当前位置:文档之家› 实验五 解线性方程组的直接方法

实验五 解线性方程组的直接方法

实验五  解线性方程组的直接方法
实验五  解线性方程组的直接方法

实验五 解线性方程组的直接方法

实验5.1 (主元的选取与算法的稳定性)

问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。

实验内容:考虑线性方程组

n n n R b R A b Ax ∈∈=?,,

编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。

实验要求:

(1)取矩阵???????

?????????=????????????????=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。取n=10计算矩阵的条件数。让程序自动选取主元,结果如何?

(2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。

(3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。

(4)将上述矩阵A 中的主元改为0.00006再重新作一次数值实验看看。

(5)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。重复上述实验,观察记录并分析实验结果。

实验5.2(线性代数方程组的性态与条件数的估计)

问题提出:理论上,线性代数方程组b Ax =的摄动满足

???

? ???+??-≤?-b b A A A A A c o n d x x 11)(

矩阵的条件数确实是对矩阵病态性的刻画,但在实际应用中直接计算它显然不现实,因为计算1-A 通常要比求解方程b Ax =还困难。

实验内容:MATLAB 中提供有函数“condest ”可以用来估计矩阵的条件数,它给出的是按1-范数的条件数。首先构造非奇异矩阵A 和右端,使得方程是可以精确求解的。再人为地引进系数矩阵和右端的摄动b A ??和,使得b A ??和充

分小。

实验要求:

(1)假设方程Ax=b 的解为x ,求解方程b b x

A A ?+=?+?)(,以1-范数,给出x x x

x x

-=??的计算结果。

(2)选择一系列维数递增的矩阵(可以是随机生成的),比较函数“condest ”所需机器时间的差别.考虑若干逆是已知的矩阵,借助函数“eig ”很容易给出cond 2(A)的数值。将它与函数“cond(A,2)”所得到的结果进行比较。

(3)利用“condest ”给出矩阵A 条件数的估计,针对(1)中的结果给出x

x

?的理论估计,并将它与(1)给出的计算结果进行比较,分析所得结果。注意,如果给出了cond(A)和A 的估计,马上就可以给出1-A 的估计。

(4)估计著名的Hilbert 矩阵的条件数。

n j i j i h h H j i n n j i ,,2,1,,11,)(,, =-+==?

思考题一:(Vadermonde 矩阵)设

????

???????

?????????????=????????????????=∑∑∑∑====n i i n n i i n i i n i i n n n n n n n x x x x b x x x x x x x x x x x x A 00201002222212110200111

1

,, 其中,n k k x k ,,1,0,1.01 =+=,

(1)对n=2,5,8,计算A 的条件数;随n 增大,矩阵性态如何变化?

(2)对n=5,解方程组Ax=b ;设A 的最后一个元素有扰动10-4,再求解Ax=b

(3)计算(2)扰动相对误差与解的相对偏差,分析它们与条件数的关系。

(4)你能由此解释为什么不用插值函数存在定理直接求插值函数而要用拉格朗日或牛顿插值法的原因吗?

数学实验5矩阵运算和解线性方程组

实验5 矩阵运算和解线性方程组一、实验题目 用Mathematica软件进行矩阵运算和解线性方程组。 二、预期目标 利用Mathematica进行: 1. 矩阵运算. 2. 矩阵的行列式与逆. 3. 矩阵的秩. 4. 线性方程组求解. 三、常用命令 方阵A的行列式: 给出方阵A的逆矩阵: 矩阵A的转置矩阵: 用初等行变换将矩阵A化成的行最简阶梯形矩阵: 将矩阵A在工作区中以矩阵格式输出: 求矩阵方程XA B,AX B ==的解: 求线性方程组b AX=的解: 求代数方程的解: 四、练习内容 1.计算: (1) 1 2 3 4 2 1 4 10 1 0 2 1 10 1 2 0 2 1 1 2 50 2 3 2???? ? ?-+- ? ? ? ?--???? 命令:

结果: (2) 1 0 5 1 0 3 1 2 10 2 0 1 5 0 3 1 0 1 0 1 0 2 0 3 0 ?? - ?? ? - ?? ? ? ? ? ? ?? ? ??? ?? 命令: 结果: 2.求矩阵 1 2 0 0 1 1 1 2 3 ?? ? ? ? - ?? 的秩。 命令: 结果: 3.判断下列矩阵是否可逆,如可逆,求其逆矩阵。 (1) 2 2 1 1 2 4 5 8 2 -?? ? - ? ??? 命令: 结果: (2) 1 2 3 4 2 3 1 2 1 1 1 1 1 0 2 6?? ? ? ? - ? --??命令: 结果:

(3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1?? ? -- ? ?-- ?-- ??命令: 结果: 4.设 1 1 1 1 1 3 2 1 0 4 3 2 1 1 1 1 2 5 X - ???? ? ? = ? ? ? ? ???? ,求X。 命令: 结果: 5.设 1 0 21 0 1 31 1 1 11 X ???? ? ? -= ? ? ? ? ???? ,求X。命令: 结果: 6.解线性方程组 1234 1234 1234 1234 224 4326 833412 33226 x x x x x x x x x x x x x x x x +-+= ? ?+-+= ? ? +-+= ? ?+--= ? 。 命令:结果:

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

数学实验“线性方程组的最速下降法与共轭梯度法解法”实验报告(内含matlab程序代码)

西京学院数学软件实验任务书

实验五实验报告 一、实验名称:最速下降法与共轭梯度法解线性方程组。 二、实验目的:进一步熟悉理解掌握最速下降法与共轭梯度法解法思路,提高matlab 编程能力。 三、实验要求:已知线性方程矩阵,应用最速下降与共轭梯度法在相关软件编程求解线性方程组的解。 四、实验原理: 1.最速下降法: 从某个初始点)0(X 出发,沿)(X f 在点)0(X 处的负梯度方向 )0()0()0()(AX b X f r -=-?= 求得)(X f 的极小值点)1(X , 即 )(min )0()0(0 r X f λλ+> 然后从)1(X 出发,重复上面的过程得到)2(X 。如此下去,得到序列{)(k X } )(...)()()()1()0(k X f X f X f >>> 可以证明,从任一初始点)0(X 出发, 用最速下降法所得到的序列{)(k X }均收敛于问题使X 最小化)(X f 的解,也就是方程组b AX =的解。其收敛速度取决于 1 1 λλλλ+-n n ,其中1λ ,n λ分别

为A 的最小,最大特征值。最速下降法迭代格式:给定初值)0(X , )(k X 按如下方法决定: ()) ()(1)(k )()()()(k ) ()(X ,,)(k k k k T k k T k k k k r X Ar r r r AX b X f r λλ+=> <><=-=-?=+ 2.共轭梯度法 其基本步骤是在点)(k X 处选取搜索方向)(k d , 使其与前一次的搜索方向)1(-k d 关于A 共轭,即 (1)()(1),0k k k d d Ad --<>= 然后从点)(k X 出发,沿方向)(k d 求得)(X f 的极小值点 )1(+k X , 即 )(min )() ()(0 )1(k d X f X f k k λλ+=>+ 如此下去, 得到序列{)(k X }。不难求得0,)1()(>=<-k k Ad d 的解为 ) () 1()1()()() () 1(,,k k k k k k k d Ad d d AX b X X > <>-<+=--+ 注意到)(k d 的选取不唯一,我们可取

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

实验5解线性方程组的迭代法

西华数学与计算机学院上机实践报告 课程名称:计算方法A 年级: 上机实践成绩: 指导教师:严常龙 姓名: 上机实践名称:解线性方程组的迭代法 学号: 上机实践日期: 上机实践编号:1 上机实践时间:16:00-17:40 一、目的 1.通过本实验加深对Jacobi 迭代法、Gauss-Seidel 迭代法、松弛迭代法的构造过程的理解; 2.能对上述三种迭代法提出正确的算法描述编程实现,进一步理解迭代法的改进过程; 二、内容与设计思想 自选线性方程组,编制一个程序,分别用Jacobi 迭代法、Gauss-Seidel 和松弛迭代法求解,比较三 种迭代法收敛速度的快慢。 三、使用环境 操作系统:Windows XP 软件环境:Microsoft Visual C++ 四、核心代码及调试过程 题目要求,求解下面的方程组,分别用Jacobi 迭代法、Gauss-Seidel 迭代法求解 ???????=+++=-++=+-+=+-+9 .369.57.34.05.16 .163.11.89.06.58.18.25.33.63.11.155.04.43.22.74321432143214321x x x x x x x x x x x x x x x x 1.Jacobi 迭代法 #include #include main() { int i,j,n=4,cj=0; float a[5][5],x[5],y[5],g[5],b[5][5],x1[5]; float max,sum=0.0; a[0][0]=7.2;a[0][1]=2.3;a[0][2]=-4.4;a[0][3]=0.5; a[1][0]=1.3;a[1][1]=6.3;a[1][2]=-3.5;a[1][3]=2.8; a[2][0]=5.6;a[2][1]=0.9;a[2][2]=8.1;a[2][3]=-1.3; a[3][0]=1.5;a[3][1]=0.4;a[3][2]=3.7;a[3][3]=5.9; y[0]=15.1;y[1]=1.8;y[2]=16.6;y[3]=39.6;

数值分析5-用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组

作业六:分别编写用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组Ax=B的标准程序,并求下列方程组的解。 可取初始向量 X(0) =(0,0,0)’; 迭代终止条件||x(k+1)-x(k)||<=10e-6 (1) = (2) = Jacobi迭代法: 流程图 开 始 判断b中的最大值 有没有比误差大 给x赋初值 进行迭代 求出x,弱到100次还没到,警告不收 结束

程序 clear;clc; A=[8,-1,1;2,10,01;1,1,-5]; b=[1;4;3]; e=1e-6; x0=[0;0;0]'; n=length(A); x=zeros(n,1); k=0; r=max(abs(b)); while r>e for i=1:n d=A(i,i); if abs(d)100 warning('不收敛'); end end x=x0;

程序结果(1)

(2)

Gauss-Seidel迭代法: 程序 clear;clc; %A=[8,-1,1;2,10,01;1,1,-5]; %b=[1;4;3]; A=[5,2,1;-1,4,2;2,-3,10]; b=[-12;20;3]; m=size(A); if m(1)~=m(2) error('矩阵A不是方阵'); end n=length(b); %初始化 N=0;%迭代次数 L=zeros(n);%分解A=D+L+U,D是对角阵,L是下三角阵,U是上三角阵U=zeros(n); D=zeros(n); G=zeros(n);%G=-inv(D+L)*U d=zeros(n,1);%d=inv(D+L)*b x=zeros(n,1); for i=1:n%初始化L和U for j=1:n if ij U(i,j)=A(i,j); end end end for i=1:n%初始化D D(i,i)=A(i,i); end G=-inv(D+L)*U;%初始化G d=(D+L)\b;%初始化d %迭代开始 x1=x; x2=G*x+d; while norm(x2-x1,inf)>10^(-6)

线性方程组的直接法

第二章线性方程组的直接法 在近代数学数值计算和工程应用中,求解线性方程组是重要的课题。例如,样条插值中形成的关系式,曲线拟合形成的法方程等,都落实到解一个元线性方程组,尤其是大型方程组的求解,即求线性方程组(2.1)的未知量的数值。 (2.1)其中ai j,bi为常数。上式可写成矩阵形式Ax = b,即 (2.2) 其中,为系数矩阵,为解向量,为常数向量。当detA=D0时,由线性代数中的克莱姆法则,方程组的解存在且惟一,且有 为系数矩阵的第列元素以代替的矩阵的行列式的值。克莱姆法则在建立线性方程组解的理论基础中功不可没,但是在实际计算中,我们难以承受它的计算量。例如,解一个100阶的线性方程组,乘除法次数约为(101·100!·99),即使以每秒的运算速度,也需要近年的时间。在石油勘探、天气预报等问题中常常出现成百上千阶的方程 组,也就产生了各种形式方程组数值解法的需求。研究大型方程组的解是目前计算数学中的一个重要方向和课题。

解方程组的方法可归纳为直接解法和迭代解法。从理论上来说,直接法经过有限次四则运算,假定每一步运算过程中没有舍入误差,那么,最后得到方程组的解就是精确解。但是,这只是理想化的假定,在计算过程中,完全杜绝舍入误差是不可能的,只能控制和约束由有限位算术运算带来的舍入误差的增长和危害,这样直接法得到的解也不一定是绝对精确的。

迭代法是将方程组的解看作某种极限过程的向量极限的值,像第2章中非线性方程求解一样,计算极限过程是用迭代过程完成的,只不过将迭代式中单变量换成向量 而已。在用迭代算法时,我们不可能将极限过程算到底,只能将迭代进行有限多次,得到满足一定精度要求的方程组的近似解。 在数值计算历史上,直接解法和迭代解法交替生辉。一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。一般说来,对同等规模的线性方程组,直接法对计算机的要求 高于迭代法。对于中等规模的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。对于高阶方程组和稀疏方程组(非零元素较少),一般用迭代法求解。 §1 消元法 一、三角形方程组的解 形如下面三种形式的线性方程组较容易求解。 对角形方程组 (2.3)设,对每一个方程,。 显然,求解n阶对角方程的运算量为。 下三角方程组 (2.4)

直接法解线性方程组

直接法解线性方程组 实习题目: 仿照三对角方程组的追赶法解五对角方程组,其中系数矩阵为A,右端向量为:r。将A分解为LU。其中L为下三角,U为单位上三角。A为7*7阶的矩阵,其中对角元为4 5 6 7 8 9 10。上下次三角对角线元素为1 2 3 4 5 6 ;上下第二条对角线元素为1 2 3 4 5;右端项为:1 2 3 4 5 6 7. 要求:输出系数矩阵A,右端向量r,下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y,单位上三角方程组Ux=y的解(即最终的解向量。保留七位小数。 实现方法:通过MATLAB编程实现。建立MATLAB脚本文件。 首先通仿照三对角方程组的追赶法得到五对角矩阵的实现算法。 然后又MATLAB编程实现。 实验结果(MATLAB截图):

结果分析: 通过提供的计算数据得到最终的解向量x及中间过程产生的下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y。 同时为了确保算法的正确性,我还通过MATLAB的左除运算检验得使用此算法的计算结果正确。 这里由于是用MATLAB,最终结果为分数形式,考虑到精确解一般比近似解更好,因此未化成七位小数形式。 算法实现分析: 首先计算L和U的元素。由于已知L和U的特定形式(及除了对角线和上下次对角线和上下第二条对角线外,其余为0。故通过矩阵的乘法即可得到LU中元素的计算公式。(具体算法见MATLAB程序) 算法优劣点:

1.解此题时看上去要用较多的存储单元,但实际上只需存储系数矩阵A的不为0的元素。 2.A分解为LU计算完成后,后续计算x和y的“追赶过程”运算量一般来说计算量比较小。 3.此题也可用之前的LU算法求解。但此处算法与一般的LU分解的解线性方程组的算法,相比计算量小了不少。 4.对于此处特定的对称的系数矩阵A,算法还可以进一步优化。 5.由于我在此算法中A.L U的各对角值均用一个列向量表示,一个缺点在于输出A,L,U时要重新组成矩阵形式。不过优点在于减少了存储单元。 6.另一缺点是,未能将结果封装成一个文件。 后附MATLAB代码: c=[4,5,6,7,8,9,10];d=[1,2,3,4,5,6,0];b=[0,1,2,3,4,5,6];e=[1,2,3,4,5,0,0];a=[0,0,1,2,3,4,5]; r=[1 2 3 4 5 6 7]; w=zeros(7,1);x=zeros(7,1);y=zeros(7,1);m=zeros(7,1);n=zeros(7,1);h=zeros(7,1); w(1)=c(1);m(1)=d(1)/c(1);n(1)=e(1)/c(1); h(2)=b(2);w(2)=c(2)-h(2)*m(1);m(2)=(d(2)-b(2)*n(1))/w(2);n(2)=e(2)/w(2); for k=3:5 h(k)=b(k)-a(k)*m(k-2); w(k)=c(k)-a(k)*n(k-2)-h(k)*m(k-1); m(k)=(d(k)-h(k)*n(k-1))/w(k); n(k)=e(k)/w(k); end h(6)=b(6)-a(6)*m(4); w(6)=c(6)-a(6)*n(4)-h(6)*m(5); m(6)=(d(6)-h(6)*n(5))/w(6); h(7)=b(7)-a(7)*m(5); w(7)=c(7)-a(7)*n(5)-h(7)*m(6); y(1)=r(1)/w(1);y(2)=(r(2)-h(2)*y(1))/w(2); for k=3:7 y(k)=(r(k)-a(k)*y(k-2)-h(k)*y(k-1))/w(k); end x(7)=y(7); x(6)=y(6)-x(7)*m(6);

实验五线性方程组-1240111118-武元甲

实验五线性方程组 一实验目的 通过本课程的实习,学会编写全主元消去法的计算程序。掌握解线性方程组的最基本算法及其运用,进一步了解该解法的功能、优缺点,领会系数矩阵对解的影响。 二实验内容 本实验将线性方程组的高斯-赛德尔迭代法和高斯列主元消去法实现为类CLinear_Equations,调用该类实现线性方程组的求解。该类结构如下 class CLinear_Equations { public: CLinear_Equations(void); CLinear_Equations(float **ppA,float *pB,int D); //向类中公有变量和指针传递数据~CLinear_Equations(void); float * Adjust(float * pX);//一步迭代 float * Gauss_Seidel(float * pX0,float e); float Distance_Vector(float * pX0, float * pX1);//计算两个向量之差的范数 int Search_Pricipal_Element(int Col);//寻找第Col列的主元 void Exchange(int Row1, int Row2);//交换第Row1行与第Row2行的元素 void Slash(int Row);//削去第Row列对角线以下的元素 float * Elimination(void);// 回代过程,返回值为最终解向量 float * Gaussian_Elimination(void); float **pp_A,*p_B; //分别存放系数矩阵、常数项向量 int m_D; //方程组的维数 }; 为了方便,使用二维动态数组。可调用下面的函数为二维指针分配动态存储空间和销毁空间。为了方便程序的移植和重复利用,可将这两个函数写在一个文件MatrixAllocate.h中。 template bool New(T **&ppData,int H,int W) {//该函数为二维指针ppData分配动态存储空间 T *ppData1 = new T[W*H]; ppData=new T*[H]; for(int i=0;i bool Delete(T **&ppData) {//该函数销毁二维指针ppData

求解线性方程组——超松弛迭代法(c)

求解线性方程组——超松弛迭代法 #include #include using namespace std; float *one_array_malloc(int n); //一维数组分配float **two_array_malloc(int m,int n); //二维数组分配float matrix_category(float* x,int n); int main() { const int MAX=100;//最大迭代次数 int n,i,j,k; float** a; float* x_0; //初始向量 float* x_k; //迭代向量 float precision; //精度 float w; //松弛因子 cout<<"输入精度e:"; cin>>precision; cout<>n; a=two_array_malloc(n,n+1); cout<>a[i][j]; } } x_0=one_array_malloc(n); cout<>x_0[i]; } x_k=one_array_malloc(n);

cout<<"输入松弛因子w (1>w; float temp; //迭代过程 for(k=0;k

实验一用matlab求解线性方程组

实验1.1 用matlab 求解线性方程组 第一节 线性方程组的求解 一、齐次方程组的求解 rref (A ) %将矩阵A 化为阶梯形的最简式 null (A ) %求满足AX =0的解空间的一组基,即齐次线性方程组的基 础解系 【例1】 求下列齐次线性方程组的一个基础解系,并写出通解: 我们可以通过两种方法来解: 解法1: >> A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; >> rref(A) 执行后可得结果: ans= 1 -1 0 0 0 0 -1 1 0 0 0 0 由最简行阶梯型矩阵,得化简后的方程 ??? ??=+--=+--=-+-0 22004321 43214321x x x x x x x x x x x x

取x2,x4为自由未知量,扩充方程组为 即 提取自由未知量系数形成的列向量为基础解系,记 所以齐次方程组的通解为 解法2: clear A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; B=null(A, 'r') % help null 看看加个‘r’是什么作用, 若去掉r ,是什么结果? 执行后可得结果: B= 1 0 1 0 0 1 0 1 ?? ?=-=-0 04321x x x x ?????? ?====4 4432221x x x x x x x x ??? ??? ??????+????????????=????? ???????1100001142 4321x x x x x x , 00111????? ? ??????=ε, 11002????? ???????=ε2 211εεk k x +=

Gauss-Seidel迭代法求解线性方程组

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量 ) 1(+k i x 时,用最新分量 ) 1(1 +k x , ???+) 1(2 k x ) 1(1 -+k i x 代替旧分量 ) (1 k x , ???) (2 k x ) (1 -k i x ,可以起 到节省存储空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 ) ()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=,

则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+) () 1( 其迭代格式为 T n x x x x ) ()0()0(2)0(1)0(,,,???= (初始向量), ) (1 1 1 1 1 )()1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)()1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图

线性方程组的直接解法及matlab的实现

本科毕业论文 ( 2010 届) 题目线性方程组的直接解法及matlab的实现 学院数学与信息工程学院 专业数学与应用数学 班级2006级数学1 班 学号0604010127 学生姓名胡婷婷 指导教师王洁 完成日期2010年5月

摘要 随着科技技术的发展及人类对自然界的不断探索模拟.在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题! 本文的主要内容是对线性方程组求解方法的探讨,主要介绍了四种求解线性方程组的方法,第一种是教科书上常见的消元法,我们称之为基本法.第二种方法是标准上三角形求解法,即将增广矩阵经过初等变换后化成标准上三角形,然后求解.它改进了一般教科书上的常见方法,与常见方法比较有如下优点:1)规范了自由未知量的选取;2)只用矩阵运算;3)减少了计算量.第三种方法是对特定的方程组(系数矩阵A为n阶对称正定矩阵,且A的顺序主子式均不为零.)的求解方法进行描述,并且为这种线性方程的求解提供了固定的公式化的方法.第四种方法是对现在实际问题中常常会遇到的系数矩阵为三对角矩阵的方程组的求解方法.同时给出这几种方法的数值解法(matlab程序),由于运用电脑软件求解,所以必须考虑计算方法的时间、空间上的效率以及算法的数值稳定性问题,所以针对不同类型的线性方程组有不同的解法.但是,基本的方法可以归结为两大类,即直接法和迭代法. 关键词 高斯消去法;三角分解法;乔莱斯基分解法;追赶法

Abstract Systems of linear equations are associated with many problems in engineering and scinence ,as well as with applications of mathematics to the social sciences and the quantitative study of business and economic problems. The main content of this article is the method for solving linear equations, we introduce four methods for solving linear equations in this paper. The first is the elimination method which is commonly found in textbooks, and we call the Basic Law. The second method is Standard on the triangle Solution, that first change Augmented matrix into standards in primary triangle, and then solving. It improves the general textbook on common methods, compared with the common method has the following advantages:1) Specification of the free choice of unknowns; 2)Only matrix operations;3) Reduce the computation. The third method describes a way to solve a Specific equations(N coefficient matrix A is symmetric positive definite matrix, and A are not zero-order principal minor), And for this linear equation provides a fixed formulaic approach. The fourth method is to present practical problems often encountered in the coefficient matrix is tridiagonal matrix method for solving the equations. These methods are given numerical solution of (matlab program), As the use of computer software to solve, it is necessary to consider ways of computing time and space efficiency and numerical stability of algorithms, Therefore, different types of linear equations have a different solution. However, the basic method can be classified into two categories, namely direct methods and iterative methods. Key words Gaussian elimination; Triangular decomposition; Cholesky decomposition method; Thomas algorithm

第三章 解线性方程组的直接方法

习题 3.1 1. 求下列方阵的秩: (1)??? ?? ??--340313021201;(2)????? ??----174034301320;(3)??????? ? ?---------12433023221453334 311 ;(4)??????? ??------34732038234202173132. 2. 求下列方阵的逆矩阵: (1) ?? ? ?? ? ?323513123; (2) ????? ?? ??-----1210232112201023. 3. 解下列矩阵方程 (1) 设 ???? ? ??--=????? ??--=1322 31,113122214B A ,求X 使B AX =; (2) 设 ??? ? ??-=? ???? ??---=132 321,433312120B A ,求X 使B XA =; (3) ?? ??? ??-=????? ??-=????? ??-=112510324, 123011113,1120111111C B A ,求X 使C AXB =. 4. 求下列行列式 (1)? ? ? ??? ??????71 1 0251020214214 ;(2)????????????-260523211213 141 2;(3)?? ? ???????---ef cf bf de cd bd ae ac ab ; (4) ????????????---d c b a 100110011001. 5. 判断下列线性方程组解的情况,如果有唯一解,则求出解. ???????=+++-=----=+-+=+++;01123,2532,242,5)1(432143214 3214321x x x x x x x x x x x x x x x x ? ? ???????=+=++=++=++=+;15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x (3) ? ?? ??=-++=-+-=-+-;3222, 2353, 132432143214321x x x x x x x x x x x x (4) ?????=---=--+=+++.034,0222,022432143214321x x x x x x x x x x x x 习题 3.2 1. 用回代法解上三角形线性方程组 (1)??? ????==+-=-+=++;63,3,6333,8484443432321x x x x x x x x x (2)?? ???? ?-=-=+--=+--=-+.63,1032,92,9244343242 1x x x x x x x x x 2. 用回代法解下三角形线性方程组

线性方程组的数值解法实验报告

实验报告 ——线性方程组的数值解法 姓名: 班级: 学号: 日期:

一 实践目的 1. 熟悉求解线性方程组的有关理论和方法。 2. 会编列主元消去法,全主元消去法,雅克比迭代法及高斯-赛德尔迭代法的程序。 3.通过实际计算,进一步了解各种方法的优缺点,选择合适的数值方法。 4. 进一步应用数学知识,扩展数学思维,提高编程能力。 二 问题定义及题目分析 1.求解线性方程是实际中常遇到的问题。而一般求解方法有两种,一个是直接求解法,一个是迭代法。 2.直接法是就是通过有限步四则运算求的方程准确解的方法。但实际计算中必然存在舍入误差,因此这种方法只能得到近似解。 3.迭代法是先给一个解的初始近似值,然后按一定的法则求出更准确的解,即是用某种极限过程逐步逼近准确解的方法。 4.这次实践,将采用直接法:列主元高斯消去法,全主元高斯消去法;迭代法:雅克比迭代法和高斯-赛德尔迭代法。 三 详细设计 设有线性方程组 11112211n n a x a x a x b +++= 21122222n n a x a x a x b +++= 1122n n nn n n a x a x a x b +++=

令A= 1112121 2221 2 n n n n nn a a a a a a a a a ?????????? ?? x= 12n x x x ???? ???????? b= 12n b b b ???????????? 一. 上三角方程组的求解很简单。所以若能将方程组化为上三角方程组,那就很容易得到方程的解,高斯消去法则是一种简洁高效的方法,可以将方程组化为上三角方程组,但是这种方法必须满足每一步时0kk a =才能求解,还有当kk a 绝对值很小时,作分母会引起较大的舍入误差。因此在消元过程中应尽量选择绝对值较大的系数作为主元素。 1.列主元消去法很好的解决这一问题。 将1x 的系数1(1)k a k n ≤≤中绝对值最大者作为主元素,交换第一行和此元素所在的行,然后主元消去非主元项1x 的系数,。一般的,在k x 的一些相关系数之前,先从,1,,,k k k k n k a a a + 中选出绝对值最大者作为主元素,交换第k 行和次主元素所在的行,再消去k x 的一些相关系数,只要方程组A 非奇异,则每个主元定不为0,故消元过程一定能将方程组化为上三角方程组。 将方程用增广矩阵[](1)()ij n n A b a ?+= 表示。 (1) 消元过程 对01,2,1k n =- ,; 1. 选主元,找{},1,k i k k n ∈+ ,使得,max ()k i k ik a a k i n =≤≤ 2. ,=0k i k a ,则矩阵A 奇异,程序结束,否则执行下一步。 3. 如果k i k ≠,则交换第k 行与第k i 行对应的元素位置,即 (,1,,1)k kj i j a a j k k n ?=++

迭代法解线性方程组

迭代法解线性方程组作业 沈欢00986096 北京大学工学院,北京100871 2011年10月12日 摘要 由所给矩阵生成系数矩阵A和右端项b,分析系数矩阵A,并用Jacobi迭代法、GS迭代法、SOR(逐步松弛迭代法)解方程组Ax=b 1生成系数矩阵A、右端项b,并分析矩阵A 由文件”gr900900c rg.mm”得到了以.mm格式描述的系数矩阵A。A矩阵是900?900的大型稀 疏对称矩阵。于是,在matlaB中,使用”A=zeros(900,900)”语句生成900?900的零矩阵。再 按照.mm文件中的描述,分别对第i行、第j列的元素赋对应的值,就生成了系数矩阵A,并 将A存为.mat文件以便之后应用。 由于右端项是全为1的列向量,所以由语句”b=ones(900,1)”生成。 得到了矩阵A后,求其行列式,使用函数”det(A)”,求得结果为”Inf”,证明行列式太大,matlaB无法显示。由此证明,矩阵A可逆,线性方程组 Ax=b 有唯一解。 接着,判断A矩阵是否是对称矩阵(其实,这步是没有必要的,因为A矩阵本身是对称矩阵,是.mm格式中的矩阵按对称阵生成的)。如果A是对称矩阵,那么 A?A T=0 。于是,令B=A?A T,并对B求∞范数。结果显示: B ∞=0,所以,B是零矩阵,也就是:A是对称矩阵。 然后,求A的三个条件数: Cond(A)= A ? A?1 所求结果是,对应于1范数的条件数为:377.2334;对应于2范数的条件数为:194.5739;对应 于3范数的条件数为:377.2334; 1

从以上结果我们看出,A是可逆矩阵,但是A的条件数很大,所以,Ax=b有唯一解并且矩阵A相对不稳定。所以,我们可以用迭代方法来求解该线性方程组,但是由于A的条件数太大迭代次数一般而言会比较多。 2Jacobi迭代法 Jacobi迭代方法的程序流程图如图所示: 图1:Jacobi迭代方法程序流程图 在上述流程中,取x0=[1,1,...,1]T将精度设为accuracy=10?3,需要误差满足: error= x k+1?x k x k+1

相关主题
文本预览
相关文档 最新文档