当前位置:文档之家› 圆弧包络线的传动性能分析及螺杆压缩机转子型线的优化设计

圆弧包络线的传动性能分析及螺杆压缩机转子型线的优化设计

圆弧包络线的传动性能分析及螺杆压缩机转子型线的优化设计
圆弧包络线的传动性能分析及螺杆压缩机转子型线的优化设计

实验六PID控制系统参数优化设计

实验六 PID 控制系统参数优化设计 一.实验目的: 综合运用MATLAB 中SIMULINK 仿真工具进行复杂控制系统的综合设计与优化设计,综合检查学生的文献查阅、系统建模、程序设计与仿真的能力。 二.实验原理及预习内容: 1.控制系统优化设计: 所谓优化设计就是在所有可能的设计方案中寻找具有最优目标(或结果)的设计方法。控制系统的优化设计包括两方面的内容:一方面是控制系统参数的最优化问题,即在系统构成确定的情况下选择适当的参数,以使系统的某些性能达到最佳;另一方面是系统控制器结构的最优化问题,即在系统控制对象确定的情况下选择适当的控制规律,以使系统的某种性能达到最佳。 在工程上称为“寻优问题”。优化设计原理是“单纯形法”。MATLAB 中语句格式为:min ('')X f s =函数名,初值。 2.微分方程仿真应用:传染病动力学方程求解 三.实验内容: 1.PID 控制系统参数优化设计: 某过程控制系统如下图所示,试设计PID 调节器参数,使该系统动态性能达到最佳。(习题5-6) 1020.1156s s e s s -+++R e PID Y 2.微分方程仿真应用: 已知某一地区在有病菌传染下的描述三种类型人数变化的动态模型为 11212122232 3(0)620(0)10(0)70X X X X X X X X X X X X ααββ?=-=?=-=??==?

式中,X 1表示可能传染的人数;X 2表示已经得病的人数;X 3表示已经治愈的人数;0.0010.072αβ==;。试用仿真方法求未来20年内三种人人数的动态变化情况。 四.实验程序: 建立optm.m 文件: function ss=optm (x) global kp; global ki; global kd; global i; kp=x (1); ki=x (2); kd=x (3); i=i+1 [tt,xx,yy]=sim('optzwz',50,[]); yylong=length(yy); ss=yy(yylong); 建立tryopt.m 文件: global kp; global ki; global kd; global i; i=1; result=fminsearch('optm',[2 1 1]) 建立optzwz.mdl:

压缩机参数

QD压缩机的资料 输入功率(W)制冷量(W)电流(A)制冷剂电源(V)应用类型效能 QD2580680.65R12220V-50Hz LBP L QD3082780.65R12220V-50Hz LBP L QD3686880.68R12220V-50Hz LBP L QD431121180.88R12220V-50Hz LBP L QD521281380.98R12220V-50Hz LBP L QD551251321R12220V-50Hz LBP L QD591371461R12220V-50Hz LBP L QD65145158 1.1R12220V-50Hz LBP L QD66150R12220V-50Hz LBP L QD68R12220V-50Hz LBP L QD75162176 1.2R12220V-50Hz LBP L QD80180R12220V-50Hz LBP L QD85184202 1.3R12220V-50Hz LBP L QD91192216 1.4R12220V-50Hz LBP L QD110232271 1.6R12220V-50Hz LBP L QD1282603062R12220V-50Hz LBP QD142280333 2.1R12220V-50Hz LBP QD168330380 2.3R12220V-50Hz LBP L QD180380440 2.8R12220V-50Hz LBP L QD210435510 3.1R12220V-50Hz LBP L QD66D241232 1.4R22220V-50Hz LBP L QD76D252258 1.6R22220V-50Hz LBP L QD91D286300 2.2R22220V-50Hz LBP L QD100D340370 2.5R22220V-50Hz LBP L QD120D360400 2.5R22220V-50Hz LBP L QD150D460546 3.2R22220V-50Hz LBP L QD168D510580 3.55R22220V-50Hz LBP L QD180D550660 2.96R22220V-50Hz LBP L QD210D655790 3.12R22220V-50Hz LBP L QD238D1P R22220V-50Hz LBP L QD268D1+1/8P R22220V-50Hz LBP L QD308D1+1/4P R22220V-50Hz LBP L QD350D1+3/8P R22220V-50Hz LBP L QM238D1+1/8P R22220V-50Hz LBP H QM268D1+1/4P R22220V-50Hz LBP H QM308D1+1/2P R22220V-50Hz LBP H QM350D1+3/4P R22220V-50Hz LBP H

螺杆压缩机之振动分析

螺杆压缩机的工作原理 1.什么叫螺杆空压机: 螺杆压缩机是一种工作容积作回转运动的容积式气体压缩机械。气体的压缩依靠容积的变化来实现,而容积的变化又是借助压缩机的一对转子在机壳内作回转运动来达到。 螺杆压缩机的基本结构: 在压缩机的机体中,平行地配置着一对相互啮合的螺旋形转子,通常把节圆外具有凸齿的转子,称为阳转子或阳螺杆。把节圆内具有凹齿的转子,称为阴转子或阴转子,一般阳转子与原动机连接,由阳转子带动阴转子转动转子上的最后一对轴承实现轴向定位,并承受压缩机中的轴向力。转子两端的圆柱滚子轴承使转子实现径向定位,并承受压缩机中的径向力。在压缩机机体的两端,分别开设一定形状和大小的孔口。一个供吸气用,称为进气口;另一个供排气用,称作排气口。 2.螺杆空压机工作原理:螺杆压缩机的工作循环可分为进气,压缩和排气三个过程。随着转子旋转,每对相互啮合的齿相继完成相同的工作循环。 1)进气过程:转子转动时,阴阳转子的齿沟空间在转至进气端壁开口时,其空 间最大,此时转子齿沟空间与进气口的相通,因在排气时齿沟的气体被完全排出,排气完成时,齿沟处于真空状态,当转至进气口时,外界气体即被吸入,沿轴向进入阴阳转子的齿沟内。当气体充满了整个齿沟时,转子进气侧端面转离机壳进气口,在齿沟的气体即被封闭。 2)压缩过程:阴阳转子在吸气结束时,其阴阳转子齿尖会与机壳封闭,此时气 体在齿沟内不再外流。其啮合面逐渐向排气端移动。啮合面与排气口之间的齿沟空间渐渐件小,齿沟内的气体被压缩压力提高。 3)排气过程:当转子的啮合端面转到与机壳排气口相通时,被压缩的气体开始 排出,直至齿尖与齿沟的啮合面移至排气端面,此时阴阳转子的啮合面与机壳排气口的齿沟空间为0,即完成排气过程,在此同时转子的啮合面与机壳进气口之间的齿沟长度又达到最长,进气过程又再进行。

高层建筑结构选型设计及建筑结构优化设计杜琨

高层建筑结构选型设计及建筑结构优化设计杜琨 发表时间:2018-10-26T10:35:06.930Z 来源:《防护工程》2018年第13期作者:杜琨 [导读] 高层建筑类型,其社会经济效益更高,同时这种高层建筑的发展也是当前我国社会经济发展的产物和趋势 杜琨 天津中机建设工程设计有限公司 300381 摘要:高层建筑类型,其社会经济效益更高,同时这种高层建筑的发展也是当前我国社会经济发展的产物和趋势。在我国城市化进程不断加快的过程中,城市的规模及人口数量都处于扩大发展中,这就使得可利用的土地资源在逐渐减少,而高层建筑正好起到了对我国城市土地资源的缓解作用,并同时也满足了人们对建筑各项功能的要求和需求。但高层建筑的质量及有效功能的发挥,都是基于高层建筑在结构造型上的科学合理性。那么本文将重点探讨高层建筑结构选型设计及建筑结构的优化设计问题。 关键词:高层建筑;结构选型;设计;建筑结构;优化设计 城市化的步伐不断加快,也使得城市建设的范围扩展速度更快,高层建筑的建设有效缓解了城市土地资源的紧张状况。但随着高层建筑的规模与数量的持续性发展,由于其结构设计与选型不同于传统多层建筑,这就要求设计人员必须结合高层建筑的结构特点选择相应的结构形式,并对相关的设计及工艺进行优化,才能保障高层建筑的质量,促进建筑企业的可持续发展。 1. 高层建筑的结构选型设计 1.1高层建筑结构的类型 高层建筑的安全性与质量在很大程度上取决于高层建筑的结构选型。目前高层建筑结构的类型分为以下几种:框架结构、框架-剪力墙结构、筒体结构等。其中,框架结构的构成包括了梁柱、楼板等,结合建筑在功能上的不同来布置平面框架。框架结构造价更为低廉,但同时在水平荷载影响下,也会发生更大的变形,因此抗震效果不太好;框架-剪力墙这种结构类型,高层建筑剪力墙大部分布置于电梯间,通过核心筒对水平荷载予以承担,提高了抗震性,并也使得整体建筑的稳定性更好。但这种结构类型会受限于平面布局,容易发生质心和钢心无法重合的问题,在结构上太大的扭转,可能潜在一些安全隐患;筒体结构类型,其筒体的形成主要是在电梯间以及建筑外围布置剪力墙,这种结构最大的优势是刚度极高。 1.2高层建筑结构选型的影响因素 对高层建筑结构选型的影响,不仅包括建筑需求因素,还包括以下这些因素:第一,环境因素。高层建筑的环境条件主要是场地条件、防烈度、基本风压;其次是建筑方案特征,其包括了建筑的高宽比、高度、长宽比以及建筑体型,其中建筑体型又是由平面体型和立体体型构成;再者,建筑使用功能的要求。对于高层建筑,其使用功能基本上分为住宅、办公、旅馆、综合大楼等。某种功能的建筑,也许只有某几种结构形式可以与其匹配。如高层住宅的使用空间相对更小,分隔墙体会比非常多,而且每一层的平面布置大体一样,所以高层建筑的住宅功能相对来讲,更适合剪力墙或框架-剪力墙结构;最后,结构抗灾水平、现场施工情况、运营维护以及后期投入使用情况。 2. 高层建筑的结构设计分析 2.1对高层建筑结构设计中水平荷载控制的分析 高层建筑与低层建筑相比较来说,高层建筑的整体结构对水平载荷的承载量更大,所以高层建筑所具有的整体稳定性与其结构设计中水平荷载水平的控制情况有着直接关系,而且高层建筑承受的倾覆力矩也是取决于其水平荷载,这种关系是一种二次方倍数关系。所以在高层建筑的结构设计过程中,必须严格控制水平荷载,以此才可进一步控制因较大的水平荷载而发生的一连串稳定性问题。 2.2对抗侧刚度予以合理确定 高层建筑在结构设计中不同于低层建筑,这种高层建筑的结构设计会对结构侧移带来一定的影响。由于楼层高度的不断变化,会在水平荷载测量变形的作用下,其结构侧移也会随之更大。所以在高层建筑的结构设计时,必须确保其结构强度达到相应的要求,而且可以承受荷载作用所产生的内力影响,在这个过程中就需要具备一定的抗侧刚度,确保结构在水平荷载的作用下可有效控制侧移的状况。 2.3对测控的确定 高层建筑相较于低层建筑,前者的结构更容易出现侧移的问题,而且也成为高层建筑结构的重要影响因素。在高层建筑楼层越来越高时,那么相应的水平荷载侧变形也会更大。高层建筑一方面应有很高的强度,另一方面还要能够承受荷载作用所产生的内力作用及抗侧刚度,这样才能避免高层建筑结构发生侧移。 2.4有效控制高层建筑的结构抗震性能 高层建筑必须重视抗震性问题,抗震性能在很大程度上直接影响着整个建筑体的稳定性与质量。影响高层建筑抗震性的因素很多,在进行设计时,应综合考虑和分析设计人员的专业技能、水平以及相应施加的载荷,并严格控制结构选型,才能有效保障建筑的稳定性 2.5有效控制建筑的自重 高层建筑随着楼层的不断增加,相应地,结构对基础接轨的传递荷载量也在不断提高。若建筑整体的自重比地基的承载能力更大,那么建筑整体则会发生下沉,有可能导致建筑体出现倾斜或者是影响建筑的抗震性能。所以作为高层建筑的结构设计人员,必须从实际情况出发,制定完善而科学的建筑结构方案,不可使得高层建筑的荷载超出基础所能承受的最大承载能力,才能提升整个高层建筑体的稳定性与投入使用之后的质量。 3. 高层建筑结构的优化设计 3.1结合建筑的总高度进行结构的优化设计 在高层建筑中,可通过对钢骨砼柱—砼梁与钢管砼柱—钢梁的比较分析,钢梁组 合楼盖能更有效地降低梁柱截面,从而符合高层建筑使用的净高要求,同时中庭洞口各层相互交错的布置,通过钢梁组合楼盖使得传统支模的问题得以解决;另外,还可对塔楼标准层的室内梁高进行有效控制,内部净高超过了150~200mm;大多数的构件的加工工作都在工厂进行,这就有效提升了建筑产品的工业化水准,提高了整个建筑工程建设的施工效率。 3.2结合建筑的荷载进行结构的优化设计 当前大部分建筑企业在建设中的成本压力非常大,地下室的优化工作也必须予以重视。基于安全、效果以及建筑功能等,必须对消防

浅谈组织机构结构优化设计

浅谈组织结构优化设计 伴随外部环境的剧烈变化以及信息技术的不断发展,关于组织结构的理论和概念层出不穷:事业部制,职能型组织结构,客户型组织结构,矩阵式组织结构,网络式组织结构等。组织结构的实践则更加丰富多彩,从战略变革到流程再造,无不涉及组织结构的调整与优化。但现实不容乐观,企业常常陷入组织结构的困惑:面对不同的组织模型,不知如何选择;设计了看似完美的组织结构,却难以实施。本文先从组织结构的定义入手,来对组织机构有一个初步的认识,再通过对几种典型组织机构的定义的介绍、组织结构图的展示、优缺点的列举、适用范围的概括来形成对组织结构进一步的了解,并通过对组织结构发展趋势的介绍来把握组织结构的最新动态,最后结合以上基本理论对组织结构优化调整在石油产业中应用进行案例分析。 1 组织结构的定义 组织结构(Organizational Structure)是指,对于工作任务如何进行分工、分组和协调合作。组织结构是表明组织各部分排列顺序、空间位置、聚散状态、联系方式以及各要素之间相互关系的一种模式,是整个管理系统的“框架”,其本质是为实现组织战略目标而采取的一种分工协作体系,组织结构必须随着组织的重大战略调整而调整。 2 组织结构的几种基本类型及其特征 2.1 直线制组织结构 直线制组织结构是最古老的组织结构形式。所谓的“直线”是指在这种组织结构下,职权直接从高层开始向下“流动”(传递、分解),经过若干个管理层次达到组织最低层。其特点是: (1)组织中每一位主管人员对其直接下属拥有直接职权。 (2)组织中的每一个人只对他的直接上级负责或报告工作。 (3)主管人员在其管辖范围内,拥有绝对的职权或完全职权。即,主管人员对所管辖的部门的所有业务活动行使决策权、指挥权和监督权。 2.1.1 直线型组织结构特征

ADAMS VIEW 参数化和优化设计实例详解

ADAMS/VIEW 参数化和优化设计实例详解本例通过小球滑落斜板模型,着重详细说明参数化和优化设计的过程。 第一步,启动adams/view(2014版),设置工作路径,设置名称为incline。 名称 存储路径第二部,为满足模型空间,设置工作网格如图参数。 修改尺寸 第三部创建斜板。点击Bodies选项卡,选择BOX,然后建模区点击鼠标右键,分别设置两个点,坐标为(0,0,0)和(-500,-50,0),创建完模型,然后右键Rename,修改名称为xieban。

右键输入坐标,创建点BOX rename 输入xieban

第四部创建小球。点击Bodies选项卡,选择Sphere,然后建模区点击鼠标右键,分别设置两个点,球心坐标为(-500,50,0)和半径坐标(-450,50,0),创建完模型,然后右键Rename,修改名称为xiaoqiu。 输入两点 Rename,及创建效果 第五部创建圆环。点击Bodies选项卡,选择Torus,然后建模区点击鼠标右键,分别设置两个点,圆环中心坐标为(450,-1000,0)和大径坐标(500,-1000,0),创建完模型,然后右键Rename,修改名称为yuanhuan。完成后效果如下图: 第六部修改小球尺寸及位置。首先修改小球半径为25mm,在小球上右键,选择球体,点击Modify,然后设置如下图;然后修改小球位置,将Y坐标移到25mm处,选择Marker_2点,

右键点击Modify,然后设置坐标位置如下图。 右键编辑球半径 修改半径为25 改后效果 修改球的位置

设置球坐标 完成修改后效果 第七部修改圆环尺寸及位置。将圆环绕X轴旋转90度,选择Marker_3点,右键点击Modify,然后设置坐标位置如下图。修改圆环尺寸,大径为40mm,截面圆环半径为12mm,右键,选择圆环体,点击Modify ,然后设置如下图。至此,模型建立完毕。 修改圆环位置

高层建筑结构选型设计及建筑结构优化设计

高层建筑结构选型设计及建筑结构优化设计 发表时间:2018-10-01T12:51:32.433Z 来源:《基层建设》2018年第22期作者:彭宇明 [导读] 摘要:随着高层建筑规模的不断扩大和投资的不断增加,结构选型在建筑结构概念设计中起着重要的作用。 深圳市慧创建筑设计有限公司广东深圳 518000 摘要:随着高层建筑规模的不断扩大和投资的不断增加,结构选型在建筑结构概念设计中起着重要的作用。它将对建筑功能、工程造价和社会效益产生影响。正确处理高层建筑的结构选型和优化设计,对高层建筑的设计、施工、使用和维护具有重要意义。本文结合工程实例,分析了结构选型和优化的重要性,阐述了结构选型的关键,选择了合适的结构优化方案,旨在为提高高层建筑的安全性、降低成本提供依据。 关键词:高层建筑;结构选型;结构优化;设计 1 高层建筑结构选型设计 1.1 高层建筑结构类型分析 高层建筑结构的选择决定了高层建筑的整体安全性和可靠性,几种常见的结构类型可分为框架结构、框架剪力墙结构、剪力墙结构和筒体结构。①框架结构主要是由梁柱、楼板等部分组成,根据建筑功能的需求,完成对平面框架的布置。框架结构造价低,但在水平荷载影响下变形较大,抗震效果不佳;②框架-剪力墙结构,在高层建筑中,剪力墙主要布置在电梯室内,通过核心筒承受水平荷载,抗震能力强,整体稳定性高。但框架-剪力墙结构容易受平面布置的限制,出现质心和钢心不重合的现象,结构扭转过大,可能会出现的安全隐患; ③剪力墙结构具有较强的竖向和水平承载能力,对高层建筑的整体刚到和稳定性具有显著的提升效果,重点在于剪力墙的布置及自重的控制;④筒体结构,在电梯间及建筑外围布置剪力墙,形成筒体,该结构具有更高的刚度。 1.2 高层建筑结构选型的影响因素 除了建筑需求的影响外,高层建筑结构选型的主要因素可归纳为:①环境条件,主要包括设防烈度、场地条件、基本风压等;②建筑方案特征,主要包括方案建筑的高度、高宽比、长宽比和建筑形状,其中建筑形状包括平面形状和三维形状。平面形状由平面规则性、平面对称性、平面质量和刚度偏心等组成,立体形状由结构高宽比、立面内收形状、塔楼和层间刚度等组成;③建筑物使用功能要求,一般来说,高层建筑的功能可分为居住建筑、办公建筑、宾馆和综合楼。具有特定功能的建筑物可能只有几个与其匹配的结构类型。高层住宅由于其空间较小、隔墙较多、各层布置基本相同,更适合剪力墙或框架-剪力墙结构;④结构抗灾等级及现场施工、后期使用、运行维护等情况。 1.3 结构选型实施案例 本章以某工程为例,主要包括高层住宅楼和多层商务办公楼两部分,以及建筑总建筑占地面积 95388.440m 2 ,其中工程中主要以 1号楼、2 号楼、3 号楼为高层建筑,且楼层均为 36F,其中且高度分别为 117.390m、119.400m、119.400m。本工程主要采用钢柱、混凝土等材料。本章以1号楼为重点,1号楼共36层,设防烈度7度,基本风压 0.75kN/m 2 ,场地Ⅱ类。建筑平面对称布置,平面规则,间距小,隔墙多,各层平面布置基本相同。本工程考虑到竖向和水平荷载、施工成本等因素,采用剪力墙结构,通过合理布置剪力墙,控制了结构的整体刚度和侧向位移,使结构更加安全、稳定、经济。 2 建筑结构的优化设计 2.1 结合建筑类型进行优化 汶川地震震害结果表明,对于中小学等教育工程,由于使用功能要求,与其他建筑相比,教学楼竖向结构体系相对薄弱,强度和刚度不足,建筑结构不对称,容易在地震中倾倒。因此,在教育工程中,应在建筑物和楼梯间侧设置剪力墙,以提高建筑物结构的整体性和稳定性,使其具有良好的工作性能。 对于图书馆、博物馆等文化体育项目,根据馆藏图书、文物的特点,其装载量大,使用空间大,平面不规则。当结构垂直布置时,不需要按照传统的9m模数进行布置,某工程按12m模数进行柱网优化后,结构截面变化不大,但能较好地满足建筑物的功能要求。 2.2 结合建筑总高度进行优化 在某超高层建筑中,通过对型钢混凝土柱-混凝土梁和钢管混凝土柱-钢梁的对比分析,型钢梁组合楼板能有效减小梁柱截面,满足建筑净高要求,中庭入口楼层交错布置,采用型钢梁组合楼板解决传统模板支撑问题;可有效控制塔标准楼层室内梁的高度,内部净高150 -200 mm,绝大多数构件在工厂加工完成,大大提高了建筑产品的工业化水平,大大减少了施工现场的建筑垃圾,大大缩短了工期。 2.3 结合建筑荷载进行优化 越来越多的企业在工程建设过程中承受着巨大的成本压力,地下室优化的必要性不容忽视。在满足安全和建筑功能及效果的前提下,充分考虑了、消防车、人防等荷载,进行了平面布置,并对多种方案进行了比较。工程实例表明,在常规8.5m×8.5m柱网条件下,荷载越大,采用的板结构越大,建筑物含钢量最低,最经济。在结构优化过程中,应综合考虑各种因素,对建筑安全、美观和经济性进行综合比较,以实现工程的最大效益。 2.4 剪力墙结构优化理论在实际工程中运用 (1)进行结构计算时,应采用软件分析,以满足最大层间位移、周期比、位移比、轴压比等各项指标的要求。 (2)通过适当的缩减剪力墙的长度,减轻其自重,增加了高层建筑的内部使用空间。 (3)剪力墙肢节控制需要保证肢节在具体控制中以简单规则为依据,混凝土门窗洞口设计整齐,形成清晰的墙肢和连梁,使应力分布合理,提高了高层建筑的整体安全性和稳定性。

结构优化设计是在满足规范要求

结构优化设计是在满足规范要求、保证结构安全和建筑产品品质的前提下,通过合理的结构布置、科学的计算论证、适度的构造措施,充分发挥材料性能、合理节约造价的设计方法。结构优化设计在当前竞争日益激烈的建筑设计市场成为大势所趋。如何在满足建筑功能的前提下,保证结构安全并控制含钢量成为摆在结构设计工程师面前的现实课题。本文总结了以往的设计经验,参考了相关文献,给出了结构优化设计的步骤和一些具体措施,供设计人员参考。 1结构优化设计的步骤 笔者认为,结构优化设计的合理步骤应该是:①在方案阶段,通过与建筑专业的充分沟通,对建筑的平面布置、立面造型、柱网布置等提出合理的建议和要求,使结构的高度、复杂程度、不规则程度均控制在合理范围内,避免抗震审查,为降低含钢量争取主动权;②在初步设计阶段,通过对结构体系、结构布置、建筑材料、设计参数、基础型式等内容的多方案技术经济性比较,选出最优方案,整体控制含钢量;③在具体计算过程中,通过精确的荷载计算、细致的模型调整,使结构达到最优受力状态,进一步降低用钢量;④在施工图阶段通过精细的配筋设计抠出多余钢筋,彻底降低含钢量。 在进行多方案的技术经济性比较时,应综合考虑材料费、模板费、基坑开挖降水支护费用、措施费、施工难易、工期长短等因素,与甲方协商后择优选用。 2结构体系与布置优化 结构体系和布置对造价影响很大,应予重视。 1)应根据建筑布置、高度和使用功能要求选择经济合理的结构体系。比如,异形柱框架比普通框架用钢量大,在可能的情况下尽量采用前者;短肢剪力墙比普通剪力墙含钢量高,在可能的情况下尽量采用后者。 2)应选择比较规则的平面方案和立面方案。尽量避免平面凸凹不规则或楼板开大洞,控制平面长宽比,合理设缝,使结构刚度中心与质量中心尽量靠近。竖向应避免有过大的外挑或内收,同时注意限制薄弱层、跃层、转换层等不利因素,使侧向刚度和水平承载力沿高度尽量均匀平缓变化。 3)应选择合理、均匀的柱网尺寸,使板、梁、柱、墙的受力合理,从而降低构件的用钢量。柱网大则楼盖用钢量大,柱网小则柱子用钢量增大,应根据建筑实际情况和经验合理布置。例如,住宅中小开间结构中墙柱的作用不能得到充分发挥,过多的墙柱还会导致较大的地震作用,可考虑采用大开间结构体系,既节约造价,又便于建筑灵活布置。 4)应选择经济合理的楼盖体系。楼盖质量大,层数多,占整体造价比重高,对楼盖的类型、构件的尺寸、数量、间距等应进行对比分析,选择最优的方案。一般住宅宜采用现浇梁板楼盖,预应力楼盖的预应力钢筋容易被二次装修破坏,井字梁楼盖影响室内美观,均不推荐。办公楼等大空间结构宜采用十字梁、井字梁、预应力梁板方案。双向板比单向板经济,应多做双向板。板的厚度,双向板宜控制在短跨的1/35,单向板宜控制在短跨的1/30,此时板易满足强度和变形要求,经济性好。 5)剪力墙结构的优化空间很大,应下大力气优化。剪力墙的布置宜规则、均匀、对称,以控制结构扭转变形。在满足规范和计算的前提下应尽量减少墙的数量,限制墙肢长度,控制连梁刚度,剪力墙能落地的就全部落地不做框支转换层,平面能布置成大开问的尽量布置成大开间,墙体的厚度满足构造要求和轴压比的要求即可。连梁刚度太大时可通过梁中开水平缝变成双梁、增大跨高比等措施降低连梁刚度。尽量少用短肢剪力墙,限制“一”字墙,少做转换。 6)降低含钢量的小技巧:①楼电梯间不宣布置在房屋端部或转角处。因其空间刚度较小,设在端部对抗扭不利,设在转角处应力集中。②框架结构层刚度较弱时,加大柱尺寸或梁高都可显著增大层刚度,而提高混凝土强度效果不明显。③柱的截面尺寸,多层宜2层~3层

极化磁系统参数优化设计方法的研究

极化磁系统参数优化设计 方法的研究 The document was prepared on January 2, 2021

极化磁系统参数优化设计方法的研究 摘要:永磁继电器是一种在国防军事、现代通信、工业自动化、电力系统继电保护等领域中应用面很广的电子元器件,其极化磁系统的参数优化设计是实现永磁继电器产品可靠性设计的前提工作之一。该文采用六因素三水平多目标的正交试验设计方法,分析并研究了极化磁系统的参数优化设计方法。在永磁继电器产品设计满足输出特性指标要求的前提下,给出了输出特性值受加工工艺分散性影响而波动最小的最佳参数水平组合。 1 引言 具有极化磁系统的永磁继电器具有体积小、重量轻、功耗低、灵敏度高、动作速度快等一系列优点,是被广泛应用于航空航天、军舰船舶、现代通信、工业自动化、电力系统继电保护等领域中的主要电子元器件。吸力特性与反力特性的配合技术是电磁继电器产品可靠性设计的关键技术。在机械反力特性及电磁结构已知的情况下,如何对电磁系统进行参数优化设计,使得在保证输出特性值满足稳定性要求的前提下,电磁系统的成本最低,这是继电器可靠性设计必不可少的前提工作之一。

由于极化磁路的非线性及漏磁的影响,使极化磁系统的输出特性值(吸力值)与磁系统各参数水平组合之间存在着非线性函数关系。在各种干扰影响下,各参数存在一定的波动范围。当各参数取不同的水平组合时,参数本身波动所引起的输出特性值的波动亦不相同。由于非线性效应,必定存在一组最优水平组合,使得各参数波动所造成的输出特性值的波动最小,即输出特性的一致性最好。极化磁系统参数优化设计的目的就是要找到各参数的最优水平组合(即方案择优),使得质量输出特性尽可能不受各种干扰的影响,稳定性最好。 影响永磁继电器产品质量使其特性发生波动的主要干扰因素有:①内干扰(内噪声),是不可控因素,如触点磨损、老化等;②外干扰(外噪声),亦是不可控因素,如环境温度、湿度、振动、冲击、加速度等;③可控因素(设计变量)加工工艺的分散性等。其中前两种因素均与产品实际使用环境有关,这里暂不予考虑,本研究只考虑后者对产品质量特性波动的影响。 正交试验设计法是实现参数优化设计的重要手段之一,以往人们在集成电路制造工艺、电火花成型加工工艺、轴承故障诊断等方面得到了很好应用[1-4],但大多是采用单一目标函数的正交试验设计。文献[2]应用正交试验设计法对永磁继电器磁钢尺寸进行了参数优化设计,但没有采用正交试验设计法对永磁继电

压缩机功率对照表以及压缩机详细技术参数

各种型号压缩机功率对照表以及压缩机详细技术参数,此表可作为维修冰箱或空调等制冷设备、更换压缩机的技术依据。 ... 各种型号压缩机功率对照表以及压缩机详细技术参数,此表可作为维修冰箱或空调等制冷设备、更换压缩机的技术依据。 企业名称产品 规格 制冷剂 汽缸容积 (cm3) 名义功率 (HP) 制冷量 (W) 输入功率 (W) 效率 (W/W) 油的 粘度 电机 类型 湖北南光制冷设备有限公司QD56 R12 5.6 132 120 1.1 32 YUR QD63 R12 6.3 145 132 1.1 32 YUR QD72 R12 7.2 165 150 1.1 32 YUR QD80 R12 8.0 186 165 1.12 32 YUR QD88 R12 8.8 200 180 1.11 32 YUR QD96 R12 9.6 233 208 1.12 32 YUR QD110 R12 11 261 238 1.1 32 YUR QD58 R134a 5.8 132 120 1.1 32 YUR QD71 R134a 7.1 148 134 1.1 32 YUR QD78 R134a 7.8 162 145 1.11 32 YUR QD86 R134a 8.6 185 162 1.14 32 YUR Q-5 R22 5.6 750 315 2.38 32 YYR Q-6 R22 6.7 890 370 2.4 32 YYR Q-7 R22 7.1 1000 410 2.44 32 YYR Q-8 R22 8.6 1150 460 2.5 32 YYR 西安远东公司航空工业总公司QD24 R12 2.4 55 75 0.73 22 RSIR QD30 R12 3.0 75 95 0.78 22 RSIR QD45A R12 4.5 113 116 0.95 22 RSIR QD52A R12 5.2 132 139 0.95 22 RSIR QD57A R12 5.7 142 137 1.05 22 RSIR QD62A R12 6.2 154 154 0.95 32 RSIR QD62G A R12 6.2 154 134 1.07 32 RSCR QD75G R12 7.5 190 168 1.09 32 RSCR

螺杆压缩机转子加工磨削成形法.pdf

================= = = = ?-?é??á÷ ?Y???1???ú×a×ó?¥?÷3éD?·¨ ? ??ì·?1???úóD?T1??? ?é?í?y ?a òa ?ééüá??Y???1???ú×a×óD?μ??ó1¤·?·¨?a?a?a?¥?÷3éD?·¨£?2??÷á?×a×ó?¥?÷?ó1¤1y3ì£?·???á??¥?÷3éD?·¨?ù??óDμ?ó?μ??£ 1??ü′ê ?Y???1???ú ×a×ó?ó1¤ ?¥?÷3éD?·¨ 1òy??×a×ó×÷?a?Y???1???úμ?1??üá??t£??±?óó°?ì?÷?úμ?D??ü?????£?à??×a×ó?êá?μ?o??·£?ó|?÷òa??o?èy??·???£o£¨1£?×a×ó????Dí??μ?ó?áó£?£¨2 £?×a×ó3YD??ó1¤???è£?£¨3 £?×a×ó2?á??°èè′|àí?£×??÷òaê??°á????£′ó?3??òaò?é??2£?×a×ó????Dí??ó?3YD??ó1¤???èê?óD?ú?úáa?μμ?£?3YD??ó1¤???èóé?ó1¤1¤ò????¨£?×a×ó????Dí??μ?2???·¢?1£?′ùê1×a×ó?ó1¤1¤ò?2???????£??ó1¤1¤ò?μ?2?????é?ó?′ù??á?×a×ó????Dí??μ?·¢?1£?óé′?í??ˉ?Y???1???úD??ü2??? ìá???£ ??×??Y???1???úμ?2???·¢?1£?′?í3μ??3?÷ó?1??÷?ó1¤×÷?a×a×ó???ó1¤£??T??′ó?Y???1???úμ???D??üòa?ó£??1ê?′ó′ó?úá?éú2ú?¢íêè??¥??D?òa?ó?′£?????ò?oüo?μ??ú×???Dèòa?£′ó80?ê′ú?aê?£?μ?1úK l i n g e l n b e r g 1????¢òa′óà?S U 1???ò??°?-à′ò?éú2ú×a×ó?3′2??3?μ?ó¢1úH o l r o y d 1???μè?à?ìí?3?á??Y???¢?????¢×a×ó?¥′2£?′ó??ê1?Y???1???ú×a×ó?ó1¤êμ??á?′ó?3?÷?ò?¥?÷μ?·é???£ 2×a×ó?¥?÷3éD??ééü 2.1?ó1¤éè±? ò?μ?1úK l i n g e l n b e r g 2úH N C 35S £ˉS L £ˉV R Dí????£ˉ?Y???¥′2?aày£??üê??ú?-óDáù?áêy???¢2-3?ááa?ˉμ?H N C 35DíC N C ?Y???¥′2μ??ù′?é?£??a?¥′2DT???÷áíía????á??t?ááa?ˉ?àá¢μ?C N C ?? ??£?ê1??óé?-à′???ü?¥?±àa????oí??í¨?Y??μ??¥′2£?±??a?é?¥·??±???YDy??μ?°??áêy??C N C ?¥′2£???é?רó?μ?R O T O R ×a×óèí?t£??′?é??DD?Y???1???ú×a×óμè?′?ó?YDy??μ??¥?÷?ó1¤£?è?1??ùó?K l i n g e l n b e r g 1???μ?P N C 3Y??2aá??DD???ì×C A Q £??í113éá?ò???íê?éμ?×a×óC N C éú2úμ¥?a?£ 2.2×a×ó?¥?÷?ó1¤oí?ì2a1y3ì×a×óμ??¥?÷3éD?1y3ìè?í? 1?ùê??£ 2000 F L U I D M A C H I N E R Y ?ê???è??ú£o2000?a04?a03

ANSYS优化设计中的优化变量选择说明

ANSYS优化设计中的优化变量选择说明 本文介绍了ANSYS优化设计中的优化变量选择说明相关内容。 下面列出了许多如何定义设计变量,状态变量和目标函数的建议。 选择设计变量 设计变量往往是长度,厚度,直径或模型坐标等几何参数。其必须是正值。关于设计变量要记住的几点如下: & #61548; 使用尽量少的设计变量。选用太多的设计变量会使得收敛于局部最小值的可能性增加,在问题是高度非线性时甚至会引起不收敛。显而易见,越多的设计变量需要越多的迭代次数,从而需要更多的机时。一种减少设计变量的做法就是将其中的一些变量用其他的设计变量表示。这通常叫做设计变量合并。 设计变量合并不能用于设计变量是真正独立的情况下。但是,可以根据模型的结构判断是否允许某些设计变量之间可以逻辑的合并。例如,如果优化形式是对称的,可以用一个设计变量表示对称部分。 & #61548; 给设计变量定义一个合理的范围(OPVAR命令中的MIN和MAX)。范围过大可能不能表示好的设计空间,而范围过小可能排除了好的设计。记住只有正的数值是可以的,因此要设定一个上限。 & #61548; 选择可以提供实际优化设计的设计变量。例如,可以只用一个设计变量X1对图1-3a 的悬臂梁进行重量优化。但是,这排除了用曲线或变截面得到更小的重量的可能。为了包括这种设计,需要选择四个设计变量X1到X4(图1-3c)。也可以用另外一种设计变量选择方法完成该优化设计,见图1-3d。同时,要避免选择产生不实际结果或不需要的设计。 选择状态变量 状态变量通常是控制设计的因变量数值。状态变量的例子有应力,温度,热流率,频率,变形,吸收能,消耗时间等。状态变量必须是ANSYS可以计算的数值;实际上任何参数都能被定义为状态变量。选择状态变量的一些要点为:

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

汽车动力传动系参数优化设计

汽车理论Project 第一章汽车动力性与燃油经济性数学模型立 1.汽车动力性与燃油经济性的评价指标 1.1 汽车动力性评价 汽车的动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。汽车的动力性主要可由以下三方面的指标来评定: (1)最高车速:最高车速是指在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶速度。它仅仅反映汽车本身具有的极限能力,并不反映汽车实际行驶中的平均车速。 (2)加速能力:汽车的加速能力通过加速时间表示,它对平均行驶车速有着很大影响,特别是轿车,对加速时间更为重视。当今汽车界通常用原地起步加速时间与超车加速时间来表明汽车的加速能力。原地起步加速时间是指汽车由第I挡或第II挡起步,并以最大的加速强度(包括选择适当的换挡时机)逐步换至最高挡后达到某一预定的距离或车速所需要的时间。超车加速时间是指用最高挡或次高挡内某一较低车速全力加速至某一高速所需要的时间。 (3)爬坡能力:汽车的爬坡能力是指汽车满载时用变速器最低挡

在良好路面上能爬上的最大道路爬坡度。 1.2 汽车燃油经济性评价 汽车的燃油经济性是指在保证汽车动力性能的前提下,以尽量少的燃油消耗量行驶的能力。汽车的燃油经济性主要评价指标有以下两方面: (1)等速行驶百公里燃油消耗量:它指汽车在一定载荷(我国标准规定轿车为半载、货车为满载)下,以最高挡在良好水平路面上等速行驶100km的燃油消耗量。行驶的燃油消耗量。 (2)多工况循环行驶百公里燃油消耗量:由于等速行驶工况并不能全面反映汽车的实际运行情况。汽车在行驶时,除了用不同的速度作等速行驶外,还会在不同情况下出现加速、减速和怠速停车等工况,特别是在市区行驶时,上述行驶工况会出现得更加频繁。因此各国都制定了一些符合国情的循环行驶工况试验标准来模拟实际汽车运行 状况,并以百公里燃油消耗量来评价相应行驶工况的燃油经济性。1.3 汽车动力性与燃油经济性的综合评价 由内燃机理论和汽车理论可知,现有的汽车动力性和燃油经济性指标是相互矛盾的,因为动力性好,特别是汽车加速度和爬坡性能好,一般要求汽车稳定行驶的后备功率大;但是对于燃油经济性来说,后备功率增大,必然降低发动机的负荷率,从而使燃油经济性变差。从汽车使用要求来看,既不可脱离汽车燃油经济性来孤立地追求动力性,也不能脱离动力性来孤立地追求燃油经济性,最佳地设计方案是在汽车的动力性与燃料经济性之间取得最佳折中。目前,在进行动力

制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算 一、实际输气量(简称输气量) 在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。 (4-3) 式中-制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1 小型往复式制冷压缩机的名义工况

四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1 实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的 排热量为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率;

相关主题
文本预览
相关文档 最新文档