection limit was\59blank;variance in duplicate measurements was\1%.

HA extraction and analysis

Five groundwater samples(each sample with60l) were collected from the water wells at Beimen2a, Beimen2b,Yenshui2,Yenshui3and Jiangjiun1C in the Chianan plain of southwestern Taiwan for HA analysis.They were acidi?ed to pH1with1N HCl and subjected to adsorption chromatography on a XAD8resin column and eluted with1N NaOH (Thurman and Malcolm1981).The eluate was acidi?ed to pH1with6N HCl.Following centrifu-gation,the supernatant was removed and the precip-itated HA re-dissolved in1N NaOH.The whole procedure was repeated twice.After the third round of alkaline dissolution,the extracted water was evaporated to dry powder.

Fluorescence spectral analysis of groundwater was conducted at excitation wavelength340nm and emission wavelength415nm with a Hitachi F-4500?uorescence spectrophotometer(Japan)with sulfuric acid-quinine(10l g/l quinine in0.05M H2SO4)as reference standard(Nagao et al.2003).Relative ?uorescence intensity(RFI)was expressed in terms of quinine standard units(QSUs).Ten QSUs corre-spond to the?uorescence intensity of quinine sulfate (10mg/l in0.05M sulfuric acid)at an excitation wavelength(Ex.)of340nm and an emission(Em.) wavelength of415nm.

FT-IR spectra of HA powders were determined using FT-IR microspectroscopy at the National Synchrotron Radiation Research Center(NSRRC), Hsinchu,Taiwan and the Sustainable Environment Research Center of National Cheng Kung University (NCKU),Tainan,Taiwan.Synchrotron-based FT-IR spectra were recorded using the infrared beamline (BL14A)at NSRRC with a Nicolet Magna860FT-IR spectrometer equipped with a Continuum IR micro-scope(Spectra Tech),mapping stage controller, 32932objective(0.65numerical aperture)and MCT detector.The bench was con?gured with a collimated synchrotron light,which served as an external input to the spectrometer.The modulated light was directed into the infrared microscope for spectroscopy.The beam current was300mA and the synchrotron was running in top-up mode.The spectra were collected in the mid-IR range of4,000–700cm-1using a spectral resolution of4cm-1,with the co-addition of128scans,aperture of109 10l m.The optics were purged using dry N2and the automatic atmospheric suppression function in the OMNIC TM software was used to minimize infrared absorption by CO2and water vapor in the ambient air.A single-beam background spectrum was col-lected from an area free of sample.Stage control and data collection were performed using OMNIC TM. Optical images were obtained using a camera linked to the Continuum microscope.

HAs were extracted from core sediment samples using acid alkaline method(Kuwatsuka et al.1992). In this method,sediment samples were dried and passed through a2mm mesh sieve and acidi?ed to pH1with1N HCl at room temperature.1N HCl was then added to obtain a ratio of10ml of total extractant to1g sediment.After shaking1h,the suspended solution was centrifuged at1,5009g for 10min and the supernatant was designated as fulvic acid(FA).The solid residue was neutralized with1N NaOH to obtain a ratio of10m of total extractant to 1g sediment.The suspension was shaken for4h under N2and allowed to stand overnight.The extract

Environ Geochem Health

123

was separated using centrifugation at1,5009g for 10min,acidi?ed to pH1with6N HCl,allowed to stand12–16h,and centrifuged at1,5009g for 10min.The supernatant was designed FA.The precipitated humic acid(HA)fraction was re-dis-solved in a minimum volume of0.1N NaOH and centrifuged at6,0009g for20min under N2to remove impurities.The HA was precipitated with 6N HCl and allowed to stand12–16h,and centri-fuged at1,5009g for10min.The supernatant was discarded.The precipitated HA was treated(39)with HCl-HF by shaking overnight to remove impurities and freeze dried to obtain powder sample of HA.The physicochemical and structural characteristics of those extracted from groundwater and sediments are compared with those of HAs obtained from the International Humic Substances Society(IHSS)and Aldrich humic acid(Aldrich Chemical Co.,USA). Sediment mineralogy and geochemistry analysis The bulk mineralogy of the sediments was deter-mined using X-ray powder diffraction(XRD)with a Rigaku Geiger?ex2807C2(Japan)instrument(RAD-IA system)and Ni-?ltered Cu K a radiation(30kV, 10mA)operating in step scan mode,over an angular range of20–650(2h)with0.020(2h)steps and 2-s count time on200mg unoriented side-packed powder mounts.Prior to analysis,*1g samples from bulk dried sediments were ground by hand with a mortar and pestle and passed through230mesh to obtain\63-l m particles.Approximate relative abun-dance ratios of major minerals were estimated from the relative intensities of the most intense and speci?ed peak of each mineral.The analytical and sampling related error in determining mineral abun-dance was about±5%.

The major element composition of bulk dried and powdered sediments was determined with a Rigaku RIX2000X-ray spectrometer(Japan)using glass bead samples,which were prepared by fusion of sediment samples with lithium borate(1:3M ratio). Calibration lines were obtained using glass beads made by the same procedure with reference sedi-mentary rock samples.The analytical error for major elements was within±3%,which was estimated using the duplicate standard samples.

Total organic carbon(TOC)contents of the bulk sediment samples were measured using a dry combustion method with a IL550TOC-TN analyzer (Germany).The dried sample powder(*0.5g)in a screw-top glass vial(1.6cm3),which was heated at 450°C for3h to remove organic contaminants and then weighed.About1ml of1N HCl was added to decompose carbonate.The sealed vial was placed in an oven at50°C overnight,because some carbonate species such as dolomite were not easily dissolved with HCl.After cooling to room temperature,a few drops of6N HCl were added to check if carbonate had been completely digested.The sample was put in a vacuum desiccator with NaOH pellets(as desiccant and to trap excess HCl)and dried under vacuum for 2weeks.After drying,TOC contents of the sediment and groundwater samples were determined.The analytical error for TOC from duplicate samples was within±5%.

Sequential extraction procedures

Step-by-step chemical leaching of As was performed on subsamples of dried sediment to separate major and operationally de?ned As phases with the modi?ed method from Anawar et al.(2003)and Stollenwerk et al.(2007):

1.P1-exchangeable phase:The sediment was agi-

tated continuously at room temperature for 30min with20ml0.05M CaCl2for1g dry wt sediment to remove exchangeable As.

2.P2-Fe and Mn oxyhydroxide phase:The sedi-

ment residue from P1was extracted for30min with20ml0.1M NH2OHáHCl in0.01M HNO3 for1g dry wt sediment to extract As from Mn oxides and carbonate phases.The sediment residue was extracted at50°C for30min with 20ml0.1M NH2OHáHCl in0.25M HCl for1g dry wt sediment to extract As from poorly crystalline Fe oxides.These samples were occa-sionally agitated.

3.P3-organic matter phase:The sediment residue

from P2was rinsed with distilled deionized water;the As from the organic fraction was extracted for2h with0.1M sodium pyrophos-phate.Sodium pyrophosphate mixed with sedi-ment was heated on a hotplate and dissolved in 1M NH4acetate to a?nal volume of20ml.

The above extractions were conducted in50-ml centrifuge tubes.Separation was conducted by

Environ Geochem Health

123

centrifuging at10,000rpm for60min.Supernatants were?ltered using0.45-l m Millipore?lters and As was analyzed using a PSA Atomic Florescence Spectrometer(Florida,USA).

Results

Physical and chemical properties of sediments

and water samples

X-ray diffraction analysis shows that the dominant minerals in the sediments of the Bengal delta plain, Chianan plain and Lanyang plain are quartz,mica, feldspar,and clay minerals.Abundant quartz was found in sand,but mica(muscovite and biotite)and feldspar were observed to be present mostly in the sandy clay sediments.The highest ranges of Al2O3 and Fe2O3in the?ne-grained sediments of the Bengal delta plain are10.12–20.18wt%and3.20–

10.39wt%,respectively,those in the Chianan plain

11.98–15.57wt%and4.40–5.53wt%,and those in the Lanyang plain18.57–19.12wt%and7.01–7.33wt%,respectively(Fig.2).Average Al2O3con-tent is higher in the upper sand units of the Bengal delta plain(9.03wt%),Chianan plain(8.43wt%), and Lanyang plain(16.29wt%)than in the lower sand units of the three plains(Bengal,8.25wt%; Chianan,7.82wt%;Lanyang,15.04wt%),re?ecting a higher abundance of mica and plagioclase.Both magnetite(Fe oxides)and biotite would be an important source of Fe,which is higher in the upper sand units of Bengal delta plain(1.47–2.71wt%), Chianan plain(3.13wt%)and Lanyang plain (6.36wt%)than in the sediments of lower sand units of the three plains(1.13–1.92,2.31and6.02wt%, respectively).The MnO2content is\0.2wt%for Bengal delta plain,\0.1wt%for Chianan plain and \0.17wt%for Lanyang plain throughout the cores. The P2O5concentration is0.07–0.13wt%for Bengal delta plain,0.11–0.14wt%for Chianan plain,and 0.17wt%for Lanyang plain,which is slightly higher in the upper sand unit and gradually decreases with depth.The?ne-grained sediments enriched in phyl-losilicates(such as mica)contain a higher amount of P2O5,indicating that the?ner sediment concentrates more P.The P2O5content correlates well with the CaO content,implying that P in the sediments is?xed in apatite or other Ca-bearing mineral phases.XRF analysis reveals that?ne-grained sediments contain higher amount of trace elements,perhaps because of their high surface area and adsorption capacity.The positive correlations among As,Fe,and Mn in the Bengal sediments(Fig.3a,b)and the Chianan plain sediments(Fig.3c)suggest strong adsorption of As on Fe-and Mn oxyhydroxides.A good positive and statistically signi?cant correlations is found between As and organic carbon in the Bengal delta plain sediments(R2=0.45,p\0.05,Fig.3d)and in the Chianan plain sediments(R20.77,p\0.05in Fig.3e).Sequential chemical leaching of As shows that it is present in different minerals and solid phases (Table1).It is present dominantly in oxidized phases of Fe and Mn and organic phases in the three plains. The concentration of arsenic in Fe and Mn oxide phases ranges from1.4to40.2mg/kg and0.11to 26.23mg/kg respectively in the organic phase,with an average of7.08and 6.39mg/kg,respectively (Table1).

The pH values of groundwater ranged from8.1to 9.2in the Bengal delta plain,7–8.1in the Chianan plain and7.3to8.6in the Lanyang plain.The Eh values at a standard hydrogen electrode of ground-water ranged from37to154mV(Bengal),18to 97mV in(Chianan),and60to299mV(Lanyang), indicating moderate reducing conditions.The Bengal delta plain groundwater contains0–86mg/l sulfate, 4–135.57mg/l chloride,0–8.3mg/l nitrate and1.5–9.61mg/l nitrite,with the Chianan plain groundwater containing14–36,540mg/l chloride,0–3,375mg/l sulfate and0–166mg/l nitrate,and the Lanyang 2–47.63mg/l chloride,0–3.03mg/l sulfate and 0.83–58.32mg/l nitrite.Groundwater sulfate and nitrate levels are generally low.Microbial reduction of SO42-and NO3-may occur under reducing conditions in the presence of organic matter,thereby increasing the concentrations of sul?de and NH4?in groundwater(Bhattacharya2002).Arsenic does not show any correlation with SO42-,indicating a sulfate-limited system.

Ca2?,Na?,Mg2?,K?and NH4?in the ground-water samples(Table2)ranged from13.53to76.26, 12.43to79.38,11.74to40.83,3.11to41.21and0to 17.64mg/l(Bengal delta plain),29to293,87to 15,551,7to169,15to437and0to 4.8mg/l (Chianan plain),and9.39to87.79,26.23to441.01, 3.74to17.58,1.01to39.71and0to14.19mg/l (Lanyang plain),respectively.

Environ Geochem Health

123

From the Piper diagram,the hydrochemical facies of groundwater can be divided into four types,i.e.,HCO 3–Ca,HCO 3–Na,Cl–Na and mixed type (Fig.4).The Bengal delta plain groundwater is of the Ca–HCO 3type,and the Chianan plain ground-water the Na–Cl or mixed water type due to seawater intrusion.The Lanyang plain groundwater is of the Na–HCO 3water type.

There is a poor correlation between Fe and As but a positive one between Mn and As in the Bengal delta plain groundwater (Fig.5a).In contrast,As,Fe,and Mn are not well correlated in the Chianan plain groundwater (Fig.5b),whereas a positive correlation between As and Fe and a poor correlation between As and Mn exist for the Lanyang plain groundwater (Fig.5c).It may be concluded that Fe,Mn,and As could be concurrently released into the Bengal delta plain groundwater as a result of reductive dissolution of Fe-and Mn oxyhydroxides (Ohno et al.2005;Hasan et al.2007);however,dissolved Fe may be re-precipitated as FeCO 3(siderite)under reducing conditions,leading to a poor correlation between Fe and As in groundwater (e.g.,Nickson et al.2000;Lee et al.2005).

Variations in major ion concentrations in ground-water from the three regions are presented in box-and-whisker plots (Fig.6a,b),which reveal that Ca 2?and HCO 3-are the dominant ions in the Bengal delta plain groundwater followed by Mg 2?,Na ?and Cl -.The Chianan groundwater shows a wide variability in the concentrations of Na ?(87–15,551mg/l)and Cl -(14–36,540mg/l),which is consistent with the elec-trical conductivity (EC)values (Table 2).Dominant ions in the Lanyang groundwater are Na ?and HCO 3-.Box-and-whisker plots (Fig.6c)illustrate the statistical variation in the concentrations of different trace elements in groundwater (Glynn and Plummer 2005).The concentration of As in ground-water ranges from 2to 170.8l g/l (mean 50.6±41.49l g/l)in Bengal delta plain,9to 704l g/l

(mean

Fig.2XRF analyses of the core sediments from

a Rajarampur,northwestern Bangladesh,

b Budai,

Chianan plain,SW Taiwan,and c Wujie,Lanyang plain,NE Taiwan

Environ Geochem Health

123

393±l268.05l g/l)in Chianan plain and 2.5to 542.7l g/l(mean104±215l g/l)in Lanyang plain. The maximum As level is170l g/l(Bengal),704l g/l (Chianan)and543l g/l(Lanyang),being almost17, 70and54times higher than that of the WHO stan-dard,respectively.The mean groundwater Fe con-centration is143.9l g/l(82–370l g/l;Bengal),272. 39l g/l(25.54–630l g/l;Chianan)and97l g/l(15–235l g/l;Lanyang),respectively.Mn ranges from 0to462l g/l(mean127.2±159.21l g/l;Bengal), 9.23to345l g/l(mean116.45±150.16l g/l;Chi-anan)and0.22to129.9l g/l(mean56±55.34l g/l; Lanyang).

In the Bengal delta plain groundwater,TOC concentration ranges from1to 6.06mg/l with a mean of2.92±2.15mg/l(n=20).In the Chianan plain groundwater,it ranges from2to18mg/l with a mean of12.06±8.76mg/l(n=5)and in the Lanyang plain groundwater,and from1.1to14mg/l with a mean of 5.56±4.58mg/l(n=6).The relative?uorescence intensity of the HSs in the groundwater ranges from10to27(mean18±5, n=20;Bengal),24.12to322.39(mean128±126.8,n=5;Chianan)and11.57to145.99(mean 53±25,n=6;Lanyang).The HSs concentration ranges from13to38(mean25±7,n=20;Bengal),

(c)

Environ Geochem Health

123

34to468(mean184±184.55,n=5;Chianan)and 16to211(mean78±38,n=6;Lanyang)QSU, respectively.The As-rich Chianan plain groundwater also contains high relative?uorescence intensity (RFI)and HS concentration(Table3),implying an enrichment of organic matter(mostly HSs)derived from sedimentary sources compared to Bengal delta plain and Lanyang plain.RFI in groundwater sug-gests a high concentration of dissolved organic matter and provides strong evidence for the dissolution of HAs as well as other organic substances.

Fluorescence and infrared spectra of HAss

The HA?uorescence spectral patterns of groundwater samples from NW Bangladesh and SW Taiwan and NE Taiwan are very similar(Fig.7).However,the Chianan plain groundwater has the highest relative ?uorescence intensity of the three study areas.The IR spectra of the HAs from groundwater in the Beimen and Jiangjiun BFD areas(Fig.8)as well as those extracted from core sediments in southwestern Tai-wan and Bangladesh are shown in Fig.9.Major bands at3,428,2,917,1,715,1,620,1,386,and 1,255cm-1were assigned to O–H stretching,ali-phatic C–H stretching,carboxyl and ketonic C=O stretching,aromatic C=C rings,systematic stretching of COO-and OH deformation and C–O stretching of phenolic groups and esters,respectively(Niemayer et al.1992;Miano and Senesi1992).However,some differences can also be noticed.We found that peaks at3,428,1,725,and1,620cm-1can be utilized to differentiate the char-

acteristics of the Chianan plain groundwater(Fig.8). Besides,apparent differences in peak intensity of the groundwaters probably re?ect differences in the degree of polymerization as well as in the oxygen content of HAs(Fig.8).Spectra of HA samples were compared with spectra of standard HA.The spectra of puri?ed HA(Aldrich Chemical Co.,USA)show alkanes,amine,amide,aromatic(C=C),C–O,C=O and O–H functional groups.COO-,aromatic C=C ring and esters groups are present only in the Chianan plain groundwater(Fig.8).Table4shows the assignments for the HA functional groups in the groundwater and sediment samples of NW Bangla-desh,SW Taiwan,and NE Taiwan.Relative?uores-cence intensities and HA concentrations for the groundwater samples revealed that the Chianan plain groundwater contains higher values than the two other study areas(Fig.10a,b).

Saturation index

Geochemical modeling using the program PHRE-EQC(Parkhurst and Appelo1999)was performed to evaluate the saturation states of various minerals in groundwater.Thermodynamic data were taken from the database of the program MINTEQ(Allison et al. 1991).Calculated saturation index(SI)values for siderite and rhodochrosite are generally positive (Table5)and consistent with relatively high alkalin-ity and high dissolved Fe and Mn concentrations.The presence of reduced Fe,Mn,bicarbonate,and hydroxyl ions released from bacterial reduction of Fe(III)and Mn(V)oxides may directly precipitate siderite and rhodochrosite.These carbonate minerals can act as sinks for dissolved Fe and Mn.The mild redox potentials for precipitation of calcite and dolomite in these areas are associated with limestone deposits(Swartz et al.2004).However,groundwater saturated with O2may react with reduced substances in the aquifer sediment,such as organic matter or the Fe-bearing mineral.The product may induce precip-itation of carbonate minerals(Chapelle et al.1987) such as magnesite.The As oxide minerals such as

Table1Sequential extraction of arsenic(mg/kg)from dif-

ferent phases in sediments

Depth(m)Oxides Organic

Bengal delta plain D1-5 1.45

D1-12 1.6 4.9

D1-44 1.450.85

D2-4 2.31 3.24

D2-12 4.520.84

D2-16 2.750.6

D2-1840.226.23

D2-3811.78.1

Chianan plain Budai-100 2.32

Budai-120 6.8820.43

Lanyang plain Wujie-77.27.510.11

Wujie-170.2 2.4 4.4

DW1and DW2represent the drilling wells at Rajarampur and

Jorgachi,respectively;5,12,144represent the depths in meters

at DW1and4,12,16,18,38represent the depths in meter at

DW2

Environ Geochem Health 123

T a b l e 2P h y s i c o -c h e m i c a l p a r a m e t e r s a n d m a j o r i o n i c c o n s t i t u e n t s i n g r o u n d w a t e r o f t h e (a )B e n g a l d e l t a p l a i n ;(b )C h i a n a n p l a i n a n d L a n y a n g p l a i n

L o n g .L a t .p H

E C (l S /c m )T D S (m g /l )N a ?

(m g /l )N H 4?

(m g /l )K ?

(m g /l )M g 2?

(m g /l )C a 2?

(m g /l )

C l (m g /l )N O 3-(m g /l )N O 2-(m g /l )S O 42-(m g /l )A l k a l i n i t y (m g /l )A s (l g /l )F e (l g /l )M n (l g /l )S r (l g /l )S e (l g /l )(a )

S t 188°140300024°34040008.19

91.20

8850.321.449.8939.0470.8633.117.952.050.6179.0036.5112289.2358

12.4

S t 288°140200024°34030008.31

86.10

8370.514.1811.4636.0156.0933.450.009.610.6590.0029.3113186.8368

10.3

S t 388°14009

00

24°35029

00

8.22

93.50

9026.461.3041.2138.6552.5020.850.001.521.6488.0039.594.40.191

365

16.3

S t 488°14050

00

24°34040

00

8.54

63.80

6223.930.3311.2739.6859.3614.770.006.270.1569.0073.0246

175.6

376

9.84

S t 588°14040

00

24°35011

00

8.23

62.10

60.24.721.298.0437.3755.1510.670.002.660.3083.0050.182.00

231

14.3

S t 688°150110024°35031008.10

155.4

15175.8417.6423.8426.6071.4748.418.307.7112.6137.002.76370

0.188

468

31.5

S t 788°13044

00

24°35010

00

8.49

95.40

9254.420.548.0336.7776.2638.330.003.2310.7754.0027.6113

8.625

409

21.0

S t 888°15020

00

24°34020

00

8.50

52.20

5129.880.006.9530.1969.787.780.003.950.9182.00170

140

379.3

8.72

331

S t 988°13051

00

24°34050

00

8.52

48.30

4728.350.006.9736.7165.414.370.004.000.0071.0053.2

101

65.06

273

5.04

S t 1088°150000024°34000008.47

47.30

4728.200.008.1737.2167.718.980.183.610.4563.00103

102

456.5

4.11

209

S t 1188°140500024°34010008.29

63.50

6112.430.003.6315.6531.7025.780.004.5910.2154.00

22.1

137

462.8

378

9.25

S t 1288°14030

00

24°34052

00

8.63

91.30

8923.060.005.0429.7033.6648.300.003.1320.1878.00

59.3

149

4.148

438

15.8

S t 1388°15025

00

24°34030

00

8.25

58.20

5614.760.003.1111.7417.6919.450.002.532.1269.00

97.9

118

182.6

12.4

285

S t 1488°14011

00

24°34053

00

8.45

100.1

9729.560.006.0631.4633.8160.925.751.5528.77

70.00

40.6

103

34.19

409

19.7

S t 1588°140150024°34045008.58

83.70

8122.050.005.4329.8013.5338.760.004.331.54

84.00

49.5

115

69.23

398

12.8

S t 1688°13049

00

24°36030

00

9.18

173.8

16979.380.0025.9840.8325.06135.570.001.5886.97

71.00

9.04

90.8

498

24.0

S t 1788°13028

00

24°35000

00

8.64

93.50

9025.800.0030.4827.1723.9743.190.001.54

23.65

85.00

6.45

111

494

12.0

S t 1888°15000

00

24°35000

00

8.72

83.20

8123.920.006.2230.6016.6536.890.001.54

16.53

90.00

6.77

260

8.788

469

7.37

S t 1988°140020024°34040008.65

96.40

9332.890.005.9832.0816.5956.210.00

1.55

0.98

85.00

35.3

212

214.1

462

20.7

S t 2088°150400024°34035008.93

143.2

13972.540.005.7830.2231.23100.630.00

1.56

37.78

85.00

101

113

7.28

24.0

365

W e l l l o c a t i o n s L a t i t u d e L o n g i t u d e

p H E C (l S /c m )N a ?

(m g /l )N H 4?

(m g /l )K ?

(m g /l )M g 2?

(m g /l )C a 2?

(m g /l )C l -(m g /l )

N O 2-(m g /l )

S O 42-(m g /l )

A l k a l i n i t y (m g /l )

A s (l g /l )

F e (l g /l )

M n (l g /l )

S r (l g /l )

S e (l g /l )

(b )

B e i m e n 2a 23.2954120.1586

7.21

1,6491824.80151441

197

0.00

2.5

164

565

217.1

345

475

185

B e i m e n 2b 23.2959120.1578

7.01

80,30015,5510.00437169

293

36,540

0.00

3,375

173

4.91

463

12.2

1,305

2,575

J i a n g j i u n 1C 23.2236120.1103

8.09

1,5833330.00457.0

30

14

166.00

0.00

175

291

27

20

111

0.17

Y e n s h u i 223.2993120.2616

7.75

1,011870.002123

29

255

0.00

15

163

704

630

196

510

59.6

Y e n s h u i 323.3002120.2614

7.79

1,4261130.0022

27

42

149

0.00

108

166

402

26

9.2

352

0.13

C h u n g s h i n g 324.41368121.4549

7.27

46263.710.002.70

17.58

87.79

3.23

0.00

0.35

152.00

5.41

54.8

0.225

247

2.55

C h u n g s h i n g 424.41368121.4549

7.38

4,86090.200.00

1.89

13.07

59.38

3.74

0.00

0.00

158.00

25.3

146

100

476

4.24

J i a o s h i 24.495.2121.4659

8.58

3.23441.010.00

14.66

16.36

14.66

47.63

0.00

0.00

118.00

2.51

71.1

83.7

1,233

21.4

Y i l a n 24.44557121.4411

7.98

51.926.23

0.00

1.01

12.12

57.99

3.40

0.00

0.47

88.00

16.0

63.2

0.525

306

3.39

W u j i e 24.41239121.4728

7.85

156.6194.04

0.00

39.71

13.04

26.40

9.76

0.00

0.39

183.00

543

235

130

259

7.93

J u a n g w e i 324.44452121.4653

8.2177.2290.79

0.00

25.04

3.74

9.39

2.70

0.00

3.03

198.00

34.8

15.6

24.9

72.0

14.2

C h u n g s h i n g 3,C h u n g s h i n g 4,J i a o s h i ,Y i l a n ,W u j i e ,a n d J u a n g w e i a r e i n t h e L a n y a n g p l a i n ;o t h e r s a r e i n C h i a n a n p l a i n

Environ Geochem Health

123

arsenolite and claudetite are undersaturated in reduc-ing conditions,suggesting that As exists mainly in the dissolved state instead of solid state.Previous studies have shown that As exists mainly as soluble As(OH)3 (arsenite)aqueous species under moderate reducing conditions(e.g.,Lee et al.2005;Saunders et al. 2005).The SI values of iron oxide or iron hydroxide minerals are positive,indicating the presence of these mineral phases in the alluvial sediments.Crystalline oxide phases of hematite,goethite,and magnetite may replace amorphous oxides at depth as sediments age.Under oxidizing conditions,most of the dis-solved As is strongly adsorbed by various oxides under neutral pH conditions.The establishment of reducing conditions in the presence of organic matter can lead to the bacterial dissolution of Fe or Mn oxyhydroxide(Nath et al.2008a,2008b;Reza et al. 2010).The fermentation of peat in the subsurface could release organic acids(such as acetate)and drive the reductive dissolution of Fe oxyhydroxide, releasing arsenite,arsenate and Fe(II)to groundwater (McArthur et al.2001;Nickson et al.2000).Discussion

Comparison of arsenic content and groundwater geochemistry

Arsenic(ranging from2.5to704l g/l)is overwhelm-ingly the most important inorganic constituent detrimental to health,although consistently high concentrations of a few other determinants are worthy of note(e.g.,Fe,Mn,Sr,and Se)in groundwater from the three study areas.High Fe(15.6–630l g/l)and Mn (0–463l g/l)concentrations in three study areas may lead to acceptability problems and may be detrimental. Fe and Mn contents in some groundwater samples signi?cantly exceed the WHO recommended values (300l g/l for Fe and50l g/l for Mn).Se concentration (0–2,575l g/l)in most of the groundwater in the three study areas(Table2)was below its WHO recom-mended value(10l g/l).The low values result from the reducing conditions in the aquifers.Se toxicity is therefore not an issue but human metabolism may be impacted by low Se concentration,and As toxicity

may

Environ Geochem Health 123

consequently be increased.Sr concentration is also high in the Chianan plain and Lanyang plain ground-water(up to1,305l g/l)because of the effect of seawater intrusion(Table2).Sr concentration is comparatively low in the Bengal delta plain ground-water due to less effect of seawater intrusion(Table2).

Co-exposure to HAs and As and possible health effects

The Chianan plain groundwater contains much higher levels of relative?uorescence intensity and HAs than the Bengal delta plain and Lanyang plain groundwa-ter.Because most of the Bengal groundwater samples have very low HA concentrations,there is no compelling reason to suspect that skin lesions in Bangladesh and West Bengal of India are caused by HA consumption.It is possible that a high As concentration,combined with other trace or minor elements may in some cases enhance their toxicity towards biological systems.

High?uorescence intensity and elevated concen-trations of?uorescent HAs in groundwater are possible compounding factors with synergistic effects.Animal model experiments found some signi?cant relationships between the intensity of blue–green?uorescence and the occurrence of dis-eases related to crippling,phlegmasia,ulceration, necrosis and gangrene in the extremities of mice(Lu 1990a).The complexes of HAs and As could enhance the inhibition of plasmin activity as compared with either HAs or As alone(Hseu et al.2001).Both As and?uorescent substances occur in high concentra-tions in the Chianan plain groundwater.Therefore, their combination effects may aggravate As toxicity. Among these,synergistic and antagonistic effects of ?uorescent compounds in drinking water may be important.

In epidemiological studies,the prevalence of BFD has been found to increase with As content in the range0.10–1.81mg/l with a mean of0.8mg/l(Tseng et al.1968)in drinking water.Some studies demon-strated that HA and synthetic polymeric HA(SPHA) in groundwater could shorten the prothrombin time of pooled normal plasma and inhibit protein C and plasmin activity.Moreover,the formation of HA-As organometallic complexes can enhance these effects (Lu1990b;Hseu et al.2001;Yang et al.1994). However,As alone has been found to be relatively ineffective.The synthetic HA-multimetal complexes have the ability to shorten human plasmin prothrom-bin time.If they contain trace elements such as As, Fe,Zn,Cu,Cr and Al,their ability would be more pronounced.HAs can cause endothelial damage and stimulate endothelin production(Chiu et al.1993). Thus they may not only cause endothelial damage but also enhance blood coagulation and hamper?brino-lysis.Therefore,it is highly possible that HA-metal complexes in the local well water play an important role in the pathogenesis of BFD(Yu et al.1984;Lu 1990a).In addition,these complexes may generate

Environ Geochem Health

123

oxidative stress,which could then result in HAs exerting toxicity,thereby leading to various diseases.

Crystallized HA is characterized as containing phenolic and phenolic carboxylic polymer structures with both–COOH and–OH as the main functional groups(Lu et al.1988).Clinical analyses have revealed that reduction by HA in hematocrit value, hemoglobin content and red blood cell counts are common among patients with BFD(Kuo and Chen 1969).HA can abolish the enhancement in hemolysis by way of As(V).Also,a decrease in HA functional groups may inhibit hemolysis by metal ions.In the presence of HA-metal complexes,the inhibition effect of EDTA was completely abolished.It is suggested that HA-As(V)is a potent hemolysis inhibitor even in the presence of HA,which enhances the hemolysis.The mechanism of inhibition of HA may be mediated via a binding interaction of HA with As(V)via the presence of carboxyl,carbonyl,phenol hydroxy,hydroxyl,methoxyl groups and functional groups on the benzene rings and the aliphatic side chains of the polymeric phenolic structure.This may lead to high reactivity and oxidative damage to red blood cells and then to hemolysis.

As mobilization mechanisms

As mobilization mechanisms vary with location, depending on hydrogeological and redox conditions. The elevated As concentrations in the shallow

Environ Geochem Health 123

(\100m)alluvial aquifers of the Bengal delta plain are associated with gray,?ne-grained?oodplain sediments because of the large surface area and high adsorption capability.As is mildly/strongly corre-lated with total Fe and Mn,suggesting that it is hosted mainly by Fe oxides(or Mn oxides)in the sediments (Fig.3).The sequential extraction results(Table1) suggest that As in sediments interacts with Fe,Mn and Al-containing minerals and organic matter via surface adsorption and/or complexation.The consid-erable amount of As present as a residual fraction indicates that it is embedded inside the crystalline structures of mineral particles.Three-step sequential extraction shows that,in the Bengal delta plain,As present in oxyhydroxide phases of Fe and Mn is higher than that in organic matter.However,in the Chianan and Lanyang plains the content of organic matter is higher than that in oxyhydroxide phases of Fe and Mn.

Shallow sediments that are rich in iron oxide minerals contain As concentrations as high as7mg/kg. Moderately positive correlation between As and Mn in the Bengal groundwater(Fig.5a)suggests that dissolved As may be adsorbed on Mn(oxy)hydrox-ides and subsequently reductive dissolution of MnOOH is the most probable mechanism for release of As to groundwater in the Bengal delta plain(Hasan et al.2007).In the northwestern part of the Bengal delta plain,organic matter in groundwater is com-paratively low relative to that in Chianan plain and Lanyang plain.The lack of a relationship between As,Fe and sulfate indicates that pyrite oxidation is not an important process in mediating As release into the Bengal delta plain groundwater(Ahmed et al. 2004).

In contrast,the elevated As concentration in deep alluvial aquifers([100m)of the Chianan plain is associated with gray,?ne-grained?oodplain sedi-ments enriched in organic matter and peat.There is a poor correlation among As,Fe and Mn in the Chianan plain groundwater(Fig.5b),which is comparatively more reduced in nature than in the Bengal delta plain and Lanyang plain groundwater because of its abundance of organic matter.Microbially mediated reductive dissolution of amorphous/crystalline Fe oxyhydroxides is thought to be the primary mecha-nism for releasing As from sediments to groundwater. Arsenic is released to groundwater through reduction

Table3Comparisons of arsenic and relative?uorescence intensity of humic substances in groundwater among Bangladesh(Bengal delta plain),SW Taiwan(Chianan plain),and NE Taiwan(Lanyang plain)

Components Bengal delta plain Chianan plain Lanyang plain

As(l g/l)Max.170Max.704Max.543

Min.2Min.9Min.2.51

Mean50.65±41.49 (n=20)Mean393±268(n=5)Mean104.5±215.03

(n=6)

Relative FI Max.27Max.322Max.145

Min.10Min.24.12Min.11.57

Mean17.78±4.6(n=20)Mean128±126.8(n=5)Mean53.43±9.6(n=6) Concentration of humic acid(QSU)Max.38Max.468Max.211

Min.13Min.34Min.16

Mean25.38±6.9(n=20)Mean184.03±184.55

(n=5)

Mean77.56±28.48(n=6) Symptom Non-BFD BFD Non-BFD

BFD Blackfoot disease

Environ Geochem Health

123

Environ Geochem Health

(b)

123

Environ Geochem Health

123

of As-sorbed iron oxyhydroxides when anoxic con-ditions are established by the microbial oxidation of organic carbon during sediment burial.Bacterial reduction of Fe oxyhydroxides would release ferrous Fe,As and bicarbonate species to groundwater. FeCO3and MnCO3solids may be precipitated,as reduced Fe and Mn react with bicarbonate species in groundwater(Nickson et al.2000).In the Chianan plain aquifer,potential electron acceptors such as NO3-and SO42-may be derived from seawater intrusion,allowing further oxidation of organic matter,which is widely believed to be an important contributor to the generation of anoxic conditions. The oxidative degradation of organic matter produces high HCO3-,while microbial fermentation leads to the generation of biogenic CH4(Tang et al.1996). Microbial processes in these sediments rich in organic matter create a favorable reducing environ-ment,facilitating mobilization of As in the aquifers of the Chianan plain.

The elevated As concentrations in the shallow (\100m)and deep([100m)alluvial aquifers of the Lanyang plain are associated with gray,?ne-grained overbank and?oodplain deposits.Moderately posi-tive correlation between As and Fe in the Lanyang groundwater(Fig.5c)indicates that dissolved As may be adsorbed on Fe oxyhydroxides.Therefore, similar microbially mediated processes leading to the dissolution of Fe(III)oxides under reducing condi-tions could be centrally involved in the release of As into the Lanyang plain https://www.doczj.com/doc/ea17409700.html,anic matter and HA concentrations in the Lanyang plain ground-water are comparatively lower than in the Chianan groundwater but higher than in the Bengal delta groundwater.Naturally occurring complexes of humic substances,Fe and As in groundwater of Chianan plain exhibit several distinct peaks with wavelengths of2,916,1,584and856cm-1as compared with a standard using FT-IR(Fig.11)(Lin et al.2004). Interestingly,BFD has not been reported in the Lanyang plain,further suggesting a possible link between As and humic substances and BFD in the Chianan plain.It is obvious that complexation may lead to elevated metal concentration and that avail-ability for uptake by humans may change the physiological condition of the human body.

The main arsenic species found in the well waters of the BFD area are As(III)and As(V)species with a total average ratio of As(III)/As(V)about2.6(Chen et al.1994).The individual wells show a variation of As(III)/As(V)ratio from about 1.1–5.2.The high concentration of As(III)species present in these waters re?ects the reduced environment of the aquifer, which may be caused by the low oxygen fugacity or the presence of other reducing agents,or both,in the groundwater system.Arsenic in groundwater of Chianan plain is present largely as As(III)(Chen et al.1994;Chen and Liu2007).The low MMA and DMA concentrations(below detection limit\1l g/l) found in the well waters of the Budai area suggest that other more complicated organoarsenicals are probably not present in signi?cant amounts in the well water. However,it is possible that some of the dissolved

Table4Functional groups of humic substances in ground-

water and core sediments from(a)Bengal delta plain,Ban-

gladesh;(b)Chianan plain,SW Taiwan;and(c)Lanyang plain,

NE Taiwan

Classi?cation Group Bond Range

(a)

Alkanes-IR CCCH=CHCC CC2,849–2,917

Alcohols Ph–CHR–OH O–H3,400–3,200

Amides-IR(–CO–NH2)NH21,638–1,618

Amines CH2–NH2NH21,650–1,590

Ketones(–CO–C=C–OH)C=O1,640–1,590

Ethers-IR Ph–O–C C–O–C1,050–1,010

(b)

Alkanes-IR CCCH=CHCC CC2,849–2,917

Alcohols Ph–OH OH3,250–3,200

Amides(I)(–CO–NH–C)C=O1,680–1,630

Amides(II)(–CO–NH–C)CNH1,570–1,515

Amides(III)(–CO–NH–C)CNH1,305–1,200

Amines-IR Ph–NH–R C–N1,315–1,250

Ketones(–CO–C=C–OH)C=O1,640–1,590

Ethers-IR3-Ring-ETH C–O–C1,280–1,230

Aromatic-IR o-Disubst Ring1,590–1,575

Carboxylic acid-IR C–C–COOH C=O1,725–1,700

Esters Ph–CO–O–R C–O1,310–1,250

(c)

Alkanes-IR CCCH=CHCC CC2,849–2,917

Alcohols Ph–OH OH3,250–3,200

Amides(I)(–CO–NH–C)C=O1,680–1,630

Amines-IR Ph–NH–R C–N1,315–1,250

Ketones(–CO–C=C–OH)C=O1,640–1,590

Ethers-IR3-Ring-ETH C–O–C1,280–1,230

Aromatic-IR o-Disubst Ring1,590–1,575

Environ Geochem Health 123

arsenic species may be associated with high molecular weight organic materials such as humic substances in the well water.Humic substances have been detected (?uorescence intensity:26.837–32.570)in the well water of the BFD area of Chianan plain,SW Taiwan (Lu et al.1991).Some groundwater samples are relatively very high in As,but very low in Fe and SO42-due to the precipitation of iron sul?des. Dissolved As concentrations remain high because As is complexed by dissolved humic substances(Lu 1990a;Chen et al.1994).

Looking into details of arsenic species,it is found that the concentration of insoluble arsenic in the(BFD)Blackfoot disease area of Chianan plain is much higher than that in the area of Lanyang plain(21.9vs.

1.8l g/l),and the concentration ratio between As(III) and As(V)in the BFD area of Chianan plain is much lower than that in one of the area of Lanyang plain(

2.6 vs.14.7).One is the large difference in concentration of insoluble arsenic(arsenic in colloids)found in well water between the BFD endemic area and the Lanyang plain area where the total arsenic level is high,and the other is the wide range difference on the distribution ratio of As(III)to As(V)in these two areas(Chen et al. 1995a,1995b).The high insoluble arsenic concentra-tion in the well water of BFD endemic area is

Environ Geochem Health

123

Environ Geochem Health Table5Saturation indices of minerals calculated by the PHREEQC software for(a)20groundwater samples from Bengal delta plain;(b)11groundwater samples from Chianan plain and Lanyang plain

Minerals St1St2St3St4St5St6St7St8St9St10St11St12St13St14St15St16St17St18St19St20

(a)

Anhydrite--------NA------?----Aragonite???????????????????? Arsenolite--------------------Calcite???????????????????? Claudetite--------------------Dolomite???????????????????? Epsomite--------NA-----------Goethite???????????????????? Gypsum--------NA----?-?----Halite--------------------Hematite???????????????????? Maghemite???????????????????? Magnesite???????????????????? Magnetite???????????????????? Manganite--NA-NA----------NA NA---Pyrolusite--NA-NA----------NA NA---Rhodochrosite??NA?NA-?????????NA NA??? Scorodite--------------------Siderite???????????????????? Thenardite--------NA-----------

Beimen2a Jiangjiun1C Yenshui2Yenshui3Chungshing3Chungshing4Jiaoshi Yilan Wujie Juangwei3

(b)

Anhydrite-NA-?-NA NA---Aragonite?????????? Arsenolite----------Calcite?????????? Claudetite----------Dolomite?????????? Epsomite-NA---NA NA---Goethite?????????? Gypsum-NA-?-NA NA---

Halite----------Hematite?????????? Maghemite------?-?? Magnesite?????????? Magnetite?????????? Manganite----------Pyrolusite----------Rhodochrosite????-??-?? Scorodite----------Siderite?????????? Thenardite-NA---NA NA---Chungshing3,Chungshing4,Jiaoshi,Yilan,Wujie,and Juangwei are in the Lanyang plain;others are in Chianan plain

123

四大波谱基本概念以及解析综述

四大谱图基本原理及图谱解析 一.质谱 1.基本原理: 用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。 在质谱计的离子源中有机化合物的分子被离子化。丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。它还会发生一些化学键的断裂生成各种 碎片离子。带正电荷离子的运动轨迹:经整理可写成: 式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。 质谱的基本公式表明: (1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。这就是磁场的重要作用,即对不同质荷比离子的色散作用。 (2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。 (3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范

《葛底斯堡演讲》三个中文译本的对比分析

《葛底斯堡演讲》三个中文译本的对比分析 葛底斯堡演讲是林肯于19世纪发表的一次演讲,该演讲总长度约3分钟。然而该演讲结构严谨,富有浓郁的感染力和号召力,即便历经两个世纪仍为人们津津乐道,成为美国历史上最有传奇色彩和最富有影响力的演讲之一。本文通过对《葛底斯堡演讲》的三个译本进行比较分析,从而更进一步加深对该演讲的理解。 标签:葛底斯堡演讲,翻译对比分析 葛底斯堡演讲是美国历史上最为人们所熟知的演讲之一。1863年11月19日下午,林肯在葛底斯堡国家烈士公墓的落成仪式上发表献词。该公墓是用以掩埋并缅怀4个半月前在葛底斯堡战役中牺牲的烈士。 林肯是当天的第二位演讲者,经过废寝忘食地精心准备,该演讲语言庄严凝练,内容激昂奋进。在不足三分钟的演讲里,林肯通过引用了美国独立宣言中所倡导的人权平等,赋予了美国内战全新的内涵,内战并不仅是为了盟军而战,更是为了“自由的新生(anewbirthoffreedom)”而战,并号召人们不要让鲜血白流,要继续逝者未竞的事业。林肯的《葛底斯堡演讲》成功地征服了人们,历经多年仍被推崇为举世闻名的演说典范。 一、葛底斯堡演说的创作背景 1.葛底斯堡演说的创作背景 1863年7月1日葛底斯堡战役打响了。战火持续了三天,战况无比惨烈,16万多名士兵在该战役中失去了生命。这场战役后来成为了美国南北战争的一个转折点。而对于这个位于宾夕法尼亚州,人口仅2400人的葛底斯堡小镇,这场战争也带来了巨大的影响——战争遗留下来的士兵尸体多达7500具,战马的尸体几千具,在7月闷热潮湿的空气里,腐化在迅速的蔓延。 能让逝者尽快入土为安,成为该小镇几千户居民的当务之急。小镇本打算购买一片土地用以兴建公墓掩埋战死的士兵,然后再向家属索要丧葬费。然而当地一位富有的律师威尔斯(DavidWills)提出了反对意见,并立即写信给宾夕法尼亚州的州长,提议由他本人出资资助该公墓的兴建,该请求获得了批准。 威尔斯本打算在10月23日邀请当时哈佛大学的校长爱德华(EdwardEverett)来发表献词。爱德华是当时一名享有盛誉的著名演讲者。爱德华回信告知威尔斯,说他无法在那么短的时间之内准备好演讲,并要求延期。因此,威尔斯便将公墓落成仪式延期至该年的11月19日。 相比较威尔斯对爱德华的盛情邀请,林肯接到的邀请显然就怠慢很多了。首先,林肯是在公墓落成仪式前17天才收到邀请。根据十九世纪的标准,仅提前17天才邀请总统参加某一项活动是极其仓促的。而威尔斯的邀请信也充满了怠慢,

四大图谱综合解析

2013/12/2四大图谱综合解析[解] 从分子式CHO,求得不饱和度为零,故未知物应为512饱和脂肪族化合物。 1 某未知物分子式为CHO,它的质谱、红外光谱以及核磁共振谱如图,512未知物的红外光谱是在CCl溶液中测定的,样品的CCl稀溶液它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。44-1的红外光谱在3640cm处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在3360cm-1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子中存在着羟基。未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。质谱中从分子离子峰失去质量31(-CHOH)部分而形成基2峰m/e57的事实为上述看法提供了证据,因此,未知物的结构CH是3CCl稀溶液的红外光谱, CCl浓溶液44 CHOH C HC在3360cm-1处有1宽峰23 CH3 2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的根据这一结构式,未知物质谱中的主要碎片离子得到了如下紫外吸收光谱在210nm以上没有吸收,确定此未知物。解释。CH CH3+3.+ +C CH HCOH CHOH C HC3223 m/e31CH CH33 m/e88m/e57-2H -CH-H-CH33m/e29 CH m/e73CHC23+ m/e41 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应从分子量减去这一部分,剩下的质量数是44,仅足以组为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未成1个最简单的叔胺基。知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、CH3N酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存CH3在。红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 的甲基。因此,未知物的结构为:-1cm处的吸收带则进一步指出未知物可能是伯醇乙酸酯。O核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来CH3N看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子CHCHCHOC223CH(CHC=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重33峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子相连的亚甲-CH-CH,其中去屏蔽较大的亚甲基与酯基上的氧原子22的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个相连。碎片为至此,可知未知物具有下述的部分结构:CHO3NCH2CHCHCHOCCH32231 2013/12/23.某未知物CH的UV、IR、1H NMR、MS谱图及13C NMR数据如下,推[解] 1. 从分子式CH,计算不饱和度Ω=4;11161116导未知物结构。 2. 结构式推导未知物碳谱数据UV:240~275 nm 吸收带具有精细结构,表明化合物为芳烃;序号δc序号δc碳原子碳原子IR ::695、740 cm-1 表明分子中含有单取代苯环;(ppm)个数(ppm)个数MS :m/z 148为分子离子峰,其合理丢失一个碎片,得到m/z 91的苄基离子;1143.01632.01 313C NMR:在(40~10)ppm 的高场区有5个sp杂化碳原子;2128.52731.51 1H NMR:积分高度比表明分子中有1个CH和4个-CH-,其中(1.4~1.2)3128.02822.5132 ppm为2个CH的重叠峰;4125.51910.012因此,此化合物应含有一个苯环和一个CH的烷基。511536.01 1H NMR 谱中各峰裂分情况分析,取代基为正戊基,即化合物的结构为:23

NMR,VU,IR,MS四大图谱解析解析

13C-NMR谱图解析 13C-NMR谱图解析流程 1.分于式的确定 2.由宽带去偶语的谱线数L与分子式中破原子数m比较,判断分子的对称性. 若L=m,每一个碳原子的化学位移都不相同,表示分子没有对称性;若L

基团类型Qc/ppm 烷0-60 炔60-90 烯,芳香环90-160 羰基160 4.组合可能的结构式 在谱线归属明确的基础上,列出所有的结构单元,并合理地组合成一个或几个可能的工作结构。 5.确定结构式 用全部光谱材料和化学位移经验计算公式验证并确定惟一的或

可能性最大的结构式,或与标准谱图和数据表进行核对。经常使用的标准谱图和数据表有: 经验计算参数 1.烷烃及其衍生物的化学位移 一般烷烃灸值可用Lindeman-Adams经验公式近似地计算: ∑ Qc5.2 =nA - + 式中:一2.5为甲烷碳的化学位移九值;A为附加位移参数,列于下表,为具有某同一附加参数的碳原子数。 表2 注:1(3).1(4)为分别与三级碳、四级碳相连的一级碳;2(3)为与三级碳相连的二级碳,依此类推。 取代烷烃的Qc为烷烃的取代基效应位移参数的加和。表4一6给出各种取代基的位移参数

四大图谱综合解析

2013/12/2
四大图谱综合解析
1 某未知物分子式为C5 H12 O,它的质谱、红外光谱以及核磁共振谱如图,
它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。
CCl4稀溶液的红外光谱, CCl4浓溶液 在3360cm-1处有1宽峰
[解] 从分子式C5H12O,求得不饱和度为零,故未知物应为 饱和脂肪族化合物。 未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液 的红外光谱在3640cm-1处有 1尖峰,这是游离 O H基的特征吸收 峰。样品的CCl4浓溶液在 3360cm-1处有 1宽峰,但当溶液稀释 后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子 中存在着羟基。 未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可 看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值 相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特 丁基和羟基之间。 质谱中从分子离子峰失去质量31(- CH2 OH)部分而形成基 峰m/e57的事实为上述看法提供了证据,因此,未知物的结构 CH3 是
H3C
C
CH3
CH2OH
根据这一结构式,未知物质谱中的主要碎片离子得到了如下 解释。
CH 3
2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的 紫外吸收光谱在210nm以上没有吸收,确定此未知物。
CH2
+ OH m/e31 -2H
+ . CH2OH
H3C
CH3
H3C
C
CH 3
C+
CH3
m/e88 -CH3 m/e29 m/e73
m/e57 -CH3 -H CH 3 C + CH 2
m/e41
[解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应 为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未 知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、 酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存 在。 红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型 的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 cm-1处的吸收带则进一步指出未知物可能是伯醇乙酸酯。 核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来 看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子 (CH3C=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重 峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个 相连的亚甲-CH2-CH2,其中去屏蔽较大的亚甲基与酯基上的氧原子 相连。 至此,可知未知物具有下述的部分结构:
O CH 2 CH 2 O C CH 3
从分子量减去这一部分,剩下的质量数是 44,仅足以组 成1个最简单的叔胺基。
CH 3 CH3 N
正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上 的甲基。因此,未知物的结构为:
CH3 CH3 O N CH2 CH2 O C CH3
此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子 的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个 碎片为
CH3 CH3 N CH 2
1

译文对比分析

话说宝玉在林黛玉房中说"耗子精",宝钗撞来,讽刺宝玉元宵不知"绿蜡"之典,三人正在房中互相讥刺取笑。 杨宪益:Pao-yu,as we saw, was in Tai-yu?s room telling her the story about the rat spirits when Pao-chai burst in and teased him for forgetting the “green wax” allusion on the night of the Feast of Lanterns. 霍克斯: We have shown how Bao-yu was in Dai-yu?s room telling her the story of the magic mice; how Bao-Chai burst in on them and twitted Bao-yu with his failure to remember the …green wax? allusion on the night of the Lantern Festival; and how the three of them sat teasing each other with good-humored banter. 对比分析:杨宪益和霍克斯在翻译“耗子精”采用来了不同的处理方法,前者使用了异化”rat spirits”,后者用的是归化法”magic mice”,使用归化法更受英美读者的亲乃。但是二者同时采用了增译法,增添了the story,原文并没有。在翻译“宝玉不知绿烛之典”的“不知”,英文1用的是“forgetting”,而译文2用的是“with failure to ”,显然译文2更符合英美的表达习惯。 那宝玉正恐黛玉饭后贪眠,一时存了食,或夜间走了困,皆非保养身体之法。幸而宝钗走来,大家谈笑,那林黛玉方不欲睡,自己才放了心。 杨宪益:Pao-yu felt relieved as they laughed and made fun of each other, for he had feared that sleeping after lunch might give Tai-yu indigestion or insomnia that night, and so injure her health. Luckily Pao-chai?s arrival and the lively conversation that followed it had woken Tai-yu up. 霍克斯: Bao-yu had been afraid that by sleeping after her meal Dai-yu would give herself indigestion or suffer from insomnia through being insufficiently tired when she went to bed at night, but Bao-chai?s arrival and the lively conversation that followed it banished all Dai-yu?s desire to sleep and enabled him to lay aside his anxiety on her behalf. 对比分析:译文一对原文语序进行了调整,先说了“放心”,再说“担心”,但并不如不调整顺序的逻辑强。译文二只是用了一个“but”就把原文意思分层了两层,逻辑更加清晰,符合西方人注重逻辑的习惯。原文中的“谈笑”是动词,而两个译文版本都是译的“the lively conversation”,是名词,体现了汉语重动态,英文重静态的特点。 忽听他房中嚷起来,大家侧耳听了一听,林黛玉先笑道:"这是你妈妈和袭人叫嚷呢。那袭人也罢了,你妈妈再要认真排场她,可见老背晦了。" 杨宪益:Just then, a commotion broke out in Pao-yu?s apartments and three of th em pricked up their ears. “It?s your nanny scolding Hai-jen,” announced Tai-yu. “There?s nothing wrong with Hai-jen, yet your nanny is for ever nagging at her. Old age has befuddled her.”

《傲慢与偏见》译文对比分析

《傲慢与偏见》(节选一) Pride and Prejudice by Jane Austen (An Except from Chapter One) 译文对比分析 节选文章背景:小乡绅贝内特有五个待字闺中的千金,贝内特太太整天操心着为女儿物色称心如意的丈夫。新来的邻居宾利(Bingley)是个有钱的单身汉,他立即成了贝内特太太追猎的目标。 1.It’s a truth u niversally acknowledged, that a single man in possession of a good fortune, must be in want of a wife. 译文一:凡是有钱的单身汉,总想娶位太太,这已经成了一条举世公认的道理。译文二:有钱的单身汉总要娶位太太,这是一条举世公认的真理。 2.However little known the feelings or views of such a man may be on his first entering a neighborhood, this truth is so well fixed in the minds of the surrounding families that he is considered as the rightful property of some one or other of their daughters. 译文一:这样的单身汉,每逢新搬到一个地方,四邻八舍虽然完全不了解他的性情如何,见解如何,可是,既然这样的一条真理早已在人们心中根深蒂固,因此人们总是把他看作是自己某一个女儿理所应得的一笔财产。 译文二:这条真理还真够深入人心的,每逢这样的单身汉新搬到一个地方,四邻八舍的人家尽管对他的性情见识一无所知,却把他视为某一个女儿的合法财产。 3.”My dear Mr. benne” said his lady to him one day ,”have you heard that nether field park is let at last?” 译文一:有一天班纳特太太对她的丈夫说:“我的好老爷,尼日斐花园终于租出去了,你听说过没有?” 译文二:“亲爱的贝特先生”一天,贝纳特太太对先生说:“你有没有听说内瑟费尔德庄园终于租出去了:” 4.Mr. Bennet replied that he had not. 译文一:纳特先生回答道,他没有听说过。 译文二:纳特先生回答道,没有听说过。 5.”But it is,” returned she:” for Mrs. long has just been here, and she t old me all about it.” 译文一:“的确租出去了,”她说,“朗格太太刚刚上这来过,她把这件事情的底细,一五一十地都告诉了我。” 译文二:“的确租出去了,”太太说道。“朗太太刚刚来过,她把这事一五一十地全告诉我了。”

四大谱图综合解析

3 待鉴定的化合物(I)和(II)它们的分子式均为C8H12O4。它们的质谱、红外光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I)λmax223nm,δ4100;(II)λmax219nm,δ2300,试确定这两个化合物。 未之物(I)的质谱 未之物(II)质谱

化合物(I)的红外光谱 化合物(II)的红外光谱 化合物(I)的核磁共振谱

化合物(II)的核磁共振谱 [解] 由于未知物(I)和(II)的分子式均为C8H12O4,所以它们的不饱和度也都是3,因此它们均不含有苯环。(I)和(II)的红外光谱呈现烯烃特征吸收,未知物(I):3080cm-1,(υ=C-H),1650cm-1(υ=C-C) 未知物(II)::3060cm-1 (υ=C-H),1645cm-1(υ=C-C) 与此同时两者的红外光谱在1730cm-1以及1150~1300 cm-1之间均具有很强的吸收带,说明(I)和(II)的分子中均具有酯基; (I)的核磁共振谱在δ6.8处有1单峰,(II)在δ6.2处也有1单峰,它们的积分值均相当2个质子。显然,它们都是受到去屏蔽作用影响的等同的烯烃质子。另外,(I)和(II )在δ4. 2处的四重峰以及在δ1.25处的三重峰,此两峰的总积分值均相当10个质子,可解释为是2个连到酯基上的乙基。因此(I)和(II)分子中均存在2个酯基。这一点,与它们分子式中都含有4个氧原子的事实一致。 几何异构体顺丁烯二酸二乙酯(马来酸二乙酯)和反丁烯二酸二乙酯(富马酸二乙酯)与上述分析结果一致。现在需要确定化合物([)和(II)分别相当于其中的哪一个。 COOEt COOEt COOEt EtOOC 顺丁烯二酸二乙酯反丁烯二酸二乙酯 利用紫外吸收光谱所提供的信息,上述问题可以得到完满解决。由于富马酸二乙酯分子的共平面性很好,在立体化学上它属于反式结构。而在顺丁烯二酸二乙酯中,由于2个乙酯基在空间的相互作用,因而降低了分子的共平面性,使共轭作用受到影响,从而使紫外吸收波长变短。

《乡愁》两个英译本的对比分析

《乡愁》两个英译本的对比分析 曹菊玲 (川外2013级翻译硕士教学1班文学翻译批评与鉴赏学期课程论文) 摘要:余光中先生的《乡愁》是一首广为人知的诗歌,曾被众多学者翻译成英文,本文将对赵俊华译本和杨钟琰译本进行对比分析,主要从原作的分析、译文的准确性、译文风格以及对原文意象的把握入手进行赏析,指出两译本的不足和精彩之处。 关键词:《乡愁》;原诗的分析;准确性;风格;意象的把握 1.原诗的分析 作者余光中出生于大陆,抗战爆发后在多地颠沛流离,最后22岁时移居台湾。20多年都未回到大陆,作者思乡情切,于上世纪70年代创作了这首脍炙人口的诗歌,但是当时大陆与台湾关系正处于紧张时期,思而不得的痛苦与惆怅包含于整首诗中。 全诗为四节诗,节与节之间完全对称,四句一节,共十六句,节奏感、韵律感很强,读起来朗朗上口。而且这首诗语言简洁,朴实无华,但是却表达了深刻的内涵。从整体上看,作者采取层层递进的方式,以时空的隔离和变化来推进情感的表达,最后一句对大陆的思念,一下子由个人哀愁扩大到国家分裂之愁,因而带有历史的厚重感。 【原诗】 乡愁 余光中 小时候/乡愁是一枚小小的邮票/我在这头/母亲在那头 长大后/乡愁是一张窄窄的船票/我在这头/新娘在那头 后来啊/乡愁是一方矮矮的坟墓/我在外头/母亲在里头 而现在/乡愁是一湾浅浅的海峡/我在这头/大陆在那头 【译诗】 (1) 赵俊华译 Homesick As a boy, I was homesick for a tiny stamp, —I was here, Mom lived alone over there. When grow up, I was homesick for a small ship ticket. —I was here,

落花生两英译本的对比分析

《落花生》两英译本的对比分析 【摘要】本文对张培基先生和刘士聪先生对《落花生》的英译本从接受美学的角度进行了对比分析。通过分析原文的写作目的,风格和语言特点从而对翻译的分析打下良好基础。举例对翻译的段落进行了对比分析,反映了译者的期待视野影响翻译目的,职业经历和翻译的基本观点影响期待视野。这一点对于文本不确定性和语义空白点的具体化十分重要。 【关键词】《落花生》;张培基;刘士聪;接受美学;翻译对比 一、原文的介绍 《落花生》是中国著名作家许地山创作的一篇具有深远意义的散文。他回忆了童年时发生的一件小事。父亲通过一件关于花生的小事讲述了生活哲理。 原文具有以下几个功能: 1、信息功能:它描述了童年发生的一件事及花生的特点和用途。 2、审美功能:文章的语言简单朴素清新自然。语言特点,内容和风格相得益彰,形成了浓厚的艺术吸引力。 3、表达功能:这篇散文表达了作者崇高的思想,即便是在动荡浑浊的旧时代,还应保持个人节操。 4、祈使功能:虽然描写的是不起眼的花生,却在字里行间向大家传递了人生哲学。那就是“那么,人要做有用的人,不要做伟大、体面的人了。” 二、两英译本对比分析 张先生和刘先生在翻译时都保留了原文的风格和特点。但他们的翻译风格还是有些不同的。 他们的期待视野影响其翻译目的。他们的职业经历影响他们翻译期待视野。张先生和刘先生都曾在出版社做过编辑,都潜心研究翻译事业。但是不同的是刘先生还有翻译教学的经历。和张先生相比,他更算的上是一个翻译教育学者。他投身于翻译教学和其他英语相关的学科研究中。从以上可以推断出,可能刘先生在翻译过程中遵循的规则更加严格,并且会更加的客观,也就是说学术的客观性会比较多,在翻译中自己主观理解的加入可能较少。这里有一个例子。原文:“那晚上的天色不大好,…”刘先生译文:“The weather was not very good that night but,….”张先生译文:“It looked like rain that evening,….”而“天色不太好”并不代表就是要下雨了。虽然对于这一句的翻译并不影响整体,但是作为一个翻译来说,并不应该加入过多的理所当然的想象。 除了翻译家的职业经历会影响他们的翻译表现和态度,他们对于翻译的基本看法,也会影响翻译工作。刘先生认为翻译的最高境界是对原文韵味的再现。译作“韵味”就是原作的艺术内涵通过译文准确而富有文采的语言表达时所蕴含的艺术感染力,这能引起读者的美感共鸣。除此之外,刘先生还强调要把译文作为独立的文本来看待。具体说来就是对译文美感和韵味的展现虽是从词句入手的,同时还应注意译文包括内容和风格的整体效果。当两者有了矛盾,要变通前者来适应后者。从以上不难看出,刘先生在翻译时非常注重两方面,一是对原文韵味的保留,也就是原文内容中所蕴含的艺术吸引力的保留,另一方面就是对翻译整体效果的追求要超越对词语句子的效果的追求。

译文对比评析从哪些方面

译文对比评析从哪些方面 匆匆英译文对比赏析 (1)匆匆 译文1:Transient Days 译文2:Rush (2)燕子去了,有再来的时候;杨柳枯了,有再青的时候;桃花谢了,有再开的时候。 译文1:If swallows go away, they will come back again. If willows wither, they will turn green again. If peach blossoms fade, they will flower again. 译文2:Swallows may have gone, but there is a time to return; willow trees may have died back, but there is a time of regreening; peach blossoms may have fallen, but they will bloom again.

(3)但是,聪明的,你告诉我,我们的日子为什么一去不复返呢?——是有人偷了他们罢:那是谁?又藏在何处呢?是他们自己逃走了罢:现在又到了哪里呢? 译文1:But, tell me, you the wise, why should our days go by never to return? Perhaps they have been stolen by someone. But who could it be and where could he hide them? Perhaps they have just run away by themselves. But where could they be at the present moment? 译文2:Now, you the wise, tell me, why should our days leave us, never to return? ----If they had been stolen by someone, who could it be? Where could he hide them? If they had made the escape themselves, then where could they stay at the moment? (4)我不知道他们给了我多少日子;但我的手确乎是渐渐空虚了。译文1:I don’t know how many days I am entitled to

对《匆匆》的三个译本对比分析

对《匆匆》的三个译本对比分析 翻译大家常说好的翻译作品要忠于原文,完全了解原文的写作背景,作者的写作风格;并把握理解作者表达的思想感情,挖掘作者原作中的内涵,捕捉原作里的神韵之美,以及丰富的感情。为了对比散文《匆匆》的三个不同译本我他特意查了一下《匆匆》的写作背景,然后读了几遍原文,深深地体味了一下朱自清的写作情感。顿时,感受到了朱自清对时间流逝的无奈焦急和惋惜之情。再读《匆匆》,似乎在听一首好听灵动的音乐,那朴素平淡的抒情气氛,优美的了律动美,委婉流畅悠远的的音律美油然而生。然后再欣赏三个不同的译本,我或多或少感受到了三个译本各自不同的特点。 乍眼一看,我特别喜欢张培基先生的译本,我觉得他译的真好。因为我看他的译文时,感受到了原作丰富的思想感情,浓厚的感染力,以及原文的美和意境。但是经过仔细品味,我发现其实三个译本各有千秋,不能单单说谁译的好与不好,只能说谁翻译的比较准确,更能符合原文之美,原文之意,原文之味。 以下是我对三个译本的对比分析欣赏:(朱纯深,张培基,张梦井先生的译本) 对比一:题目。 朱纯深译文:Rush 张培基译文:Transient Days 张梦井译文:Days Gone By Rush的意思是快速移动;急促;有仓促之意。我认为时间虽然短暂,但也不至于仓促过往,rush 没有美感,也不符合原文所表达匆匆之意,不太妥帖。 Transien t的意思是转瞬即逝的,短暂的(continuing for only a short time )把时间匆匆流逝,时间短暂之意表达的淋漓尽致,似乎让人觉得时间犹如过往云烟,捉不住,摸不着,与原文匆匆之意相符合,且具有美感。 Go b y的意思是流逝,过去(to past)多指时间的推移,不能表达匆匆之意。 综上所述,Transient Days更为贴切,而其他两个就欠妥帖。 对比二: 朱纯深:Swallows may have gone, but there is a time to return; willow trees may have died back, but there is a time of re-greening; peach blossoms may have fallen, but they will bloom again. 张培基:If swallows go away, they will come back again. If willows wither, they will turn green again. If peach blossoms fade, they will flower again.

对比功能分析与翻译

对比功能分析与翻译 摘要:本文首先简要讨论了对比功能分析与翻译之间的密切联系。然后以一个实例指出,实际翻译过程是一个决策过程,对比功能分析可以为分析在翻译中可供选择的各种语言选项及其形式、语义特征和篇章、语用使用条件提供一个总体描述框架,因而对指导具体翻译和分析译文所作选择的得失具有很大的实用价值。 1. 引言 对比语言学的核心问题是研究方法问题。虽然从事语言对比的研究者很多,但是思考和提出系统的、专门用于语言对比的理论模式和框架的研究者却屈指可数。波兰格但斯克大学的Krzeszowski教授是其中的一位,而芬兰赫尔辛基大学的Chesterman教授是另一位这样的学者。如果说前者(1979, 1980)提出的“对比生成语法”模式(简介见许余龙1992: 180 -181; 2002: 163 -164)主要适用于句法结构对比的话,那么后者(1998)提出的“对比功能分析”模式的适用范围则要广泛得多,不仅可以用于词汇、形态、句法、语义、语用对比,也可以用于话语分析、文体、修辞和社会语言学对比(关于其研究方法以及在英汉对比中的应用,见许余龙2005)。而且,由于Chesterman是一位多语交际和翻译研究专家,出版过多部语言学和翻译研究方面的专著(如Chesterman, 1997; Chesterman & Wagner, 2002; Williams & Chesterman, 2002/2004),因此他更加强调对比研究与翻译之间的密切联系。本文将从翻译和对比功能分析的性质和特点出发,讨论两者之间的密切联系,并以一个实例来说明对比功能分析对翻译的指导意义。 2. 对比功能分析与翻译之间的密切联系 2. 1翻译的性质和特点 著名捷克学者Levy (1967/1989: 38)指出,“从目的论的角度来说,翻译是一个交际过程:翻译的目的是将原文表达的知识信息传递给外国读者。而从译者在进行实际翻译工作时的任何一刻来看,翻译是一个决策过程:一系列的情景需要译者在一组(通常可明确定义的)选项中作出某种选择”。 翻译的这两个基本性质和特点在以后的一些研究中,特别是功能主义取向的研究中(如见Hatim, 1997/2001; Hatim &Mason, 1997; Nord, 1997/2001),得到了进一步深入的探讨。也正是翻译的这两个基本性质和特点,使得语言文化之间的对比分析和翻译成为两种具有密切联系的研究。正如Hatim (1997/ 2001: 1)所指出,“要知道对比语言学是如何运作的,一种有效的方法是通过翻译;而要了解翻译的过程,一种有趣的方法是看译者在处理篇章时作出什么样的选择。” 2. 2对比功能分析的性质和特点 所谓对比功能分析,广义而言是从功能主义的角度来进行对比分析的一种研究方法。这一对比分析模式的特点是从察觉到的两种(或多种)语言可表达的相似意义出发,致力于确定这种相似的意义在不同的语言中是如何表达的,不同表达方式的句法、语义、篇章、语用、语境的使用条件是什么,在什么条件下会优先选用哪种形式,等等。对比功能分析与翻译之间的密切联系表现为:两者都旨在确定哪种形式在什么样的使用条件下是表达某一意义的最佳形式。而两者之间的区别则在于:翻译的任务是要确定,在某一特定使用条件下的一种源语语言形式所表达的意义,在目标语中的最佳表达形式是什么;而对比功能分析则致力于探

阐释学视角下《茵梦湖》三个中译本对比研究分析

阐释学视角下《茵梦湖》三个中译本对比研究分析 随着翻译研究的不断深入,学者们从不同的角度,用不同的理论方法来探究与文学翻译相关的现象和问题。伽达默尔阐释学的三大哲学原则,即“理解的历史性”“视域融合”“效果历史”对文学翻译产生了很大影响。研究的文本来自德国著名诗意现实主义小说家特奥尔多·施笃姆的重要代表作品《茵梦湖》的三个中译本。通过对比分析郭沫若、巴金和杨武能三个中文译本,证明伽达默尔阐释学的三大哲学原则对文化翻译的指导价值和借鉴意义。 标签:阐释学三大哲学原则茵梦湖对比分析 一、引言 阐释学理论要追溯到“语言一历史传统”(Hohn,1998:91)这一翻译理念中,因为它自古希腊罗马时期就已经形成并被记录在Storig(1963)的选集中。它强调翻译活动的理解特点,并在文学翻译领域中体现得特别明显。阐释学翻译理论的基本假设之一是认识到两个文本之间没有等价关系。这被认为是语言翻译理论的第一次进步;另一方面,翻译也被理解为是一个决策过程,并确定译者的责任。对整部作品、作家以及写作动机理解的越多,对单一文本的理解就会越好。本文试图通过分析郭沫若、巴金和杨武能对德国中篇小说《茵梦湖》的三个不同译本,介绍伽达默尔诠释学的三个哲学原则及其对文学翻译的重要意义。 二、中篇小说《茵梦湖》以及伽达默尔的三大哲学阐释原则 (一)《茵梦湖》文本 《茵梦湖》是德国作家汉斯·台奥多尔·沃尔特森·施托姆创作的中篇小说,1849年首次出版问世,此后共出版30余次。通过这部小说的成功问世,施托姆在文学评论家和读者群中也迅速收获了知名小说家的美誉。这部中篇小说在19世纪下半叶仍然是他最著名的作品。小说源于一次回忆:一位名叫莱因哈德的老人在一个黑暗的小房间里思考了他年轻时的爱情;孩提时代,青梅竹马的伊丽莎白和他一起度过。为了外出求学,莱因哈德被迫离开了伊丽莎白。莱因哈德回来时,发现伊丽莎白变了。莱因哈德的学校朋友埃里克似乎对伊丽莎白表现出兴趣。莱因哈德再次离开,后来他通过母亲的书信获悉,伊丽莎白與埃里克已经结婚了。几年后,莱因哈德受邀来到茵梦湖畔探望这对已经拥有独立庄园的埃里希夫妇,但再次的重逢变得无法忍受,他决定永远离开伊丽莎白。 故事的背景发生在德国南部。这部小说在国内外都非常受读者欢迎,所以有关这部作品的研究也有很多。国内对《茵梦湖》的研究主要集中在以下两点:用一些文学理论来分析这部作品;借用不同的翻译理论来探究这部作品的中文译本。《茵梦湖》在国内比较受欢迎的译本有三个,本文基于郭沫若、巴金和杨武能的三种译本进行研究。

四大谱图综合解析6

11 某一未知化合物的质谱、红外光谱和核磁共振谱见图2-16. 2-1'l和2 18。也测定了它的紫外光谱数据:在200nm以上没有吸收。试确定该化合物的结构。 质谱数据 [解] 根据M+1=7.8, M+2=0.5,从Beynon表找出有关式子,然后排除含有奇数个氮原子的式子(因为未知物的分子量为偶数),剩余的列出: C5H14N2 72

和C 6H 14O 也较为接近。考虑到未知物的紫外光谱在200 nm 以上没有吸收,核磁共振谱在芳环特征吸收区域中也没有吸收峰等事实,说明未知物是脂肪族化合物。根据这一点,上述三个式子只有C 6H 14O 可以作为未知物的分子式。从分子式可知该化合物不饱和度为零。 在未知物的红外光谱中,没有羰基或羟基的特征吸收,但分子式中又含有氧原子,故未知物为醚的可能性很大。在1130cm -1~ 1110 cm -1之间有一个带有裂分的吸收带,可以认为是C —O —C 的伸缩振动吸收。 另一方面,核磁共振谱中除了在δ1. 15处的双峰和δ3.75处的对称七重峰(它们的积分比为6:1)以外没有其它峰,这非常明确地指出了未知物存在着2个对称的异丙基。对于这一点,红外光谱中的1380 cm -1和1370 cm -1处的双峰,提供了另一个证据。 根据上述分析得到的信息,未知物的结构式可立即确定为: CH H 3C H 3C O CH CH 3CH 3 按照这个结构式,未知物质谱中的主要碎片离子可以得到满意的解释: CH H 3C H 3C O CH 3 CH 3 +· C H H 3C CH 3 O C H CH 3 ++ 基峰 m/z 45 CH H 3C H 3C CH H 3C H 3C O H C CH 3 +++O CH CH 3 CH 3 ·m/z 43 m/z 87 +·CH 3 CH 3CH=OH 12 某一未知化合物,其分子式为C 10H 10O 。已测定它的紫外吸收光谱、红外光谱(KBr 压片)以及核磁共振谱,见图确定该化合物结构。

对比功能分析与翻译

山东外语教学 Shandong Foreign Language Teaching Journal 2006年第4期(总第113期)  对比功能分析与翻译 许余龙 (上海外国语大学语言文学研究所,上海 200083) 收稿时间:2006206210 作者简介:许余龙(1950-),博士,教授,博士生导师。研究方向:对比语言学,英汉对比,篇章回指。 摘要:本文首先简要讨论了对比功能分析与翻译之间的密切联系。然后以一个实例指出,实际翻译过程是一个决策过程,对比功能分析可以为分析在翻译中可供选择的各种语言选项及其形式、语义特征和篇章、语用使用条件提供一个总体描述框架,因而对指导具体翻译和分析译文所作选择的得失具有很大的实用价值。 关键词:功能主义;对比分析;对比功能分析;翻译 中图分类号:H0 文献标识码:A 文章编号:100222643(2006)04200032061.0引言 对比语言学的核心问题是研究方法问题虽然从事语言对比的研究者很多,但是思考和提出系统的、专门用于语言对比的理论模式和框架的研究者却屈指可数。波兰格但斯克大学的K rzeszowski 教授是其中的一位,而芬兰赫尔辛基大学的Chesterman 教授是另一位这样的学者。如果说前者(1979,1980)提出的“对比生成语法”模式(简介见许余龙1992:180-181;2002:163-164)主要适用于句法结 构对比的话,那么后者(1998)提出的“对比功能分析”模式的适用范围则要广泛得多,不仅可以用于词汇、形态、句法、语义、语用对比,也可以用于话语分析、文体、修辞和社会语言学对比(关于其研究方法以及在英汉对比中的应用,见许余龙2005)。而且,由于Chesterman 是一位多语交际和翻译研究专家,出版过多部语言学和翻译研究方面的专著(如Ches 2terman ,1997;Chesterman &Wagner ,2002;Williams &Chesterman ,2002Π2004),因此他更加强调对比研究与 翻译之间的密切联系。本文将从翻译和对比功能分析的性质和特点出发,讨论两者之间的密切联系,并以一个实例来说明对比功能分析对翻译的指导意义。 2.0对比功能分析与翻译之间的密切联系2.1翻译的性质和特点 著名捷克学者Levy (1967Π1989:38)指出,“从目的论的角度来说,翻译是一个交际过程:翻译的目的是将原文表达的知识信息传递给外国读者。而从译者在进行实际翻译工作时的任何一刻来看,翻译是一个决策过程:一系列的情景需要译者在一组(通常可明确定义的)选项中作出某种选择”。 翻译的这两个基本性质和特点在以后的一些研究中,特别是功能主义取向的研究中(如见Hatim ,19972001;Hatim &Mas on ,1997;Nord ,1997Π2001),得 到了进一步深入的探讨。也正是翻译的这两个基本性质和特点,使得语言文化之间的对比分析和翻译成为两种具有密切联系的研究。正如Hatim (1997Π2001:1)所指出,“要知道对比语言学是如何运作的, 一种有效的方法是通过翻译;而要了解翻译的过程,一种有趣的方法是看译者在处理篇章时作出什么样的选择。” 2.2对比功能分析的性质和特点 所谓对比功能分析,广义而言是从功能主义的角度来进行对比分析的一种研究方法。这一对比分析模式的特点是从察觉到的两种(或多种)语言可表达的相似意义出发,致力于确定这种相似的意义在不同的语言中是如何表达的,不同表达方式的句法、语义、篇章、语用、语境的使用条件是什么,在什么条件下会优先选用哪种形式,等等。对比功能分析与 3

相关主题
文本预览
相关文档 最新文档