当前位置:文档之家› 武汉理工 基础强化训练 产生脉冲宽度调整信号

武汉理工 基础强化训练 产生脉冲宽度调整信号

武汉理工 基础强化训练 产生脉冲宽度调整信号
武汉理工 基础强化训练 产生脉冲宽度调整信号

能力拓展训练

题目产生脉冲宽度调整信号

学院自动化学院

专业自动化专业

班级自动化1005班

姓名柳元辉

指导教师魏怡

2013 年7 月 1 日

目录

摘要 (1)

1设计任务及要求 (2)

2设计思路及方案 (3)

2.1设计思路 (3)

2.2方案比较 (3)

3设计框图 (5)

4所需器件 (6)

5功能模块 (8)

5.1分频器 (8)

5.2计数器 (9)

6总体电路图 (11)

7心得体会 (13)

摘要

电子技术经历了分立元件到集成芯片再到大规模可编程逻辑器件的高速发展历程,CPLD/FPGA器件的问世使片上系统的实现成为现实,SOC、SOPC技术代表了未来电子技术重要的发展方向,其中,电子设计自动化(EDA)技术起着支撑的作用。采用EDA技术,可以基于可编程逻辑器件(CPLD或FPGA)重构片上系统(SOC),从而达到开发高性能电子产品的高效化、低成本化、灵活化。EDA 设计技术的不断进步与完善,不仅给电子系统的设计和应用带来了新的设计思路和发展机遇,也对传统的电子系统设计手段提出了严峻的挑战。

产生脉宽调整信号

1设计任务及要求

(1)利用CPLD/FPGA器件实现简单的计算机逻辑接口电路(如地址译码电路、硬件加密电路等);

(2)基于可编程逻辑器件(CPLD或FPGA)实现DSP功能。

通过训练掌握相关的理论知识及实际处理方法,熟练使用常用EDA工具(如Quartus Ⅱ、Matlab/DSP Builder等)和硬件描述语言(如Verilog HDL等)设计所需应用程序、上机调试、模拟仿真、下载到目标芯片上运行验证,并对实验结果进行理论分析。

(3)控制产生脉冲宽度可调的信号,通过示波器\指示灯查看。

2设计思路及方案

2.1设计思路

首先,联想到数字电子技术基础里面所学到的555定时器,利用它来产生脉冲宽度可调的信号,这可以作为一种可行的方案,而且实行起来应该比较容易。但是Quartus Ⅱ里面没有直接给出555定时器元件,所以用该软件实行起来不太方便。其次,可以利用这个学期所学的单片的定时计数功能来实现设计要求,通过修改计数初值来改变占空比,这也是种可行的方案。但是如此一来就达不到基础强化训练的目的。最后,基于EDA 这门课程、Quartus Ⅱ、及相关的可编程逻辑器件来设计脉冲宽度可调的电路。

2.2方案比较

(1)方案一

利用半导体二极管的单向导电特性,把电容C 充电和放电回路隔离开来,再加上一个电位器,便可构成占空比可调的多谐振荡器,如图2-1所示。

图2-1 占空比可调的多谐振荡器

由于二极管的引导作用,电容C 的充电时间常数τ1=R1C ,放电时间常数τ2=R2C 。通过与上面相同的分析计算过程可得

T 1=0.7R 1C

T 2=0.7R 2C

C

O

v 1

R R

占空比:

211

21121117.07.07.0R R R C R C R C R T T T T T q +=

+=+==

只要改变电位器滑动端的位置,

就可以方便地调节占空比q ,当R1=R2时,q=0.5,vO 就成为对称的矩形波。 (2)方案二

利用单片机里面的T1计数器在P1.0端线输出周期为某一定值的脉冲宽度信号,用方式0以查询方式实现。下面是实现要求主程序,通过改变程序中设计的计数初值,就可以改变占空比。硬件图就不做详细介绍。

ORG 0100H MOV TMOD,#00H; TMOD 初始化 MOV TH1,#0FCH; 设计计数初值 MOV TL1,#03H;

MOV IE,#00H 禁止中断

LOOP: SETB TR1; 启动T1 JBC TF1,LOOP1; 查询等待

AJMP LOOP 继续查询

LOOP1:MOV TH1,#0FCH; 重新设置计数初值 MOV TL1,#03H;

CPL P1.0; 输出状态翻转

AJMP LOOP 返回LOOP

(3)方案三

基于EDA 课程及Quartus Ⅱ,由两个完全相同的可自加载加法计数器和D 触发器组成的,它的输出信号的高低电平脉宽时间可分别由两组6位二进制预置数进行控制。

三个方案对比而言,第一个方案显然比较基础而且较容易实现;但是不能达到要求训练的目的。第二个方案,用的是单片机,本学期所学的的内容,实现起来也不算难,但是也不能很好的达到训练的目的。故采用第三个方案来完成本次基础强化训练的内容及要求。

3设计框图

总体框图如下图3-1所示。

图3-1 总体框图

此信号发生器是由两个完全相同的可自加载加法计数器和D触发器组成的,它的输出信号的高低电平脉宽时间可分别由两组6位二进制预置数进行控制。

如果将初始值可预置的加法计数器的溢出信号作为本计数器的初始预置加载信号LD,则可构成计数初始值自加载方式的加法计数器,从而构成数控分频器。D触发器的一个重要功能就是均匀输出信号的占空比。

4所需器件

(1)设计中所用到的器件有:

1)D触发器DFF(1个)

2)非门NOT(2个)

3)计数器CNT6(2个)

4)LED灯(1个)或示波器

(2)器件的相关介绍:

1)D触发器DFF

该触发器是一个具有使能控制端CLRN的D触发器,具有圆圈的是低电平有效,它的动作特点是输出端状态的转换发生在CP的上升沿,而且触发器所保存下来的状态仅仅取决于CP上升沿到达时D的输入状态,即当触发脉冲有效时,D 触发器的输出与激励输入相同。因为触发器输出端状态的转换发生在CP的上升沿,所以这是一个上升沿触发的边沿触发器。它的功能就是均匀输出信号的占空比。

D触发器DFF的逻辑符号如图4-1所示:

图4-1 D触发器逻辑符号

D触发器DFF的内部结构图如图4-2所示

图4-2 D触发器的内部结构

D触发器DFF的功能表如表4-1所示:

表4-1 D触发器的功能表

D触发器的动作时序图如图4-3所示:

图4-3 D触发器的时序图

2)非门NOT

非门又称为反相器,若输入信号A是1,则输出信号Y是0;若输入信号A 是1,则输出信号Y是0。

非门NOT的逻辑符号如图4-4所示:

图4-4非门的逻辑符号

非门NOT的逻辑功能表如表4-2所示:

表2 非门的逻辑功能表

5功能模块

5.1分频器

分频器的封装图如图5-1所示:

图5-1分频器的封装图

时钟信号接到分频器的输入端clk_in,分频器的输出端div_out接到预置计数器的脉冲输入端CLK。它的作用是将高频信号分成低频信号。

分频器div的VHDL程序如下:

Library ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY div IS

PORT(clk:IN std_logic;

divclk:OUT std_logic);

END div;

ARCHITECTURE one OF div IS

BEGIN

PROCESS(clk)

variable cnt:integer range 0 to 1000000;

variable temp:std_logic;

BEGIN

IF clk'event and clk='1' then

IF cnt <=99999 then cnt:=0; temp:=not temp;

ELSE

cnt:=cnt+1;

END IF;

END IF;

divclk<=temp;

END PROCESS;

END ONE;

5.2计数器

计数器的分装图如图5-2所示:

图5-2 计数器的封装图

此计数器是一个6位二进制数的预置计数器,预置计数器比普通计数器多了一个预置端LD和预置数据端d。当LD=1或0时,在下一个时钟脉冲过后,计数器输出端预置数D,CLK为脉冲信号输入端,时钟信号经分频后接到CLK端, CAO为计数溢出输出端。

预置计数器CNT6的VHDL程序如下:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY CNT6 IS

PORT(CLK,LD:IN STD_LOGIC;

D:IN INTEGER RANGE 0 TO 63;

CAO:OUT STD_LOGIC);

END CNT6;

ARCHITECTURE ART OF CNT6 IS

SIGNAL COUNT:INTEGER RANGE 0 TO 63;

BEGIN

PROCESS(CLK,COUNT) IS

BEGIN

IF CLK'EVENT AND CLK='1' THEN

IF LD='1' THEN COUNT<=D;

ELSE COUNT<=COUNT+1;

END IF;

END IF;

END PROCESS;

PROCESS(CLK,COUNT)IS

BEGIN

IF CLK'EVENT AND CLK='1' THEN IF COUNT=63 THEN

CAO<='1';

ELSE

CAO<='0';

END IF;

END IF;

END PROCESS;

END ARCHITECTURE ART;

6总体电路图

(1)总体电路图如图6-1所示

图6-1 总体电路图

在时钟信号和预置数的共同作用下,计数器B的计数溢满产生进位脉冲,触发D触发器,使得D触发器反馈给B一个反馈信号,在下一个时钟脉冲过后,计数器输出端输出预置数。计数器A的进位脉冲经过一个非门,连接到D触发器的使能控制端,触发D触发器,D触发器的反馈信号经过一个非门加载到计数器A 的预置端,在下一个时钟脉冲过后,输出端输出计数器A的预置数。计数器A 的进位脉冲使输出信号输出正脉冲,计数器B的进位脉冲使输出信号输出负脉冲,同时由D触发器给的反馈信号使A、B分别重新置数,从而控制正负脉冲宽度。

(2)仿真结果如下图6-1所示。

图6-1 仿真结果图

显然通过改变A、B计数器的输入值,就能改变输出脉冲信号的脉宽,即改变占空比。

7心得体会

刚拿到题目时,不知从何下手,反复的看书查资料,寻求帮助。后来经同学的帮助,让我对这个题目有了一定的了解,开始设计电路,编写程序,最后进行仿真,在仿真的过程中,出现了很多问题,比如分频器的使用,在硬件验证的时候,分的频率要大,为了更好的观察输出波形,然而在软件操作仿真的时候,却因为频率太大,而无法看到波形。最后在同学的帮助下完成了实验的仿真。

经过基础强化训练,让我回顾了大二学的专业选修课EDA与数字系统设计这门课程的知识。说实话起初真感觉忘得差不多了,连软件quartusII都忘记了怎么使用。从对EDA的操纵界面的不熟悉到现在的基本熟练掌握,我收获的不仅仅是知道了quartusII软件的使用方法,更重要的收获是通过思考、分析、、设计、修正,从而真正的体会到了数字电路各个项目的功能。

以前学习上存在的不足。通过与同学探讨,终于把问题都解决了,并加深了对正负脉宽数控调制信号发生器的原理和设计思路的了解。同时也熟练掌握了课程设计的一般流程,为以后的设计也积累了一定的经验。通过此次课程设计的学习,使我感受最深的是实践与理论的相结合,也是对我们以前学的知识的总结和概括,使得我们在设计的过程中体会到了EDA的重要性,体会到了我们所学的知识的用途和方向。

在这次课程设计作业的过程中由于在设计方面我们没有经验,理论基础知识掌握得不牢固,在设计中难免会出现这样那样的问题,这使我们体会到了各个电子元件的使用方法,使我们更熟练的掌握到了这个软件。对于我来说,收获最大的是方法和能力:那种分析和解决问题的能力。在整个课程设计的过程中,我发现我们学生在经验方面十分缺乏,空有理论知识,没有理性的知识;有些东西可能与实际脱节。总体来说,我觉得像课程设计这种类型的作业对我们有很大的帮助,它需要我们将学过的相关知识系统地联系起来,理论联系实际,让自己有更大改进!

参考文献

【1】《Digital System Design with VHDL》主编:Mark Zwolinski 出版社:电子工业出版社出版或修订时间:2002年

【2】《SOPC技术与应用》江国强编著出版社:机械工业出版社出版时间:2006年10月

【3】《EDA与数字系统设计》第二版主编:李国丽、朱维勇、何建春出版社:机械工业出版社出版时间:2008年

【4】《电子技术课程设计指导》主编:彭介华出版社:高等教育出版社出版时间:2003年

【5】《电子技术基础实验》主编:李国丽、朱维勇、刘春出版社:机械工业出版社出版时间:2007年

本科生课程设计成绩评定表

指导教师签字:

年月日

[电子电工实习报告] 车辆1104班 吴昊宇 2019年7月11日

目录 1.0实验目的 (3) 1.1实验原理 (4) 1.1.1原理图及原理说明 (4) 1.1.2电路装配图 (7) 1.1.3连线图 (7) 1.2实验内容 (8) 1.2.1实训过程 (8) 1.2.2元件清单 (8) 1.2.3作品展示 (22) 1.2.4实验数据分析 (23) 1.3总结 (23)

1.0实验目的 随着现代化技术的发展,电工电子技术在现代化生活中应用越来越广泛,小到家用电器,大到军事设备,在这些形形色色的种类繁多的设备中都用到了电工电子技术。很多的自动化半自动化控制的未处理系统都是以电子元件为基本单元,通过集成电路来实现的,这就要求工科学生掌握基本的电路设计、制作、检查和维修知识。 本实验的目的如下: ●强化安全用电意识,掌握基本安全用电操作方式。 ●基本掌握公共电烙铁的焊接技术,能够独立的完成简单电子产品的安装和焊接、拆卸过程,能掌握基本的电路维修维修方法。 ●基本掌握电路原理图、装配图的绘制,能独立的完成简单电子电路的设计。 ●了解常用电子器件的类别型号、规格、性能及其使用范围。 ●能够正确识别常用电子元件,并通过查阅相关手册了解其相关参数。 ●熟练的掌握万用表等仪表,并能够独立的检测电路的各种参数,且能检测出简单的电路问题。

1.1实验原理 1.1.1原理图及原理说明 图18 彩灯音乐盒电原理图 本电路以555芯片、二极管、三极管、电解电容与瓷介电容、音乐芯片、喇叭为其核心元件,LED交替发光产生明暗变化,伴随着喇叭发出事先录制的音乐。 工作原理综述:电源开关K1闭合,发光二极管LED3亮,开始由于电容C1短路,所以555芯片的2和6脚为低电平0,又4脚恒为高电位1,由555芯片的输出特性知输出端3为高电平1,LED1亮,三极管VT2截止,LED2灭,7 C1通过电阻R1,R3充电,2和6脚电位升高,最终达到高电平1、3脚输出低电平0,LED1灭,三极管VT2导通,LED2亮,7为低阻态,通过电源负开始放电致使2和6脚电位降低至0,3脚又输出高电位1,LED1亮LED2灭,循环往复。而LED3绿灯和喇叭都一直接

1、 PWM原理 2、调制器设计思想 3、具体实现设计 一、 PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs<

其中,。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语 音信号x(t)加上一个直流成分以及相位调制波构成。当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。 二、数字脉冲宽度调制器的实现: 实现数字脉冲宽度调制器的基本思想参看图2。 图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。 图3 为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大

1-1 实际电路器件与理想电路元件之间的联系和差别是什么? 答: (1)联系:理想电路元件是对实际电路器件进行理想化处理、忽略次要性质、只表征其主要电磁性质的所得出的模型。 (2)差别:理想电路元件是一种模型,不是一个实际存在的东西;一种理想电路元件可作为多种实际电路器件的模型,如电炉、白炽灯的模型都是“电阻”。 1-2 (1)电流和电压的实际方向是怎样规定的?(2)有了实际方向这个概念,为什么还要引入电流和电压的参考方向的概念?(3)参考方向的意思是什么?(4)对于任何一个具体电路,是否可以任意指定电流和电压的参考方向? 答: (1)电流的实际方向就是正电荷移动的方向;电压的实际方向(极性)就是电位降低的方向。 (2)对于一个复杂电路,电流、电压的实际方向事先难以确定,而交流电路中电流、电压的实际方向随时间变化,这两种情况下都无法准确标识电流、电压的实际方向,因此需要引入参考方向的概念。 (3)电流(或电压)参考方向是人为任意假定的。按电流(或电压)参考方向列有关方程,可解出电流(或电压)结果。若电流(或电压)结果数值为正,则说明电流(或电压)的实际方向与参考方向相同;若电流(或电压)结果数值为负,则说明电流(或电压)的实际方向与参考方向相反。 (4)可以任意指定电流和电压的参考方向。 1-3 (1)功率的定义是什么?(2)元件在什么情况下是吸收功率的?在什么情况下是发出功率的?(3)元件实际是吸收功率还是发出功率与电流和电压的参考方向有何关系? 答: (1)功率定义为单位时间内消耗(或产生)的能量,即 ()dW p t dt = 由此可推得,某二端电路的功率为该二端电路电压、电流的乘积,即 ()()()p t u t i t = (2)某二端电路的实际是吸收功率还是发出功率,需根据电压、电流的参考方向以及由()()()p t u t i t =所得结果的正负来综合判断,见下表 (3)元件实际是吸收功率还是发出功率与电流和电压的参考方向无关。

、PWM原理 2、调制器设计思想 3、具体实现设计 一、PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs< (1) 其中,x{t}是离散化的语音信号;Ts是采样周期;是未调制宽度;m是调制指数。 然而,如果对矩形脉冲作如下近似:脉冲幅度为A,中心在t = k Ts处,在相邻脉冲间变化缓慢,则脉冲宽度调制波xp(t)可以表示为: (2) 其中,。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语音信号x(t)加上一个直流成分以及相位调制波构成。当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。 二、数字脉冲宽度调制器的实现: 实现数字脉冲宽度调制器的基本思想参看图2。 图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。 图3 为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大到小顺序变化,而是将数据分成偶数序列和奇数序列,在一个计数周期,偶数序列由小变大,直到最大值,然后变为对奇数序列计数,变化为由大到小。如图3例子。 奇偶序列的产生方法是将计数器的最后一位作为比较数据的最低位,在一个计数周期内,前半个周期计数器输出最低位为0,其他高位逐次增大,则产生的数据即为偶数序列;后半个周期输出最低位为1,其余高位依次减小,产生的数据为依次减小的偶序列。具体电路可以由以下电路图表示: 三、8051中的PWM模块设计:

4 脉冲信号产生电路 4.1 实验目的 1.了解集成单稳态触发器的基本功能及主要应用。 2.掌握555定时器的基本工作原理及其性能。 3.掌握用555定时器构成多谐振荡器、单稳态触发器的工作原理、设计及调试方法。 4.2 实验原理 1.集成单稳态触发器及其应用 在数字电路的时序组合工作中,有时需要定时、延时电路产生定时、展宽延时等脉冲,专门用于完成这种功能的IC,就是“单稳延时多谐振荡器”,也称“单稳触发器”。其基本原理是利用电阻、电容的充放电延时特性以及电平比较器对充放电电压检测的功能,实现定时或延时,只需按需要灵活改变电阻、电容值大小,就可以取得在一定时间范围的延时或振荡脉冲输出。常用的器件有LS121/122、LS/HC123、LS/HC221、LS/HC423、HC/C4538及CC4528B等。 集成单稳态触发器在没有触发信号输入时,电路输出Q=0,电路处于稳态;当输入端输入触发信号时,电路由稳态转入暂稳态,使输出Q=1;待电路暂稳态结束,电路又自动返回到稳态Q=0。在这一过程中,电路输 出一个具有一定宽度的脉冲,其宽度与电路的外接定时元件C ext 和R ext 的数 值有关。 图4-1

集成单稳态触发器有非重触发和可重触发两种,74LS123是一种双可重触发的单稳态触发器。它的逻辑符号及功能表如图4-1、表4-1所示。 在表4-1中“正”为正脉冲,“负”为负脉冲。 LS/HC123的特点是,复位端CLR也具有上跳触发单稳态过程发生的功能。 在C ext >1000pF时,输出脉冲宽度t w ≈0.45R ext C ext 。 器件的可重触发功能是指在电路一旦被触发(即Q=1)后,只要Q还未恢复到0,电路可以被输入脉冲重复触发,Q=1将继续延长,直至重复触发的最后一个触发脉冲的到来后,再经过一个t w (该电路定时的脉冲宽度)时间,Q才变为0,如图4-2所示: 图4-2 74LS123的使用方法: (1)有A和B两个输入端,A为下降沿触发,B为上升沿触发,只有AB=1时电路才被触发。 (2)连接Q和A或Q与B,可使器件变为非重触发单稳态触发器。 (3)CLR=0时,使输出Q立即变为0,可用来控制脉冲宽度。 (4)按图4-3、3-5-4连接电路,可组成一个矩形波信号发生器,利用开关S瞬时接地,使电路起振。 图4-3 图4-4 2.555时基电路及其应用 555时基电路是一种将模拟功能和数字逻辑功能巧妙地结合在同一硅片上的新型集成电路,又称集成定时器,它的内部电路框图如图4-5所示。 图4-5 电路主要由两个高精度比较器C 1、C 2 以及一个RS触发器组成。比较器 的参考电压分别是2/3V CC 和1/3V CC ,利用触发器输入端TR输入一个小于 1/3V CC 信号,或者阈值输入端TH输入一个大于2/3V CC 的信号,可以使触发 器状态发生变换。CT是控制输入端,可以外接输入电压,以改变比较器的参考电压值。在不接外加电压时,通常接0.01μF电容到地,DISC是放电输入端,当输出端的F=0时,DISC对地短路,当F=1时,DISC对地开路。 R D 是复位输入端,当R D =0时,输出端有F=0。 器件的电源电压V CC 可以是+5V~+15V,输出的最大电流可达200mA,当 电源电压为+5V时,电路输出与TTL电路兼容。555电路能够输出从微秒级到小时级时间范围很广的信号。 (1)组成单稳态触发器 555电路按图4-6连接,即构成一个单稳态触发器,其中R、C是外接定时元件。单稳态触发器的输出脉冲宽度t w ≈1.1RC。 图4-6 (2)组成自激多谐振荡器 图4-7 自激多谐振荡器电路 按图4-7连接,即连成一个自激多谐振荡器电路,此电路的工作过程

传感器脉冲信号处理电路设计 摘要 介绍了一种基于单片机平台,采用霍尔传感器实施电机转速测量的方法,硬件系统包括脉冲信号产生,脉冲信号处理和显示模块,重点分析,脉冲信号处理电路,采用c 语言编程,通过实验检测电路信号。 关键词:霍尔传感器;转速测量;单片机

目录 1 绪论 (1) 1.1 课题描述 (1) 1.2 基本工作原理及框图 (1) 2 相关芯片及硬件电路设计 (1) 2.1系统的主控电路 (1) 2.2 STC89C52单片机介绍 (2) 2.2.1 STC89C52芯片管脚介绍 (2) 2.2.2 时钟电路 (3) 2.3 单片机复位电路 (3) 2.4 霍尔传感器电机采样电路 (4) 2.4.1 A3144霍尔开关的工作原理及应用说明 (4) 2.4.2 霍尔传感器测量原理 (5) 2.5 电机驱动电路 (6) 2.6 显示电路 (6) 3 软件系统设计 (7) 3.1 软件流程图 (7) 3.2 系统初始化 (9) 3.3 定时获取脉冲数据 (10) 3.4 数据处理及显示 (11) 3.5 C语言程序 (12) 总结 (15) 致谢 (16) 参考文献 (17)

1 绪论 1.1 课题描述 在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。本课题,是要利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。 1.2 基本工作原理及框图 本课程设计的电机采用直流电机,然后利用霍尔传感A3144对电机的转速进行采样从而输出脉冲信号。主控芯片采用STC89C52单片机,对脉冲个数进行计数并经过数据处理以后得到单位时间电机转过的转数机电机的转速,再通过显示电路将电机转速显示出来。基本工作原理框图如图1所示。 图1基本工作原理框图 2 相关芯片及硬件电路设计 2.1系统的主控电路 图2是该系统的主控单元的电路图。J2、J3、J4、J5是单片机的I/O端口的扩展,预留接口用于调试等。主控芯片采用STC89C52单片机,该系统中采用定时器0作为定时器,定时器的时间为1S。定时器1作为计数器,对P35引脚采集到的脉冲信号进行计数操作,单片机然后对数据进行处理,计算出1S计数脉冲的个数,即电机转速。然后通过显示电路将电机转速显示出来,从而实现整个系统的功能。

脉冲宽度调制 目录[隐藏] 一、脉冲宽度调制基本原理 二、脉冲宽度调制具体过程 三、脉冲宽度调制的优点 四、脉冲宽度调制控制方法 五、脉冲宽度调制相关应用领域 六、脉冲宽度调制技术的具体应用 一、脉冲宽度调制基本原理 二、脉冲宽度调制具体过程 三、脉冲宽度调制的优点 四、脉冲宽度调制控制方法 五、脉冲宽度调制相关应用领域 六、脉冲宽度调制技术的具体应用 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最 广泛应用的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技 术发展的主要方向之一。 [编辑本段] 一、脉冲宽度调制基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可

脉冲波形的产生与变换 脉冲信号是数字电路中最常用的工作信号。脉冲信号的获得经常采用两种方法:一是利用振荡电路直接产生所需的矩形脉冲。这一类电路称为多谐振荡电路或多谐振荡器;二是利用整形电路,将已有的脉冲信号变换为所需要的矩形脉冲。这一类电路包括单稳态触发器和施密特触发器。这些脉冲单元电路可以由集成逻辑门构成,也可以用集成定时器构成。下面先来介绍由集成门构成的脉冲信号产生和整形电路。 9.1 多谐振荡器 自激多谐振荡器是在接通电源以后,不需外加输入信号,就能自动地产生矩形脉冲波。由于矩形波中除基波外,还含有丰富的高次谐波,所以习惯上又把矩形波振荡器叫做多谐振荡器。多谐振荡器通常由门电路和基本的RC电路组成。多谐振荡器一旦振荡起来后,电路没有稳态,只有两个暂稳态,它们在作交替变化,输出矩形波脉冲信号,因此它又被称作无稳态电路。 9.1.1门电路组成的多谐振荡器 多谐振荡器常由TTL门电路和CMOS门电路组成。由于TTL门电路的速度比CMOS门电路的速度快, 故TTL门电路适用于构成频率较高的多谐振荡器,而CMOS门电路适用于构成频率较低的多谐振荡器。 (1)由TTL门电路组成的多谐振荡器 由TTL门电路组成的多谐振荡器有两种形式:一是由奇数个非门组成的简单环形多谐振荡器;二是由非门和RC延迟电路组成的改进环形多谐振荡器。 ①简单环形多谐振荡器

(a) (b) 图9-1 由非门构成的简单环形多谐振荡器把奇数个非门首尾相接成环状,就组成了简单环形多谐振荡器。图9-1(a)为由三个非门构成的多谐振荡器。若uo的某个随机状态为高电平,经过三级倒相后,uo跳转为低电平,考虑到传输门电路的平均延迟时间tpd,uo输出信号的周期为6tpd。图9-1(b)为各点波形图。 简单环形多谐振荡器的振荡周期取决于tpd,此值较小且不可调,所以,产生的脉冲信号频率较高且无法控制,因而没有实用价值。改进方法是通过附加一个RC延迟电路,不仅可以降低振荡频率,并能通过参数 R、C控制振荡频率。 ② RC环形多谐振荡器 如图9-2所示,RC环形多谐振荡器由3个非门(G1、G2、G3)、两个电阻(R、RS)和一个电容C组成。电阻RS是非门G3的限流保护电阻,一般为100Ω左右;R、C为定时器件,R 的值要小于非门的关门电阻,一般在700Ω以下,否则,电路无常工作。此时,由于RC的值较大,从u2到u4的传输时间大大增加, 基本上由RC的参数决定,门延迟时间tpd可以忽略不计。 图9-2 RC环形多谐振荡器 a.工作原理 设电源刚接通时,电路输出端uo为高电平,由于此时电容器C尚未充电,其两端电压为零,则u2、u4为低电平。电路处于第1暂稳态。随着u3高电平通过电阻R对电容C充电,u4电

脉冲宽度调制 编辑 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 目录 1简介 2背景介绍 3基本原理 4谐波频谱 5具体过程 6优点 7控制方法 8应用领域 9具体应用 1 简介 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压

电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM 控制技术发展的主要方向之一。 2背景介绍 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。 模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。 通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 3基本原理 脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。 例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度相等,都等于∏/n ,但幅值不等,且脉冲顶

第八章脉冲波形的产生和变换 一、填空题 1.(10-1中)矩形脉冲的获取方法通常有两种:一种是________________;另一种是________________________。 2.(10-1易)占空比是_________与_______的比值。 3.(10-4中)555定时器的最后数码为555的是(,)产品,为7555的是(,)产品。 4.(10-3中)施密特触发器具有现象;单稳触发器只有个稳定状态。 5.(易,中)常见的脉冲产生电路有,常见的脉冲整形电路有、。 6.(中)为了实现高的频率稳定度,常采用振荡器;单稳态触发器受到外触发时进入。 7.(10-3易)在数字系统中,单稳态触发器一般用于______、 ______、______等。 8.(10-3中)施密特触发器除了可作矩形脉冲整形电路外,还可以作为________、_________。 9.(10-2易)多谐振荡器在工作过程中不存在稳定状态,故又称为________。 10.(10-2中)由门电路组成的多谐振荡器有多种电路形式,但它们均具有如下共同特点: 首先,电路中含有________,如门电路、电压比较器、BJT 等。这些器件主要用来产生________;其次,具有________, 将输出电压器恰当的反馈给开关器件使之改变输出状态;另外,还有,利用RC电路的充、放电特性可实现_______,以获得所需要的振荡频率。在许多实用电路中,反馈网络兼有_____作用。 11.(10-3易)单稳态触发器的工作原理是:没有触发信号时,电路处于一种_______。外加触发信号,电路由_____翻转到_____。电容充电时,电路由______自动返回至______。 二、选择题 1.(10-2中)下面是脉冲整形电路的是()。 A.多谐振荡器触发器 C.施密特触发器触发器 2.(10-2中)多谐振荡器可产生()。

脉冲宽度调制(PWM)技术 在电力电子变流器控制系统中,对于控制电路的要求往往是除能够控制负载的加电与断电外,还应该能够控制加载到负载上的电压高低及功率大小。在大功率电力电子电路中,控制加载至负载上电压及功率的实用方法就是脉冲宽度调制(pulse width modulation, PWM)。 1. 面积等效原理 在控制理论中,有一个重要的原理,即冲量等效原理:大小、波形不相同的窄脉冲变量(冲量)作用在具有惯性的环节上时,只要这些变量对时间的积分相等,其作用的效果将基本相同。这里所说的效果基本相同是指惯性环节的输出响应波形基本相同。例如,下图1示出的三个窄脉冲电压波形分别为矩形波、三角波和正弦波,但这二个窄脉冲电压对时间的积分相等,或者说它们的面积相等。当这三个窄脉冲分别作用在只有惯性的同一环节上时,其输出响应基本相同。因此,冲量等效原理也可以称为面积等效原理。 从数学角度进行分析,对上图1所示的三个窄脉冲电压波形进行傅里叶变换,则其低频段的特性非常相近,仅在高频段有所不同,而高频段对于具有惯性负载的电路影响非常小。由此进一步证明了面积等效原理的正确性。 2. 脉冲宽度调制技术

依据面积等效原理,在电路中可以利用低端电源开关或高端电源开关,以一定频率的导通和截止连续切换,使电源电压U i以一系列等幅脉冲(或称为矩形波)的形式加载到负载上,加载在负载上的电源电压Uo波形如图2所示。 图2所示的矩形波的电压平均值: 此式表明在一个脉冲周期内,电压的平均值与脉冲的占空比是成正比的,于是,可以通过改变脉冲的占空比来调整加载到负载上的电压大小。当占空比小时,加载到负载上的平均电压就低,即加载到负载上的功率小;而占空比大时,加载到负载上的平均电压就高,加载到负载上的功率大。这种通过等幅脉冲调节负载平均电压及功率的方法称为脉冲宽度调制,也称为斩波控制。 采用脉冲宽度调制方式为负载供电,由于供电电压是脉动的,势必会产生出各种谐波。为了明确脉冲宽度调制技术对负载产生的影响,且考虑此分析结果便于以后章节引用,可将图2所示的等幅脉冲序列描述为 式中,G(t)为开关函数,其波形如图3所示。 在此式中,第一项DUi是等幅脉冲序列的直流成分,也即输出电压的平均值。可见,输出电

PWM (脉冲宽度调制)原理与实现 1、PWM原理 2、调制器设计思想 3、具体实现设计 一、PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs<

其中,。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语 音信号x(t)加上一个直流成分以及相位调制波构成。当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。 二、数字脉冲宽度调制器的实现: 实现数字脉冲宽度调制器的基本思想参看图2。 图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。 图3 为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大

一、PWM技术原理 由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。 二、正弦波脉宽调制(sPwM) 1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。度正比于该曲线函数值的矩形脉冲。若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小。反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,如图5 3所示;这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。sPwM方式的控制方法可分为多种。从实现的途径可分为硬件电路与软件编程两种类型;而从工作原理上则可按调制脉冲的极性关系和控制波与载波间的频率关系来分类。按调制脉冲极性关系可分为单极性sPwM和双极性sPwM两种。 3.双极性sPwM法双极性控制则是指在输出波形的半周期内,逆变器同一桥臂中的两只元件均处于开关状态,但它们之间的关系是互补的,即通断状态彼此是相反交替的。这样输出波形在任何半周期内都会出现正、负极性电压交替的情况,故称之为双极性控制。与单极性控制方式相比,载波和控制波都变成了有正、负半周的交流方式,其输出矩形波也是任意半周中均出现正负交替的情况 4.sPwM生成方法正弦脉宽调制波(sPwM)的生成方法可分为硬件电路与软件编程两种方式。按照前面讲述的PWM逆变电路的基本原理和控制方法,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对功率开关器件的通断进行控制,就可以生成SPWM波形。但这种模拟电路结构复杂,难以实现精确的控制。微机控制技术的发展使得用软件生成的SPWM波形变得比较容易,因此,目前SPWM波形的生成和控制多用微机来实现。本节主要介绍用软件生成SPWM波形的几种基本算法。

1. 试画出超外差式接收机方框图,并简要说明各部分的功能。 答: 从天线收到的微弱高频信号经高频小信号放大器放大,然后送至混频器与本地振荡器所产生的等幅振荡电压相混合,得到中频电压。中频电压经中频放大器放大后送入检波器,解调出低频信号。最后再经低频放大器放大后送扬声器,转变为声音信号。 2. 高频功率放大器欠压、临界、过压状态是如何区分的?当Vcc (集电极电源电压),Vbb (基极电源电压),Vbm (输入电压振幅)和负载电阻R L 只变化其中一个时,放大器的工作状态将如何变化? 答:当高频谐振功率放大器的集电极电流都在临界线的右方时,称为欠压工作状态; 当集电极电流的最大值正好落在临界线上时,称为临界工作状态; 当集电极电流的最大值穿过了临界线到达左方饱和区时,称为过压工作状态; 随着谐振电阻R L 的增大,高频谐振功率放大器的工作状态由欠压到临界再到过压。 随着V cc 的增大,高频谐振功率放大器的工作状态由过压到临界再到欠压。 随着V bb 增大,高频谐振功率放大器的工作状态由欠压到临界再到过压。 随着V bm 增大,高频谐振功率放大器的工作状态由欠压到临界再到过压。 3. 为什么基极调幅电路必须工作于欠压状态? 答:基极调幅是利用调制信号电压来改变高频功率放大器的基极偏压,以实现调幅的(3分)。在欠压状态下,集电极电流的基波分量随基极电压成正比变化。因此,集电极回路的输出高频电压的振幅将随调制信号的波形而变化,得到调幅波。地振荡器所产生的等幅振荡电压相混合,得到中频电压。中频电压经中频放大器放大后送入检波器,解调出低频信号。最后再经低频放大器放大后送扬声器,转变为声音信号。 4. 无线电通信为什么要进行调制?常用的模拟调制方式有哪些? 答: 1) 信号不调制进行发射天线太长,无法架设。2) 信号不调制进行传播会相互干扰,无法接收。常用的模拟调制方式有调幅、调频及调相 5. 谐振功率放大器效率高的原因是什么?其输出波形不失真的原因是什么? 答:谐振功放效率高是因为它的工作频率很高 ,高频谐振功放实质是将直流功率转变为高频功率,为了输出功率足够大,常选在丙类状态下工作,而丙类状态的转换率大于甲,乙类,所以其效率高。输出不失真是因为它采用选频网络作为负载,使用谐振负载进行选频输出,故输出仍为正弦波,波形不会失真。 6. 小信号谐振放大器与谐振功率放大器的主要区别是什么? 答:1)小信号谐振放大器的作用是选频和放大,它必须工作在甲类工作状态;而谐振功率放大器为了提高效率,一般工作在丙类状态。 2)两种放大器的分析方法不同:前者输入信号小采用线性高频等效电路分析法,而后者输入信号大采用折线分析法。 7. 解释为什么理想丁类高频功率放大效率可达00100? 答:丁类谐振功率放大器中,由于功率管工作在开关状态,理想状态下,集电极损耗为0,故理想

信号处理常用方法 对于实时数据采集系统,为了消除干扰信号,通常需要对采集到的数据进行数字滤波,常采用的数字滤波法有以下几种: 一、算术平均滤波法 算术平均滤波法是指对一点数据连续采n个值,然后取其平均值。这种方法能够滤除一般的随机干扰信号,使信号变的平滑,但当n值较大时,灵敏度会降低,故n值要视具体情况进行选取。一般情况下取3~5平均即可。 二、滑动平均滤波法 算术平均滤波法每计算一次数据需要采集n次数据,这对于测量数据较慢或要求数据计算速度较快的实时控制系统则无法使用,此时可采用滑动平均滤波法。滑动平均滤波法是把n个采样值看成一个队列,队列是长度为n,每进行一次采样就把采样值放入队尾,而去掉原队首的一个采样值,这样,队列中就始终有n个“最新”的采样值,对这n个值进行平均就可以得到新的滤波值。 滑动平均滤波法对周期性的干扰具有较好的抑制作用,但对偶然出现的脉冲性干扰抑制作用差,难以消除由于脉冲干扰而引起的采样值的偏差。 三、去极值滤波法 算术平均滤波法和滑动平均滤波法都难以消除脉冲干扰所引起的误差,会将脉冲干扰“平均”到结果中去。在脉冲干扰严重的场合可采用去极值平均滤波法。去极值平均滤波法的思想是:连续采样n个值,找出并去除其中的最大值和最小值,然后对其余的n-2个值求平均,即可得到有效采样值。为了使算法简单,n通常取偶数,如4,6,8,10等。 四、中位值滤波法 对某一被测信号连续采样n次,然后把n次采样值按大小排序,取中间值为本次采样值。为方便,n一般取奇数。算法上,则可以采用“冒泡法”来对这n个数据进行排序。中位值滤波法能有效地克服因偶然因素引起的波动干扰,但对于一些快变参数则不宜采用。

UNISONIC TECHNOLOGIES CO., LTD TL1451 LINEAR INTEGRATED CIRCUIT DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUITS DESCRIPTION The UTC TL1451 incorporates on a single monolithic chip all the functions required in the construction of two pulse-width-modulation (PWM) control circuits. Designed primarily for power supply control, the UTC TL1451 contains an on-chip 2.5V regulator, two error amplifiers, an adjustable oscillator, two dead-time comparators, undervoltage lockout circuitry, and dual common –emitter output transistor circuits. FEATURES *Complete PWM power control circuitry *Completely synchronized operation *Internal undervoltage lockout protection *Wide supply voltage range *Internal Short-Circuit protection *Oscillator frequency 500kHz max *Variable dead time provides control over total range *Internal regulator provides a stable 2.5V reference supply *Pb-free plating product number: TL1451L ORDERING INFORMATION Order Number Normal Lead free plating Package Packing TL1451-S16-R TL1451L-S16-R SOP-16 Tape Reel TL1451-S16-T TL1451L-S16-T SOP-16 Tube TL1451-P16-R TL1451L-P16-R TSSOP-16Tape Reel TL1451-P16-T TL1451L-P16-T TSSOP-16Tube TL1451-D16-T TL1451L-D16-T DIP-16 Tube

1.试画出超外差式接收机方框图,并简要说明各部分的功能。 答: 从天线收到的微弱高频信号经高频小信号放大器放大,然后送至混频器与本地振荡器所产生的等幅振荡电压相混合,得到中频电压。中频电压经中频放大器放大后送入检波器,解调出低频信号。最后再经低频放大器放大后送扬声器,转变为声音信号。 2.高频功率放大器欠压、临界、过压状态是如何区分的?当Vcc(集电极电源电压),Vbb(基极电源电压),Vbm(输入电压振幅)和负载电阻R L只变化其中一个时,放大器的工作状态将如何变化? 答:当高频谐振功率放大器的集电极电流都在临界线的右方时,称为欠压工作状态; 当集电极电流的最大值正好落在临界线上时,称为临界工作状态; 当集电极电流的最大值穿过了临界线到达左方饱和区时,称为过压工作状态; 随着谐振电阻R L的增大,高频谐振功率放大器的工作状态由欠压到临界再到过压。 随着V cc的增大,高频谐振功率放大器的工作状态由过压到临界再到欠压。 随着V bb增大,高频谐振功率放大器的工作状态由欠压到临界再到过压。 随着V bm增大,高频谐振功率放大器的工作状态由欠压到临界再到过压。 3.为什么基极调幅电路必须工作于欠压状态? 答:基极调幅是利用调制信号电压来改变高频功率放大器的基极偏压,以实现调幅的(3分)。在欠压状态下,集电极电流的基波分量随基极电压成正比变化。因此,集电极回路的输出高频电压的振

幅将随调制信号的波形而变化,得到调幅波。地振荡器所产生的等幅振荡电压相 混合,得到中频电压。中频电压经中频放大器放大后送入检波器,解调出低频信 号。最后再经低频放大器放大后送扬声器,转变为声音信号。 4. 无线电通信为什么要进行调制?常用的模拟调制方式有哪些? 答: 1) 信号不调制进行发射天线太长,无法架设。2) 信号不调制进行传播会相互干扰,无法接收。常用的模拟调制方式有调幅、调频及调相 5. 谐振功率放大器效率高的原因是什么?其输出波形不失真的原因是什么? 答:谐振功放效率高是因为它的工作频率很高 ,高频谐振功放实质是将直流功率转变为高频功率,为了输出功率足够大,常选在丙类状态下工作,而丙类状态的转换率大于甲,乙类,所以其效率高。输出不失真是因为它采用选频网络作为负载,使用谐振负载进行选频输出,故输出仍为正弦波,波形不会失真。 6. 小信号谐振放大器与谐振功率放大器的主要区别是什么? 答:1)小信号谐振放大器的作用是选频和放大,它必须工作在甲类工作状态;而谐振功率放大器为了提高效率,一般工作在丙类状态。 2)两种放大器的分析方法不同:前者输入信号小采用线性高频等效电路分析法,而后者输入信号大采用折线分析法。 7. 解释为什么理想丁类高频功率放大效率可达00100? 答:丁类谐振功率放大器中,由于功率管工作在开关状态,理想状态下,集电极损耗为0,故理想丁类高频功率放大效率可达00100。 8. 石英晶体振荡器有几种基本类型?石英晶体在这几种电路中分别起什么作用?试画出石英谐振器的基频等效电路。 答:石英晶体振荡器有两种类型:并联谐振型晶体振荡器和串联谐振型晶体振荡器。 并联型:晶体的作用是把晶体置于反馈网络的振荡回路之中,作为感性元件与回路其他元件一起按

相关主题
文本预览
相关文档 最新文档