当前位置:文档之家› 高等数学期末复习题与答案

高等数学期末复习题与答案

高等数学期末复习题与答案
高等数学期末复习题与答案

高等数学》2期末复习题

一、填空题:

1. 函数)3l n (12222y x y x z --+-+=的定义域是 1≦X^2+Y^2<3 .

2.设,)1(y x z +=则

=??y

z

(1)ln(1)y x x ++ . 3.函数22ln(1)z x y =++在点(1,2)的全微分(1,2)

dz

= 12

33

dx dy +

4.设,),(22y x xy y x f +=+则=),(y x f .

设22(,),y

f x y x y x

+=-则=),(y x f .

5.设v e z u sin = 而 xy u = y x v += 则

=??y

z

[sin()cos()]xy e x x y x y +++ 6.函数 22y x z += 在点(1,2)处沿从点(1,2)到点(2,32+)的方

向导数是 1+

7.改换积分次序??=20

22),(y y

dx y x f dy ;1

1

(,)y dy f x y dx -=? .

8.若L 是抛物线 x y =2上从点A )1,1(-到点B )1,1(的一段弧,则?L

xydx =

9.微分方程22(1)0x x e dy ye dx ++=的通解为 . 二、选择题: 1.

y xy y x )

tan(lim

)0,2(),(→ 等于 ( )(上下求导)

A .2, B.

2

1

C.0

D.不存在 2.函数 y x z -= 的定义域是( D )

A .{}0,0),(≥≥y x y x B.{}

y x y x ≥2),(

C.{}

y x y y x ≥≥2,0),( D .{}

y x y x y x ≥≥≥2,0,0),(

3.

=??),(00|)

,(y x x

y x f ( B ) A.x y x f y y x x f x ?-?+?+→?),(),(lim

00000

B.x y x f y x x f x ?-?+→?)

,(),(lim 00000

C.x y x x f y y x x f x ??+-?+?+→?),(),(lim

00000

D. x

y x x f x ??+→?),(lim 000

5.设)(22y x F z +=,且F 具有导数,则

=??+??y

z

x z (D ) A.y x 22+; B.)()22(22y x F y x ++; C. )()22(22y x F y x +'-; D. )()22(22y x F y x +'+. 6.曲线 t a x cos =,t a y sin =,amt z =,在 4

π

=

t 处的切向量是 ( D )

A .)2,1,1( B.)2,1,1(- C.)2,1,1(m D.)2,1,1(m - 7.对于函数xy x y x f +=2),( ,原点)0,0( ( A )

A .是驻点但不是极值点 B.不是驻点 C.是极大值点 D.是极小值点 8.设I=dxdy y x D

??-+5221, 其中D 是圆环4122≤+≤y x 所确定的闭区域,

则必有( )

A .I 大于零 B.I 小于零 C.I 等于零 D.I 不等于零,但符号不能确定。 9. 已知L 是平面上不包含原点的任意闭曲线,若曲线积分 22

0L xdx aydy

x y -=+? ,

则a 等于 ( ).

A -1

B 1

C 2

D -2

10.若L 为连接)0,1(及)1,0(两点的直线段,则曲线积分()L

x y ds +?=( )

A .0 B.1 C.2 D.2

11.设D 为,222y y x ≤+则=+??dxdy y x f D

)(22( )

A.dx y x f dy y y )(2220

2

2

+?

?-; B. rdr r f d )(21

020??

θπ

C. rdr r f d )(2sin 20

?

π

θ; D. dy y x f dx )(2220

1

1

+?

?-.

12. 微分方程()1x e y y '+=的通解为( )

A.x ye c =;

B.x ye x c -=+;

C.()x y x c e -=+;

D.x y cxe -= 13.( )是微分方程x y y e -'''+=在初始条件0

1,1x x y

y =='

==-下的特解.

A.12x y c c xe -=-;

B.x y xe -=-;

C.12x y xe -=-;

D.1x y xe -=-. 三、计算题:

1.设33(sin ,)x z f e y x y =+,求 z

x

??及z y ??,其中f 具有一阶连续偏导数.

2.设sin sin x y u v x v y u +=+??=?, 求 x u ??, x v

??

3.求旋转抛物面 122-+=y x z 在点)4,1,2(处的切平面及法线方程。

4.求函数322(,)339f x y x y x y x =-++-3的极值

5.计算2D

xy dxdy ??,其中D 是由圆周 422=+y x 及y 轴所围成的右

半闭区域.

6.计算2

y D

e dxdy -??,其中D 是以O (0,0),A (1,1),B (0,1)为顶点的三角

形闭区域.

7.计算???Ω

xdxdydz ,其中Ω是三个坐标面与平面 1=++z y x 所围成的区域.

8.计算 ?-+++-L

dy y x dx y x )1353()42(,其中L 为圆2522=+y x 的正向边界。

9.计算曲线积分 33()(),L

y x dy x y dx +++? 其中L 是从O(0, 0)沿上半圆

x y x 222=+到A(2, 0).

10.验证:在整个xoy 面内,xdy y xdx y x 2cos 3cos 3cos 3sin sin 4-是某个函数的全微分,并求出这样的一个函数.

11.求微分方程22(1)24x y xy x '++= 的通解.

12.求解微分方程的特解: 22(3)20,(0)1y x dy xydx y -+==

13.解微分方程 23()()0yy y y ''''-+=

.

四、应用题:

1.用钢板制造一个容积为V 的无盖长方形水池,应如何选择水池的长、宽、高才最省钢板.

2.已知矩形的周长为24cm ,将它绕其一边旋转而构成一圆柱体,试求所得圆柱

体体积最大时的矩形面积.

3.求抛物线242y x y x ==与曲线所围成的闭区域的面积.

4.求抛物面226z x y =--

与锥面z =所围成的立体的体积.

高等数学2期末复习题答案

一、填空题:

1、22{(,)13}x y x y ≤+<

2、(1)ln(1)y x x ++

3、12

33

dx dy +

4、22

(1)

2;1x y x y y

--+ 5、[sin()cos()]xy e x x y x y +++

6

、1+ (注:方向导数

0,00000()

(,)cos (,)cos x y x y f f x y f x y l

αβ?=+?)

7

、40

2

(,)x dx f x y dy ??;

011

10

(,)(,)x

dx f x y dy dx f x y dy +-+??

?

8、

45

(注:01104

(5

L xydx x dx =+=???) 9、22(1)x y e C +=

二、选择题: 1、A; 2. D; 3. B; 4.缺 5. D; 6. D; 7. A; 8. A; 9. A; 10.C; 11. C; 12.C; 13.D 三、计算题:

1.解:令33sin ,x u e y v x y ==+,则

2212sin 3sin 3x x z z u z v z z e y x e y f x f x u x v x u v

???????''=?+?=+=?+???????? 2212cos 3cos 3x x z z u z v z z e y y e y f y f y u y v y u v

???????''=?+?=+=?+???????? 2. 解:两方程分别两边对x 求偏导数,注意,u v 是关于,x y 的二元函数,得

1sin cos cos u v x x v u v x v y u x x ???=+????????+=???? 即 1cos cos sin u v

x x u v y u x v v x x ???+=??

??????-=????

这是以,u v

x x

????为未知量的二元线性方程组。 当 11

(cos cos )0cos cos J x v y u y u x v

=

=-+≠-时,有

111cos sin sin cos cos cos u x v v

v x v x J x v y u ?+==

-?+,

111sin cos cos sin cos cos v v y u

y u v x J x v y u

?-==-

?+ 3. 解:旋转抛物面 122-+=y x z 在点)4,1,2(处的切向量 (2,1,4)

(2,2,1)

(4,2,1)n x y =-=-

于是,所求切平面方程为 4(2)2(1)(4)0x y z -+---=,即 4260x y z +--= 法线方程为

214

421

x y z ---==- 4. 解:解方程组2

23690360f x x x

f y y y ??=+-=??????=-+=???,

得四个驻点1234(1,0),(1,2),(3,0),(3,2)P P P P --.又

66,0,66xx

xy yy f x f f y ''''''=+==-+. 对2

1(1,0),0,P AC B ->且0A >,则1(1,0)P 是函数的极小值点;

对22(1,2),0P AC B -<,则2(1,2)P 不是极值点; 对23(3,0),0P AC B --<,则3(3,0)P -不是极值点;

对24(3,2),0P AC B -->,且0A <,则4(3,2)P -是函数的极大值点. 于是,函数有极小值(1,0)1395f =+-=-,

极大值 (3,2)27827122731f -=--+++=.

5. 解:利用极坐标变换,令cos ,sin x r y r θθ==,则dxdy rdrd θ=,且D 可表示为:02,2

2

r π

π

θ≤≤-

≤≤

.于是

2

D

xy dxdy ??2

2

2

4

220

2

cos sin cos sin D r r rdrd r dr d π

πθθθθθθ-

=??=????

2

25302

11

64sin 53

15

r ππθ

-

=?=

. 6. 解:三角形区域D 由直线,1y x y ==及y 轴围成,选择先对x 积分,

2

2

2

21

11

10

11

(1)22y

y y y

y D

e dxdy dy e dx ye dy e e -----===-=-??

???.

(注:此题也可以参看课本167页例2的解法)

7.解题过程见课本124页例1.

8. 解:

(,)24,(,)3513P x y x y Q x y x y =-+=+-在L 围成的圆域D:2225x y +≤上全在连续的偏导数,

1,3P Q y x ??=-=??,从而 4Q P

x y

??-=??.于是由格林公式,得

(24)(3513)44425100L

D

D

x y dx x y dy dxdy dxdy ππ-+++-===?=?

????.

9. 解:33(,),(,)P x y x y Q x y y x =+=+,有

1P Q

y x

??==?? 在整个xoy 平面上恒成立,所以曲线积分与路径无关,故可取x 轴上线段OA 作为积分路径.

OA 的方程为0y =,且x 从0变到2,0dy =,从而

3333()()()()L

OA

y x dy x y dx y x dy x y dx +++=+++?

?2

2

340

1

4

4x dx x ===?

.

10. 解:(,)4sin sin 3cos ,(,)3cos3cos 2P x y x y x Q x y y x ==-,有

4sin cos 3cos36sin 2cos3P

x x y x y y

?=?=?,

3cos32(sin 2)6sin 2cos3Q

y x x y x

?=-?-=?, 即有

P Q y x

??=??在整个x o y 平面上恒成立,因此在整个xoy 面内,x d y

y x d x y x 2c o s 3c o s 3c o s 3s i n s i n 4-是某个函数的全微分. 取ARB 为积分路径,其中各点坐标分别为(0,0),(,0),(,)A R x B x y ,得 (,)(0,0)

(,)4sin sin3cos 3cos3cos2x y u x y x y xdx y xdy =-?

4sin sin3cos 3cos3cos 24sin sin3cos 3cos3cos 2AR

RB

x y xdx y xdy x y xdx y xdy

=-+-??

03cos3cos 23cos 2cos3x

y

y

dx y xdy x ydy =+-=-???

1

3cos 2sin 3sin 3cos 23y

x y y x =-?=-.

11. 解法一:方程可改写为 2

222411

x x y y x x '+=++,这是一阶非齐次线性微分方

程.先求对应的齐次线性方程的通解.

由2

201

x

y y x '+

=+,分离变量,得221dy x dx y x =-+,两边积分,解得 1

2

1

C y x =

+. 用常数变易法,将1C 换成()

C x .即2

()

1

C x y x =

+,222

12()()1(1)

x

y C x C x x x ''=

-++. 代入原方程,化简得 2()4C x x '=.故 3

4()3

C x x C =

+. 于是方程的通解为 3

214()13

y x C x =

++. 解法二:方程可改写为 2

222411

x x y y x x '+=++. 这是一阶非齐次线性微分方程,其中2

2224(),()11

x x P x Q x x x ==++.利用通解公式

()()(())P x dx

P x dx y e Q x e dx C -?

?=+?222221

124()1

x x

dx dx x x x e

e dx C x -++??=++? 2232221414

[(1)]()1113

x x dx C x C x x x =?++=++++?.

12. 课本212页第8题第(1)小题。

解:原方程可写成 221320x x dx

y y dy -+=.令x u y =,即 x yu =,有

dx du u y dy dy =+,则原方程成为 2132()0du

u u u y dy -++=,分离变量,得 2

21u dy du u y

=-.两边积分,得2

1u Cy -=.

代入x

u y

=

并整理,得通解 223x y Cy -=. 由初始条件0,1,x y ==得 1C =-.于是所求特解为 322y y x =-. 13.解题过程见课本212页例5.

四、应用题:

1.解法一:设水池的长、宽、高分别是,,x y z .已知xyz=V ,从而高V

z xy

=,水池表面的面积

112()2()S xy xz yz xy V x y

=++=++ S 的定义域{(,)0,0}D x y x y =<<+∞<<+∞.

这个问题就是求二元函数S 在区域D 内的最小值.

解方程组2222122()0,122()0.

S

V y V y x

x x S V x V x y

y y ??=+-=-=??????=+-=-=??? 在区域D

内解得唯一得驻点

.

根据实际问题可知最小值在定义域内必存在,因此可断定此唯一驻点就是最小

值点.

即当长,宽均为

时,水池所用材料最省. 解法二:设水池的长、宽、高分别是,,x y z .已知xyz=V ,水池表面的面积 2()S xy xz yz =++ S

的定义域}0,0,0),,{(>>>=z y x z y x D .此题就是求函数

)(2yz xz xy S ++=在约束条件xyz=V 下的最小值.

构造拉格朗日函数 2()()L xy xz yz xyz V λ=+++-.

解方程组

20,20(1)

20,20(2) 220,220(3)

0.(4) L

y z yz xy xz xyz

x

L

x z xz xy yz xyz

y

L

x y xy xz yz xyz z

L

xyz V

λλ

λλ

λλ

λ

?

?

=++=++=

??

?

?

?=++=++=

??

?

?

?

?=++=++=

??

??

?=-=

??

?

比较(1),(2),(3)式,得 x=y=2z,代入(4)式中,有32

x V

=,

即x=

于是,x,y,z

只有唯一一组解

2?

.

由问题的实际意义最小值在定义域内必存在.因此,函数S

在其唯一驻点?

处必取得最小值.

故当长方形水池的长,宽,高分别是时所用材料最省.

2.解题过程见课本98页例4.

3.利用二重积分求闭区域的面积

解:所求区域的面积为

D

A dxdy

=??,其中D为抛物线242

y x y x

==

与曲线

所围成的闭区域.两曲线交于两点(0,0),(1,2).选择先对x积分,于是,

2

222

2

00

4

1141

(2)

4433

y

y

D

A dxdy dy dx y y dy

===-=?=

?????.

4.利用三重积分计算立体的体积.

解法一:所求立体的体积为V dxdydz

Ω

=???,其中Ω是抛物面22

6

z x y

=--

与锥面z=所围成的立体.

利用直角坐标计算.由22

6

z x y

=--

与z=消去z,解

得2

=,即Ω在xoy面上的投影区域D为圆域224

x y

+≤.于是

2222{(,,6(),4}x y z z x y x y Ω=≤≤-++≤. 因此

226()x y D

V dxdydz dxdy dz -+Ω

==?????

=22[6()D

x y dxdy -+?? (用极坐标) 2

22

2

2

430

00

1132

(6)2(3)433d r r rdr r r r π

θππ=--?=--=?

?.

解法二:所求立体的体积为 V dxdydz Ω

=???,其中Ω是抛物面226z x y =--与

锥面z =所围成的立体.

利用柱面坐标计算. 由226z x y =--

与z =消去z ,解

2=,即Ω在xoy 面上的投影区域D 为圆域224x y +≤.于是,在柱面坐标变换下

2{(,,)6,02,02}r z r z r r θθπΩ=≤≤-≤≤≤≤.

因此 2

22

60

r r

V dxdydz d dr rdz πθ-Ω

==??????

2

2

2243001132

2(6)2(3)433r r r dr r r r πππ=?--=--=?.

高数期末考试试题及答案[1]

北京邮电大学2009-2010学年第二学期《高等数学》(下)期末试题(A2) 1.极限2 221lim 1x x y x y x +→∞→??+= ? ? ?2e . 2.设()2y z x y x ?=++,其中?具有连续二阶偏导数, 则2z x y ???=2x ()''21()ln 1y x y x y x ?-+++. 3.曲面arctan()z xy =在点(1,1,)4 P π处的法线方程为 4112 2 1 1 1 z x y π ---= = -. 4.函数z (,,)21f x y z z e xy =-++在点(2,1,0 )处的方向导数的最大值为 5.设2x u v z y u vz ?=-++?=+? 确定u=u(x,y,z),v=(x,y,z),则u x ?=?12z zu -+. 6.幂函数21 (1)9n n n x ∞ =-∑的收敛区域是 (2,4)- . 7.设2 ,10 ()1,01x x f x x x --<≤?=?-<≤?,是周期为2的周期函数,则其傅里叶级数 在点x=4处收敛于 12 . 8.设2222y z R ++=∑:x 外侧,则2223/2 ()xdydz ydzdx zdxdy x y z ++=++∑ ??4π. 9.已知22A=y +2z +xy ,=x +y +z ,i j k B i j k ,则div (A )B ? =3224x y z x z ---. 10.设L 为取正向的圆周x 2+y 2=9,则曲线积分 2 (22)(4)L xy y dx x x dy -+-?= 18π- .(用格林公式易) 二(8分).将函数f(x)= 2 12565x x x ---在点x 0=2处展开成泰勒级数,并指出其收敛域. 解:若用泰勒级数 2() 0000 000''()()()()()()'()()2! ! n n f x x x f x x x f x f x f x x x n --=+-++++

大一(第一学期)高数期末考试题及答案

( 大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. … 4. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 5. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 6. , 7. = +→x x x sin 20 ) 31(lim . 8. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 9. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 10. = -+? 2 12 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 11. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .

高等数学专科复习题及答案

高等数学期末试卷 一、填空题(每题2分,共30分) 1.函数1 1 42-+ -= x x y 的定义域是 . 解. ),2[]2,(∞+--∞Y 。 2.若函数52)1(2 -+=+x x x f ,则=)(x f . 解. 62 -x 3.________________sin lim =-∞→x x x x 答案:1 正确解法:101sin lim 1lim )sin 1(lim sin lim =-=-=-=-∞→∞→∞→∞→x x x x x x x x x x x 4.已知22 lim 2 22=--++→x x b ax x x ,则=a _____, =b _____。 由所给极限存在知, 024=++b a , 得42--=a b , 又由23 4 12lim 2lim 22 22=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a 5.已知∞=---→) 1)((lim 0x a x b e x x ,则=a _____, =b _____。 ∞=---→)1)((lim 0x a x b e x x Θ, 即01)1)((lim 0=-=---→b a b e x a x x x , 1,0≠=∴b a 6.函数????? ≥+<=0 1 01sin )(x x x x x x f 的间断点是x = 。 解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。 因为 1)0(1)1(lim 01 sin lim 00 ==+=+-→→f x x x x x 所以函数)(x f 在0=x 处是间断的, 又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的间断点是0=x 。 7. 设()()()n x x x x y -??--=Λ21, 则() =+1n y (1)!n + 8.2 )(x x f =,则__________)1)((=+'x f f 。

高等数学A(一)期末试题及答案

大学2013~2014学年第一学期课程考试试卷(A 卷) 课 程 考试时间 ………………注:请将答案全部答在答题纸上,直接答在试卷上无效。……………… 一、填空题(每小题2分,共10分) (1) =-∞→x x x )11(lim e 1 . (2) 设)tan(2x x y +=,则=dy dx x x x )(sec )21(22++ . (3) 曲线36223+++=x x x y 的拐点是 )6,1(- . (4) =-? 10211dx x 2π . (5) =?∞ +121dx x 1 . 二、选择题(每小题2分,共10分) (1) =∞→x x x 2sin lim (A) (A) 0. (B) 1. (C) 2. (D) 21. (2) 设x x x f tan )(=,则0=x 是函数)(x f 的(A) (A) 可去间断点. (B) 跳跃间断点. (C) 第二类间断点. (D) 连续点. (3) 当0→x 时,下列变量中与x 是等价无穷小的是(B) (A) x 3sin . (B) 1-x e . (C) x cos . (D) x +1. (4) 函数)(x f 在0x 点可导是它在该点连续的(C) (A) 充分必要条件. (B) 必要条件. (C) 充分条件. (D) 以上都不对. (5) 设)(x f 在),(∞+-∞内有连续的导数,则下列等式正确的是(D) (A) ?=')()(x f dx x f . (B) C x f dx x f dx d +=?)()(. (C) )0()())((0f x f dt t f x -='?. (D) )())((0x f dt t f x ='?. 三、计算下列极限、导数(每小题6分,共18分) (1) 213lim 21-++--→x x x x x .解: )13)(2()13)(13(lim 213lim 2121x x x x x x x x x x x x x x ++--+++-+--=-++--→→ 6 2)13)(2(1lim 2)13)(2)(1(22lim 11-=++-+-=++-+--=→→x x x x x x x x x x

高等数学试题及答案新编

《 高等数学》 一.选择题 1.当0→x 时,)1ln(x y +=与下列那个函数不是等价的() A)、x y =B)、x y sin =C)、x y cos 1-=D)、1-=x e y 2.函数f(x)在点x 0极限存在是函数在该点连续的() A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3.下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有(). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、 (( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4.下列各式正确的是() A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+?D )、2 11 ()dx C x x -=-+? 5.下列等式不正确的是(). A )、 ()()x f dx x f dx d b a =???????B )、()()()[]()x b x b f dt x f dx d x b a '=???? ??? C )、()()x f dx x f dx d x a =???????D )、()()x F dt t F dx d x a '=???? ??'? 6.0 ln(1)lim x x t dt x →+=?() A )、0 B )、1 C )、2 D )、4 7.设bx x f sin )(=,则=''?dx x f x )(()

高数2-期末试题及答案

北京理工大学珠海学院 2010 ~ 2011学年第二学期《高等数学(A)2》期末试卷A (答案) 适用年级专业:2010级信息、计算机、机械与车、化工与材料学院各专业 一.选择填空题(每小题3分,共18分) 1.设向量 a =(2,0,-2),b = (3,-4,0),则a ?b = 分析:a ?b = 2 234 i j k -- = -6j – 8k – 8i = (-8,-6,-8) 2.设 u = 2 2 3 x xy y ++.则 2u x y ??? = 分析:u x ?? = 22x y +, 则2u x y ??? = 2' (2)x y += 2y 3.椭球面 2 2 2 2315x y z ++= 在点(1,-1,,2)处的切平面方程为 分析:由方程可得,2 2 2 (,,)2315F x y z x y z =++- ,则可知法向量n =( Fx, Fy, Fz ); 则有 Fx = 2x , Fy = 4y , Fz = 6z ,则过点(1,-1,,2)处的法向量为 n =(2,-4,,12) 因此,其切平面方程为:2(1)4(1)12(2)0x y z --++-= ,即 26150x y z -+-= 4.设D :y = x, y = - x, x = 2直线所围平面区域.则 (2)D y d σ+=??___________ 分析:画出平面区域D (图自画),观图可得, 2 (2)(2)8x x D y d dx y dy σ-+=+=???? 5.设L :点(0 , 0 )到点(1 , 1)的直线段.则 2L x ds =? _________ 分析:依题意可知:L 是直线y = x 上点(0 , 0 )与点(1 , 1)的一段弧,则有 1 1 2 L x ds x x === ? ?? 6.D 提示:级数 1 n n u ∞ =∑发散,则称级数 1 n n u ∞ =∑条件收敛 二.解答下列各题(每小题6分,共36分)

高等数学复习题库和答案

网络远程教育专升本高等数学复习题库和答案 一、选择题 1. 下列函数中,表达式为基本初等函数的为( ). A: { 2 20 21 x x y x x >= ≤+ B: 2cos y x x =+ C: y x = D: sin y = 2. 下列选项中,满足()()f x g x =的是( ). A: ()cos , ()f x x g x == B: (), ()f x x g x == C: ()(), ()arcsin sin f x x g x x == D: 2 ()ln , ()2ln f x x g x x == 3. 设)(x f 的定义域为[]1,0,则(21)f x +的定义域为( ). A: 1 ,02??- ???? B: 1,02??- ??? C: 1,02??- ??? D: 1,02??-???? 4. 函数)(x f y =的定义域为]1,0[,则函数)(2x f y =的定义域为( ). A: [0,1]; B: )1,0(; C: [-1, 1] D: (-1, 1). 5. 设)(x f 的定义域为[]1,0,则)12(-x f 的定义域为( ). A: ? ? ????1,21 B: 1,12?? ??? C: 1,12?????? D: 1,12?? ??? 6. 函数4 339 9)(2 2<<≤???? ?--=x x x x x f 的定义域为( ). A: [-3, 4] B: (-3, 4) C: [-4, 4] D: (-4, 4) 7. 3 1lim (1)n n →∞ + =( ). A: 1 B: E C: 3 e D: ∞

大一高数期末考试试题

大一高数期末考试试题

一.填空题(共5小题,每小题4分,共计20分) 1. 2 1 lim()x x x e x →-= .2 .()()120051 1x x x x e e dx --+-= ? .3.设函数()y y x =由方程2 1 x y t e dt x +-=? 确定,则 x dy dx == .4. 设()x f 可导, 且1 ()() x tf t dt f x =? ,1)0(=f ,则 ()=x f .5.微分方程044=+'+''y y y 的通解 为 . 二.选择题(共4小题,每小题4分, 共计16分) 1.设常数0>k ,则函数k e x x x f +- =ln )(在),0(∞+内零点的个数为( ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程43cos2y y x ''+=的特解形式为( ). (A )cos2y A x * =; (B )cos 2y Ax x * =; (C )cos2sin 2y Ax x Bx x * =+; (D )x A y 2sin * =.3.下列结论不一定成立的是( ). (A )若[][]b a d c ,,?,则必有()()??≤b a d c dx x f dx x f ;(B ) 若 )(≥x f 在[]b a ,上可积,则()0b a f x dx ≥?;(C )若()x f 是 周期为T 的连续函数,则对任意常数a 都有 ()()?? +=T T a a dx x f dx x f 0 ;(D )若可积函数()x f 为奇函数,则

高等数学试题及答案91398

《高等数学》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

关于高等数学复习题及答案

关于高等数学复习题及 答案 标准化管理部编码-[99968T-6889628-J68568-1689N]

中南大学现代远程教育课程考试复习题及参考答案 高等数学 一、填空题 1.设2 )(x x a a x f -+=,则函数的图形关于 对称。 2.若???<≤+<<-=2 0102sin 2x x x x y ,则=)2(π y . 3. 极限lim sin sin x x x x →=0 21 。 4.已知22 lim 2 22=--++→x x b ax x x ,则=a _____, =b _____。 5.已知0→x 时,1)1(3 1 2-+ax 与1cos -x 是等价无穷小,则常数a = 6.设)(22y z y z x ?=+,其中?可微,则y z ??= 。 7.设2e yz u x =,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则 =??) 1,0(x u 。 8.设??,),()(1 f y x y xy f x z ++=具有二阶连续导数,则 =???y x z 2 。 9.函数y x xy xy y x f 22),(--=的可能极值点为 和 。 10.设||)1(sin ),(22xy x y x y x f -+=则_____________)0,1('=y f . 11.=?xdx x 2sin 2 . 12.之间所围图形的面积为上曲线在区间x y x y sin ,cos ],0[==π . 13.若2 1 d e 0= ? ∞ +-x kx ,则_________=k 。 14.设D:122≤+y x ,则由估值不等式得 ??≤++≤D dxdy y x )14(22

期末高等数学(上)试题及答案(完整资料).doc

【最新整理,下载后即可编辑】 第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) .d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??.d csc cot 46x x x 求 7、(本小题5分) .求? ππ 212 1cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+3 01 10、(本小题5分) 求函数 的单调区间y x x =+-422 11、(本小题5分) .求? π+20 2 sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分)

设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()() x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) .d cos sin 12cos x x x x ? +求 二、解答下列各题 (本大题共2小题,总计14分) 1、(本小题7分) ,,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿 2、(本小题7分) . 8 23 2体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y == 三、解答下列各题 ( 本 大 题6分 ) 设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230 一学期期末高数考试(答案) 一、解答下列各题 (本大题共16小题,总计77分) 1、(本小题3分) 解原式:lim =--+→x x x x 222 312 61812 =-→lim x x x 261218 =2 2、(本小题3分) ? +x x x d )1(2 2

大学高等数学高数期末考试试卷及答案

大学高等数学高数期末考 试试卷及答案 Last updated on the afternoon of January 3, 2021

华南农业大学2010/2011学年第一学期经济数学期中考试试卷 一、选择题(每题3分,共30分) 1、设函数3()1f x x =-,则()f x -=() 31x -31x --31x -+31x +、函数y = A .3x < B .3x ≤ C .4x < D .4x ≤ 3、()中的两个函数相同. A .()f x x =,()g t =.2()lg f x x =,()2lg g x x = C .21()1x f x x -=+,()1g x x =- D .sin 2()cos x f x x =,()2sin g x x = 4、下列函数中()是奇函数。 A .3sin()4x x - B .1010x x -+ C .2cos x x - D . sin x x 5、1 lim(1)n n n →∞-=() A .1 B .2e C .1e - D .∞+ 6、下列函数在给定变化过程中是无穷大量的是() 1 sin (0)x x x →.(0)x e x → ln (0)x x +→.sin ()x x x →∞ 7、设10 ()10x e x f x x x ?+≤=?->?,则在0=x 处,)(x f () A .连续 B .左、右极限不存在 C .极限存在但不连续 D .左、右极限存在但不相等 8、若曲线()f x 在点0x x =处的切线平行于直线234x y +=,则0()f x '=() A .2 B .3 C . 23D .23 - 9、设()x f x e =,则[(sin )]f x '=()。 A .x e B .sin x e C .sin cos x x e D .sin sin x x e

高等数学上考试试题及答案

四川理工学院试卷(2007至2008学年第一学期) 课程名称: 高等数学(上)(A 卷) 命题教师: 杨 勇 适用班级: 理工科本科 考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项: 1、 满分100分。要求卷面整洁、字迹工整、无错别字。 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否 则视为废卷。 3、 考生必须在签到单上签到,若出现遗漏,后果自负。 4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷 分别一同交回,否则不给分。 试 题 一、单选题(请将正确的答案填在对应括号内,每题3分,共15分) 1. =--→1 ) 1sin(lim 21x x x ( C ) (A) 1; (B) 0; (C) 2; (D) 2 1 2.若)(x f 的一个原函数为)(x F ,则dx e f e x x )(? --为( B ) (A) c e F x +)(; (B) c e F x +--)(; (C) c e F x +-)(; (D ) c x e F x +-) ( 3.下列广义积分中 ( D )是收敛的. (A) ? +∞ ∞ -xdx sin ; (B)dx x ? -111 ; (C) dx x x ?+∞ ∞-+2 1; (D)?∞-0dx e x 。 4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( B )

(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导; (C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则? x a dt t f )(在[]b a ,上一定可导。 5. 设函数=)(x f n n x x 211lim ++∞→ ,则下列结论正确的为( D ) (A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x 二、填空题(请将正确的结果填在横线上.每题3分,共18分) 1. 极限=-+→x x x 1 1lim 20 _0____. 2. 曲线? ??=+=3 2 1t y t x 在2=t 处的切线方程为______. 3. 已知方程x xe y y y 265=+'-''的一个特解为x e x x 22 )2(2 1+- ,则该方程的通解为 . 4. 设)(x f 在2=x 处连续,且22 ) (lim 2=-→x x f x ,则_____)2(='f 5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。 6.曲线23 3 2 x y =上相应于x 从3到8的一段弧长为 . 三、设0→x 时,)(22 c bx ax e x ++-是比2 x 高阶的无穷小,求常数c b a ,,的值(6分)

(完整)高等数学练习题(附答案)

《高等数学》 专业 年级 学号 姓名 一、判断题. 将√或×填入相应的括号内.(每题2分,共20分) ( )1. 收敛的数列必有界. ( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数. ( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导. ( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线. ( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微. ( )9. 微分方程的含有任意常数的解是该微分方程的通解. ( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则 )0(f 为)(x f 的一个极小值. 二、填空题.(每题2分,共20分) 1. 设2 )1(x x f =-,则=+)1(x f . 2. 若1 212)(11+-= x x x f ,则=+→0 lim x . 3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则 =')3(g . 4. 设y x xy u + =, 则=du .

5. 曲线3 26y y x -=在)2,2(-点切线的斜率为 . 6. 设)(x f 为可导函数,)()1()(,1)1(2 x f x f x F f +==',则=')1(F . 7. 若 ),1(2)(0 2x x dt t x f +=? 则=)2(f . 8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分 =-+∞? dx e x 20 . 10. 设D 为圆形区域=+≤+??dxdy x y y x D 5 2 2 1, 1 . 三、计算题(每题5分,共40分) 1. 计算)) 2(1 )1(11(lim 222n n n n ++++∞→Λ. 2. 求10 3 2 )10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数. 3. 求不定积分 dx x x ? -) 1(1. 4. 计算定积分 dx x x ? -π 53sin sin . 5. 求函数2 2 3 24),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y == ,围成,计算dxdy y y D ?? sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积. 8. 求微分方程y x y y 2- ='的通解. 四、证明题(每题10分,共20分) 1. 证明:tan arc x = )(+∞<<-∞x .

高等数学学期期末考试题(含答案全)

05级高数(2-3)下学期期末试题 (A 卷) 专业 ____________ 姓名 ______________ 学号 ________________ 《中山大学授予学士学位工作细则》第六条:“考试作弊不授予学士学位” 一,填空题 (每题4分,共32分) 1. 213______4 x y kx y z k π +-=-==若平面与平面成 角,则 1/4 2. 曲线20 cos ,sin cos ,1t u t x e udu y t t z e = =+=+? 在t = 0处的切线方程为________________ 3. 方程z e xyz =确定隐函数z = f (x,y )则z x ??为____________ 4. ( ),dy f x y dx ?1 交换的积分次序为_________________________ 5.()2221,L x y x y ds +=-=?L 已知是圆周则 _________π- 6. 收敛 7. 设幂级数0 n n n a x ∞ =∑的收敛半径是2,则幂级数 21 n n n a x ∞ +=∑的收敛半径是 8. ()211x y ''+=微分方程的通解是 ()2121 arctan ln 12 y x x c x c =-+++_______________________ 二.计算题 (每题7分,共63分) 1.讨论函数 f ( x, y ) = 221 ,x y + 220x y +≠, f ( 0 , 0 ) = 0 在点( 0 , 0 )处的连续性,可导性及可微性。 P 。330 2.求函数2 222z y x u ++=在点)1,1,1(0P 处沿P 0方向的方向导数,其中O 为坐 标原点。 3.2 1 2.1n n n n n ∞ =?? ?+?? ∑判别级数的敛散性 P .544 4.设u=),(z y xy f +,),(t s f 可微,求du dz f dy f x f dx y f '+??? ??'+'+?'2211. 012 112x y z ---==z z yz x e xy ?=?-211sin ____________1 n n n ∞ =++∑级数的敛散性为

高等数学试卷和答案新编

高等数学(下)模拟试卷一 一、填空题(每空3分,共15分) (1)函数 11z x y x y =+ +-的定义域为 (2)已知函数 arctan y z x =,则z x ?= ? (3)交换积分次序, 2 220 (,)y y dy f x y dx ? ? = (4)已知L 是连接(0,1),(1,0)两点的直线段,则 ()L x y ds +=? (5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分) (1)设直线L 为321021030x y z x y z +++=?? --+=?,平面π为4220x y z -+-=,则() A.L 平行于πB.L 在π上C.L 垂直于πD.L 与π斜交 (2)设是由方程 222 2xyz x y z +++=确定,则在点(1,0,1)-处的dz =() dx dy +2dx dy +22dx dy +2dx dy -(3)已知Ω是由曲面222425()z x y =+及平面5 z =所围成的闭区域,将 2 2()x y dv Ω +???在柱面坐标系下化成三次积分为() 22 5 3 d r dr dz πθ? ??. 24 5 3 d r dr dz πθ? ?? 22 5 3 50 2r d r dr dz πθ? ??. 22 5 20 d r dr dz π θ? ?? (4)已知幂级数,则其收敛半径() 2112 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y * =() ()x ax b xe +()x ax b ce ++()x ax b cxe ++ 三、计算题(每题8分,共48分) 1、 求过直线1L :1231 01x y z ---==-且平行于直线2L :21211x y z +-==的平面方程 2、 已知 22 (,)z f xy x y =,求z x ??,z y ?? 3、 设 22{(,)4}D x y x y =+≤,利用极坐标求 2 D x dxdy ?? 4、 求函数 22 (,)(2)x f x y e x y y =++的极值 得分 阅卷人

大学高数期末考试题及答案

第一学期高等数学期末考试试卷答案 一.计算题(本题满分35分,共有5道小题,每道小题7分), 1.求极限()x x x x x 30 sin 2cos 1lim -+→. 解: ()30303012cos 1lim 12cos 12lim sin 2cos 1lim x x x x x x x x x x x x x x -??? ??+=????????-??? ??+=-+→→→ 20302cos 1ln 0 3 2cos 1ln 0 2cos 1ln lim 2cos 1ln lim 2 cos 1ln 1lim 1 lim x x x x x x x e x e x x x x x x x x +=+?+-=-=→→?? ? ??+→?? ? ??+→ ()4 1 2cos 1sin lim 0-=+-=→x x x x . 2.设0→x 时,()x f 与2 2 x 是等价无穷小, ()?3 x dt t f 与k Ax 等价无穷小,求常数k 与A . 解: 由于当0→x 时, ()? 3 x dt t f 与k Ax 等价无穷小,所以()1lim 3 =?→k x x Ax dt t f .而 ()() () 1013 2 3201 3232 3 230132 3 00061lim 6lim 3122lim 31lim lim 3 -→--→-→-→→=?=??????? ? ? ???=??=?k x k x k x k x k x x Akx Akx x x Akx x x x x f Akx x x f Ax dt t f 所以,161lim 10=-→k x Akx .因此,6 1 ,1==A k . 3.如果不定积分 ()() ?++++dx x x b ax x 2 2 211中不含有对数函数,求常数a 与b 应满足的条件. 解:

高等数学一期末复习题及答案

《高等数学(一)》期末复习题 一、选择题 1、极限)x x →∞ 的结果是 ( C ) (A )0 (B ) ∞ (C ) 1 2 (D )不存在 2、方程3310x x -+=在区间(0,1)内 ( B ) (A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 3、)(x f 是连续函数, 则 ?dx x f )(是)(x f 的 ( C ) (A )一个原函数; (B) 一个导函数; (C) 全体原函数; (D) 全体导函数; 4、由曲线)0(sin π<<=x x y 和直线0=y 所围的面积是 ( C ) (A )2/1 (B) 1 (C) 2 (D) π 5、微分方程2x y ='满足初始条件2|0==x y 的特解是 ( D ) (A )3x (B )331x + (C )23+x (D )23 1 3+x 6、下列变量中,是无穷小量的为( A ) (A) )1(ln →x x (B) )0(1ln +→x x (C) cos (0)x x → (D) )2(4 2 2→--x x x 7、极限011 lim(sin sin )x x x x x →- 的结果是( C ) (A )0 (B ) 1 (C ) 1- (D )不存在 8、函数arctan x y e x =+在区间[]1,1-上 ( A ) (A )单调增加 (B )单调减小 (C )无最大值 (D )无最小值 9、不定积分 ? +dx x x 1 2 = ( D ) (A)2arctan x C + (B)2ln(1)x C ++ (C)1arctan 2x C + (D) 21 ln(1)2x C ++ 10、由曲线)10(<<=x e y x 和直线0=y 所围的面积是 ( A ) (A )1-e (B) 1 (C) 2 (D) e 11、微分方程 dy xy dx =的通解为 ( B )

期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-2332121629124 2、(本小题5分) .d )1(22x x x ?+求 3、(本小题5分) 求极限lim arctan arcsin x x x →∞?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) .求dt t dx d x ?+2 021 6、(本小题5分) ??.d csc cot 46x x x 求 7、(本小题5分) .求?ππ 2 1 21cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),22 9、(本小题5分) . 求dx x x ?+3 01 10、(本小题5分) 求函数 的单调区间y x x =+-422 11、(本小题5分) .求? π +2 02sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) .d cos sin 12cos x x x x ? +求 二、解答下列各题 (本大题共2小题,总计14分)

高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分) 1.曲线???=+=0 12x y z 绕z 轴旋转一周生成的旋转曲面方程为12 2++=y x z . 2.直线35422:1z y x L =--=-+与直线?? ? ??+=+-==t z t y t x L 72313:2的夹角为 2π. 3.设函数2 2232),,(z y x z y x f ++=,则= )1,1,1(grad f }6,4,2{. 4.设级数 ∑∞ =1 n n u 收敛,则=∞ →n n u lim 0 . 5.设周期函数在一个周期内的表达式为???≤<+≤<-=, 0,10 ,0)(ππx x x x f 则它的傅里叶级数在π=x 处 收敛于 2 1π+. 6.全微分方程0d d =+y x x y 的通解为 C xy =. 7.写出微分方程x e y y y =-'+''2的特解的形式 x axe y =*. 二、解答题(共18分 每小题6分) 1.求过点)1,2,1(-且垂直于直线???=+-+=-+-0 20 32z y x z y x 的平面方程. 解:设所求平面的法向量为n ,则{}3,2,11 11121=--=k j i n (4分) 所求平面方程为 032=++z y x (6分) 2.将积分 ???Ω v z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面 )(22 2y x z +-=及22y x z += 所围成的区域. 解: πθ20 ,10 ,2 :2 ≤≤≤≤-≤≤Ωr r z r (3分) ??? Ω v z y x f d ),,(? ??-=2 210 20 d ),sin ,cos (d d r r z z r r f r r θθθπ (6分)

高等数学练习题库及答案

高等数学练习题库及答 案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《高等数学》练习测试题库及答案 一.选择题 1.函数y= 1 1 2 +x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2 x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 2 3.下列数列为单调递增数列的有( ) A . ,,, B . 23 ,32,45,54 C .{f(n)},其中f(n)=?????-+为偶数,为奇数n n n n n n 1,1 D. {n n 21 2+} 4.数列有界是数列收敛的( ) A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( ) A .发散数列必无界 B .两无界数列之和必无界 C .两发散数列之和必发散 D .两收敛数列之和必收敛 6.=--→1 ) 1sin(lim 21x x x ( ) .0 C 2 7.设=+∞→x x x k )1(lim e 6 则k=( ) .2 C 6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( ) 2 B. x 3-1 C.(x-1)2 (x-1) (x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )

A.必要条件 B.充分条件 C.充分必要条件 D.无关条件 10、当|x|<1时,y= () A、是连续的 B、无界函数 C、有最大值与最小值 D、无最小值 11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为() A、B、e C、-e D、-e-1 12、下列有跳跃间断点x=0的函数为() A、 xarctan1/x B、arctan1/x C、tan1/x D、cos1/x 13、设f(x)在点x 0连续,g(x)在点x 不连续,则下列结论成立是() A、f(x)+g(x)在点x 必不连续 B、f(x)×g(x)在点x 必不连续须有 C、复合函数f[g(x)]在点x 必不连续 D、在点x0必不连续 f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b 14、设 满足() A、a>0,b>0 B、a>0,b<0 C、a<0,b>0 D、a<0,b<0 15、若函数f(x)在点x 0连续,则下列复合函数在x 也连续的有() A、 B、

相关主题
文本预览
相关文档 最新文档