当前位置:文档之家› 数据挖掘原理与算法教案

数据挖掘原理与算法教案

数据挖掘原理与算法教案
数据挖掘原理与算法教案

数据挖掘原理与算法教案

讲授:王志明

w3z2m1@https://www.doczj.com/doc/f9501656.html,

湖南农业大学理学院信息科学系

第一章绪论

教学目的:掌握数据挖掘的概念,背景,基本理论,基本应用,发展趋势教学重点难点:数据挖掘的概念,粗糙集方法

教学课时:2

教学过程:

一、概念

数据挖掘(Data mining)属一交叉学科,融合了数据库技术(Database),人工智能(Artificial Intelligence),机器学习(Machine Learning),统计学(Statistics),知识工程(Knowledge Engineering),面向对象方法(Object-Oriented Method),信息检索(Information Retrieval),高性能计算(High-Performance Computing)以及数据可视化(Data Visualization)等技术。

联机事物处理(On Line Transaction Processing,OLTP)是在网络环境下的事务处理工作,以快速的响应和频繁的数据修改为特征,使用户利用数据库能够快速地处理具体的业务。

知识:广义讲就是数据、信息的表现形式。人们常把概念、规则、模式、规律和约束等看成知识。

数据挖掘:又称数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效地、新颖的、潜在有用的、最终可理解的模式的非平凡过程。简单的说就是从大量数据中提取或挖掘知识。

数据仓库是面向主题的、集成的、稳定的,不同时间的数据集合,用于支持经营管理中决策制定过程。

二、数据挖掘产生与发展

1)查询、统计、报表等简单传统的数据处理无法获取知识。这样促使数据挖掘技术的发展。利用数据仓库存储数据。

2)数据挖掘技术产生的技术背景:(1)数据库、数据仓库、Internet 等信息技术的发展;(2)计算机性能的提升;(3)统计学和人工智能等数据分析方法的应用。

3)数据挖掘技术发展应用以及重点需要的研究的方面:

(1)商业中的应用

(2)与特定数据存储类型的适应问题

(3)大型数据的选择与规格化问题

(4)数据挖掘系统的构架与交互式挖掘技术

(5)数据挖掘语言与系统的可视化问题

(6)数据挖掘理论与算法研究

见书P11

四、广义知识挖掘

1、概念描述,包括特征性描述和区别性描述

2、多维数据分析,如求和,计数,平均,最大值等

3、多层次概念描述 (1)模式分层;(2)集合分组分层;(3)操作导出层;(4)基于规则分层

五、类知识挖掘

1、分类:决策树、贝叶斯分类、神经网络、遗传算法与进化理论、类比学习、粗糙集、模糊集等

2、聚类:基于划分的聚类算法、基于层次的聚类算法、基于密度的聚类算法、基于网格的聚类算法、基于模型的聚类算法 六、预测型知识挖掘

1、趋势预测分析

2、周期分析模式

3、序列模式

4、神经网络 七、粗糙集方法

粗糙集(Rough Set )是波兰数学家Z.Pawlak 于1982年提出的。粗糙集以等价关系(不可分辨关系)为基础,用于分类问题。它用上、下近似(upper approximation, lower approximation )两个集合来逼近任意一个集合,该集合的边界线区域被定义为上近似集和下近似集之差集。

1、等价

粗糙集把客观世界抽象为一个信息系统,一个信息系统是一四元组S=(U ,A ,V ,f )的定义为:

U:是一个非空有限对象(元组)集合,

U={x1 x2 …xn},其中xi 为对象(元组)。

A:是对象的属性集合,A={A1,A2,…,An},A 常分为两个不相交的子集,即条件属性C 和决策属性D, A C D =?

V:是属性值的集合, V={V1,V2,…,Vn},Vi 是Ai 的值域。

f :是信息函数,f:,(,)i j j U A V f x A V ?→∈

对于A 中任意一个属性a,若两记录i e 和j e 它们的属性值相同,称i e 和j

e

2、上近似和下近似

1、设U 是对象(事例)的集合U={x1 x2 …xn};B 是属性集A 的子集,R(B)是U 上的二元等价关系,

1212(){(,)|(,)(,),}R B x x f x b f x b b B ==∈,

若对任意集合O ,B 是属性集A 的子集,则O 的下近似定义为: (){|[]},R B BO x U x O =∈?这里()[]R B x 表示x 在R(B)上的等价类。 上近似定义为:(){|[]},R B BO x U x O =∈≠?

3、约简

设有两属性集12,B B ,1B 是2B 的真子集,如果1()R B =2()R B ,则称2B 可归约为1B ,若属性集B 不可归约,则称B 为U 的一个约简或归约子。 4、依赖度

设有两属性集P 和Q ,则P 对Q 的属性依赖度定义为:

#()()#p p pos Q r Q U

=

,其中*()

()p x R Q pos Q PX ∈= ,PX 表示集合X 在属性集上的下近

似。

设B C ?,C 是条件属性和D 是决策属性,则属性重要度定义为:

()()AS B C B r r D r D -=- 全集U 可以划分为三个不相交的区域,即正域(Pos ),负域(NEG )和边界(BND ):

()()A Pos X A X = ()()A NEG X U A X =- ()()()A BND X A X A X =-

从上面可见:()()()A A X A X BND X =+

用图说明正域、负域和边界,每一个小长方形表示一个等价类。

5、粗糙集

若()()A X A X =,即()BND X =Φ,即边界为空,称X 为A 的可定义集;否则X 为A 不可定义的,即()()A X A X ≠,称X 为A 的Rough 集(粗糙集)。

6、规则的提取

通过分析U 中的两个划分{}i C E =和{}j D Y =之间的关系,把C 视为分类条件,D 视为分类结论,我们可以得到下面的分类规则:

1)当≠?i j E Y I ,则有:ij r :()()i j Des E Des Y →

()i Des E 和()j Des Y 分别是等价集i E 和等价集j Y 中的特征描述。 2)当=i j i E Y E I 时(i E 完全被j Y 包含)即下近似,建立的规则ij r 是确定的,规则的可信度cf=1.0。

3)当≠i j i E Y E I 时(i E 部分被j Y 包含)即上近似,建立的规则ij r 是不确定的,规则的可信度为:

cf=

i j i

E Y E

4)当=?i j E Y I 时(i E 不被j Y 包含),i E 和j Y 不能建立规则。 7、举例(汽车数据)

(X )

(X )=

(X ) X

()

A X -

U={1,2,3,4,5,6,7,8,9,10}

A={power, turbo, weight}

V={low, high, medium, yes, no, light, heavy, med}

C={ power, turbo}, D={weight}

按照C,则U分为:

E1={1,5,9},E2={2,7,10},E3={3,6},E4={4,8} 按照D,则U可分为

Y1={1,5,9}, Y2={7,8,10}, Y3={2,3,4,6}

P28

八、数据挖掘的应用

1、CRM(客户关系管理)的应用

2、体育竞技中的应用

3、商业银行的应用

4、电信中的应用

5、科学探索中的应用

6、信息安全中的应用

第二章

教学目的:掌握知识发现过程以及数据处理有关概念的概念,基本应用

教学重点难点:知识发现技术要点、过程模型处理

教学课时:3

教学过程:

一、知识发现过程

1、大概过程

(1)问题定义阶段

(2)数据抽取阶段

目标数据(Target Data),是根据用户的需要从原始数据库中选取的一组数据。数据预处理一般包括消除噪声、推导计算缺值数据、消除重复记录等。数据转换的主要目的是完成数据类型转换。尽量消减数据维数或降维,以减少数据挖掘时要考虑的属性个数。

(3)数据挖掘

首先要确定挖掘的任务或目的,如数据分类、聚类、关联规则发现或序列模式发现等。确定了挖掘任务后,就要决定使用什么样的挖掘算法。实施数据挖掘算法,获取有用的模式

(4)知识评估阶段

获取的模式经过评估,可能存在冗余或无关的模式,这时需要将其剔除;也有可能模式不满足用户要求。把结果转换为用户易懂的另一种表示,如把分类决策树转换为“if ...then…”规则。

2、数据清洗与预处理

目标数据(Target Data),是根据用户的需要从原始数据库中选取的一组数据。数据预处理一般包括消除噪声、推导计算缺值数据、消除重复记录等。数据转换的主要目的是完成数据类型转换。尽量消减数据维数或降维,以减少数据挖掘时要考虑的属性个数。

二、数据库中的知识发现处理过程模型

1、阶梯处理过程模型

2、螺旋处理过程模型 G . H. John 提出

定义问题 抽取数据 清洗数据 数据工程 算法工程 运行挖掘算法 分析结果

3、以用户为中心的处理模型

Brachman 和 Anand 从用户角度对KDD 处理过程进行了分析。

任务发现 数据发现

结果评价

KDD 过程

模型开发

数据分析

输出结果生成

4、联机KDD模型

传统数据挖掘的缺陷:(1)过分强调自动化,忽视交互性,导致用户对数据挖掘过程参与过程困难;(2)数据挖掘算法对用户是一个“黑盒”,只有在算法挖掘结束后,用户才能评价发现的模式,若对模式不满意,则重复挖掘过程,消耗资源;(3)传统数据挖掘过程只能一次对一个数据集进行挖掘。

OLAM(On Line Analytical Mining)联机分析挖掘由OLAP发展而来。被分为几个层次:

(1)L0层:数据集,包含了相关的数据库和数据仓库。

(2)L1层:形成支持OLAP和OLDM的多维数据集,主要由元数据集和数据立方体。

(3)L2层:是OLAP和OLDM的应用层,包含相互关联并协同工作的OLAM引擎和OLAP引擎。L2接受数据挖掘请求,通过访问

多维数据和元数据,完成数据挖掘和分析工作。

(4)L3层:是一个用户接口层,它主要承担用户请求的理解与挖掘结果的解释和表达等。

三、知识发现软件和工具的发展

1、独立的知识发现软件

2、横向的知识发现工具集(P52)

DBMiner, Quest, IBM Intelligent Miner, Darwin, ReMind

3、纵向的知识发现解决方案

如证券系统的趋势预测;银行和电信行业的欺诈行为检测;基因分析系统中的DNA识别等

4、KDD系统介绍

Quest:

QUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点:

提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。

各种开采算法具有近似线性(O(n))计算复杂度,可适用于任意大小的

算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。

为各种发现功能设计了相应的并行算法。

DBMiner:

DBMiner是加拿大SimonFraser(加拿大名校- 西蒙菲沙大学)大学开发的一个多任务数据挖掘系统,它的前身是DBLearn。该系统设计的目的是把关系数据库和数据开采集成在一起,以面向属性的多级概念为基础发现各种知识。DBMiner系统具有如下特色:

能完成多种知识的发现:泛化规则、特性规则、关联规则、分类规则、演化知识、偏离知识等。

综合了多种数据开采技术:面向属性的归纳、统计分析、逐级深化发现多级规则、元规则引导发现等方法。

提出了一种交互式的类SQL语言——数据开采查询语言DMQL。

能与关系数据库平滑集成。

实现了基于客户/服务器体系结构的Unix和PC(Windows/NT)版本的系统。

四、知识发现项目的过程化管理(略)

五、数据挖掘语言介绍

第三章 关联规则挖掘理论和算法

教学目的:掌握关联规则挖掘的概念,背景知识,了解常见关联规则挖掘的数据挖掘算法

教学重点难点:关联规则挖掘常见算法 教学课时:6 教学过程:

关联规则挖掘最早由Agrawal 于1993年提出,目的是发现交易数据库中不同商品(项)之间的联系,这些规则找出顾客购买行为模式 。 一、概念:

事务数据库:设12{,,...,}m I i i i =是项(Item )的集合。记12{,,...,}n D t t t =为事务(Transaction )的集合(事务数据库),每个事务i t 都对应I 上的一个子集。

支持度:设1I I ?,项目集1I 在数据集D 上的支持度(support)是包含1I 的事务在D 中所占的百分比,即:support(1I )=

1{|}

t D I t D

∈?

频繁项目集:对项目集I 和事务数据库D ,T 中所有满足用户指定的最小支持度(minsupport)的项目集,即大于或等于minsupport 的I 的非空子集,称为频繁项目集(Frequent Itemsets)或者大项目集(Large Itemsets)。在频繁项目集中挑选出所有不被其他元素包含的频繁项目集称为最大频繁项目集(Maximum Frequent Itemsets)或最大项目集(Maximum Large Itemsets)。

规则的可信度:一个定义在I 和D 上的形如12I I ?的关联规则通过满足一定的可信度、信任度或置信度(Confidence)来给出,所谓可信度是指包含1I 和2I 的事务数与包含1I 的事务数之比,即

1212211support()

()(/)support()

I I confidence I I P I I I ?==

,其中1212,,I I I I I φ?≠

强关联规则:D 在I 上满足最小支持度和最小信任度的关联规则成为强关联规则(Strong Association Rule )

我们一般所说的关联规则指强关联规则。一般地,给定一个事务数据库,关联规则挖掘问题就是通过用户指定最小支持度和最小可信度来寻找强关联规则的过程。其划分为两个小问题:

(1) 发现频繁项目集:找出支持度大于最小支持度的项集,即频繁项

集。 (2) 生成关联规则:根据定义,这些规则必须满足最小支持度和最小

可信度。

例子:例子:讨论不购买商品与购买商品的关系。设交易集D ,经过对D

设定minsupp=0.2, minconf=0.6, 得到如下的关联规则:

买牛奶→买咖啡s=0.2 c=0.8

即80%的人买了牛奶就会买咖啡。

同时得到结论:90%的人肯定会买咖啡。

规则

买咖啡→不买牛奶s=0.7 c=0.78

支持度和可信度分别为0.7和0.78,更具有商业销售的指导意义。

二、经典的频繁项目集的生成算法

1、项目集空间理论

定理1 频繁项集的所有非空子集都必须也是频繁的。

定理2 非频繁项目集的超集是非频繁项目集。

2、Apriori算法

1、Apriori 使用一种称作逐层搜索的迭代方法,“K-项集”用于探索“K+1-项集”。首先,找出频繁“1-项集”的集合。该集合记作L1。L1用于找频繁“2-项集”的集合L2,而L2用于找L3,如此下去,直到不能找到“K-项集”。找每个L K需要一次数据库扫描。

2、“K-项集”产生“K+1-项集”

设K-项集L K,K+1项集L K+1,产生L K+1的候选集C K+1。有公式:

C K+1=L K L K={XY,其中X,Y L K,

|XY|=K+1}

其中C1是1-项集的集合,取自所有事务中的单项元素。

如:如L1={{A},{B}}

C2={A}{B}={A,B},且|AB|=2

L2={{A,B},{A,C}}

C3={A,B}{A,C}={A,B,C},且|ABC|=3

例1见P72

例2生成频繁项目集过程:

解:

1) 在算法的第一次迭代,每个项都是候选1-项集的集合C1的成员。算法扫描所有的事务,对每个项的出现次数计数。见图中第1列。

2) 假定最小事务支持计数为2

(即min-sup=2/9=22%),可以确定频繁1-项集的集合L1。它由具有最小支持度的候选1-项集组成。见图中第2列。

3) 为发现频繁2-项集的集合L2,算法使用L1*L1来产生候选集C2。见图中第3列。

4) 扫描D中事务,计算C2中每个候选项集的支持度计数,如图中的第4列。

5) 确定频繁2-项集的集合L2,它由具有最小支持度的C2中的候选2-项集组成。见图第5列

6) 候选3-项集的集合C3的产生,得到候选集:

C3={{A,B,C},{A,B,E},{A,C,E},{B,C,D},{B,C,E},

{B,D,E}}

按Apriori 性质,频繁项集的所有子集必须是频繁的。由于{A,D},{C,D},{C,E},{D,E}不是频繁项集,故C3中后4个候选不可能是频繁的,在C3中删除它们。见图第6列。

扫描D中事务,对C3中的候选项集计算支持度计数,见图第7列。

7) 确定L3,它由具有最小支持度的C3中候选3-项集组成,见图第8列。8)按公式产生候选4-项集的集合C4,产生结果{A,B,C,E},这个项集被剪去,因为它的子集{B,C,E}不是频繁的。这样L4=Ф。此算法终止。L3是最大的频繁项集,即:{A,B,C}和{A,B,E}。

3、定理:设项目集X,X1是X的一个子集,如果规则X->(l-X)不是强规则,那么X1->(l-X1)一定不是强规则。

4、定理:设项目集X,X1是X的一个子集,如果规则Y->X是强规则,那么规则Y->X1一定是强规则。

三、Apriori算法的性能瓶颈问题

1)多次扫描事务数据库,需要很大的I/O负载

2)可能产生庞大的候选集

四、Apriori算法改进

1、基于数据分割的方法

1)合理利用主存空间

2)支持并行挖掘算法

2、基于散列(Hash)的方法

Hash,一般翻译做“散列”,也有直接音译为”哈希“的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

HASH主要用于信息安全领域中加密算法,他把一些不同长度的信息转化成杂乱的128位的编码里,叫做HASH值. 也可以说,hash就是找到一种数据内容和数据存放地址之间的映射关系。

1995年,Park等提出一个基于散列技术的产生频繁项目集的算法。他们通过试验发现寻找频繁项目集的主要计算是在生成2-频繁项目集L2上。

例P75

3、基于采用(Sampling)的方法

思想是:先使用数据库的抽样数据得到一些可能成立的规则,然后利用数据库的剩余部分验证这些关联规则是否正确。有点是简单且显著降低因为挖掘所付出的I/O的代价。缺点是抽样数据的选取以及由此而产生的结果的偏差过大。

五、对项目集空间理论的发展

随着数据库容量的增大,重复访问数据库将导致性能的低下,因此,探索新的理论和算法减少数据库的扫描次数和候选集空间的占用,采用并行挖掘等方式提高数据挖掘效率已经成为研究的热点之一。

1、探索新的管理规则挖掘理论

2、提高裁减项目集格空间的效率

3、分布和并行环境下的关联规则挖掘问题

1)Close算法

在close算法中,也使用了迭代的方法:利用频繁闭合i-项目集记为FC i,生成频繁闭合(i+1)-项目集,记为FC i+1(i>=1)。首先找出候选1-项目集,记为FCC1,通过扫描数据库找到它的闭合以及支持度,得到候选闭合项目集,然后对其中的每个候选闭合项进行修剪,如果支持度不小于最小支持度,则加入到频繁闭合项目集FC1.再将它与自身链接,以得到候选项频繁闭合2-项目集FCC2,再经过修剪得到FC2,,再利用FC2推出FC3,如此下去,直到有某个值r使得候选频繁频繁闭合r-项目集FCC r为空,这时算法结束。

例P80

其余算法略。

八、改善关联规则挖掘质量问题

衡量关联规则挖掘结果的有效性应该多方面考虑:

1)准确性:挖掘出的规则必须反映数据的实际情况。

2)实用性:挖掘出的规则必须是间接可用的,而且是针对挖掘目标的。

3)新颖性:挖掘出的关联规则可以为用户提供新的有价值信息。可以在用户主观和系统主观两个层面上考虑关联规则挖掘的质量问题。1、用户主观层面

约束数据挖掘可以为用户参与知识发现工作提供一种有效的机制。

1)知识类型的约束

2)数据的约束

3)维/层次约束

5)针对具体知识类型的约束

2、系统客观层面

九、约束数据挖掘问题

1、约束在数据挖掘中的作用

1)聚焦挖掘任务,提高挖掘效率2)保证挖掘的精确性

3)控制系统的使用和规模

2、约束的类型

第四章 分类方法

教学目的:掌握分类的概念,背景,基本理论,基本应用,发展趋势和常见分类算法

教学重点难点:分类算法 教学课时:4 教学过程:

分类是数据挖掘中一项非常重要的任务,分类的目的是学会一个分类函数或者分类模型(常称为分类器),该模型能把数据库中的数据项映射到给定类别中的某一类中。分类器的构造方法常见有:统计方法、机器学习、神经网络等。

统计方法:贝叶斯法、非参数法

机器学习方法:决策树法、规则归纳法 神经网络方法:BP 算法

另外还有粗糙集、支持向量机等。 一、分类的基本概念

定义:给定一个数据库12{,,...,}n D t t t =和一组类12{,,...,}m C C C C =,分类问题就是确定一个映射:f D C →,每个元组i t 被分配到一个类中,一个类j C 包含映射到该类中的所有元组,即{|(),1,}j i i j i C t f t C i n t D ==≤≤∈。

例如:见P115

一般,数据分类(Data Classification)分为两个步骤: (1)建立模型,描述预订的数据类集或概念集

训练数据集中的每个元组称为训练样本,是从样本中抽取的,训练又分有指导学习和无指导学习。

(3) 使用模型进行分类 二、基于距离的分类算法

1、定义:给定一个数据库12{,,...,}n D t t t =和一组类12{,,...,}m C C C C =,对于任意的元组12{,,...,},i i i ik t t t t D =∈如果存在一个j C ,使得

(,)(,),,,i j i p p p j sim t C sim t C C C C C ≥?∈≠

则i t 被分配到类j C 中,其中(,)i j sim t C 称为相似性。

实际中常用距离来表征,距离越近,相似性越大,距离越远,相似性

例子P117

2、KK最近邻(k-Nearest Neighbor,KNN)分类算法

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN 方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k 个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比。

该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。因此可以采用权值的方法(和该样本距离小的邻居权值大)来改进。该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

例子P119

三、决策树分类

决策树是另外一种有效的生成分类器的方法。决策树方法采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较并根据不同的属性值判断从该节点向下的分支,在决策树的叶节点得到结论。故从决策树的根到叶节点的一条路径对应着一条合取规则。

基于决策树的分类算法的一个最大优点就是它在学习过程中不需要使用者了解很多背景知识(同时这也是其最大缺点),只要训练集能够用属性-结论表示出来就能用该算法学习。

则可以的决策树如下(算法以后再说):

1、信息论概念

信息论是C.E.Shannon为解决信息传递(通信)过程问题而建立的理论,也称为统计通信理论。

(1)信道模型

一个传递信息的系统是由发送端(信源)和接收端(信宿)以及连接两者的通道(信道)三者组成。

(2)在进行实际的通信之前,收信者(信宿)不可能确切了解信源究竟会发出什么样的具体信息,不可能判断信源会处于什么样的状态。这种情形就称为信宿对于信源状态具有不确定性。而且这种不确定性是存在于通信之前的。因而又叫做先验不确定性,表示成

信息熵H(U)

在进行了通信之后,信宿收到了信源发来的信息,这种先验不确定性才会被消除或者被减少。

如果干扰很小,不会对传递的信息产生任何可察觉的影响,信源发出的信息能够被信宿全部收到,在这种情况下,信宿的先验不确定性就会被完全消除。

先验不确定性不能全部被消除,只能部分地消除。在一般情况下,干扰总会对信源发出的信息造成某种破坏,使信宿收到的信息不完全。通信结束之后,信宿仍然具有一定程度的不确定性。这就是后验不确定性,用条件熵表示H(U/V)。后验不确定性总要小于先验不确定性:

H(U/V)< H(U)

如果后验不确定性的大小正好等于先验不确定性的大小,这就表示信宿根本没有收到信息。如果后验不确定性的大小等于零,这就表示信宿收到了全部信息。可见,信息是用来消除(随机)不确定性的度量。信息量用互信息来表示,即:I(U,V)=H(U)-H(U/V)

(3)互信息的计算

(a)设S为训练集,有n个特征(属性),表示为(A1,A2,...,A n)。|S|

数据挖掘算法综述

数据挖掘方法综述 [摘要]数据挖掘(DM,DataMining)又被称为数据库知识发现(KDD,Knowledge Discovery in Databases),它的主要挖掘方法有分类、聚类、关联规则挖掘和序列模式挖掘等。 [关键词]数据挖掘分类聚类关联规则序列模式 1、数据挖掘的基本概念 数据挖掘从技术上说是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。这个定义包括好几层含义: 数据源必须是真实的、大量的、含噪声的、发现的是用户感兴趣的知识, 发现的知识要可接受、可理解、可运用, 并不要求发现放之四海皆准的知识, 仅支持特定的发现问题, 数据挖掘技术能从中自动分析数据进行归纳性推理从中发掘出潜在的数据模式或进行预测, 建立新的业务模型帮助决策者调整策略做出正确的决策。数据挖掘是是运用统计学、人工智能、机器学习、数据库技术等方法发现数据的模型和结构、发现有价值的关系或知识的一门交叉学科。数据挖掘的主要方法有分类、聚类和关联规则挖掘等 2、分类 分类(Classification)又称监督学习(Supervised Learning)。监

督学习的定义是:给出一个数据集D,监督学习的目标是产生一个联系属性值集合A和类标(一个类属性值称为一个类标)集合C的分类/预测函数,这个函数可以用于预测新的属性集合(数据实例)的类标。这个函数就被称为分类模型(Classification Model),或者是分类器(Classifier)。分类的主要算法有:决策树算法、规则推理、朴素贝叶斯分类、支持向量机等算法。 决策树算法的核心是Divide-and-Conquer的策略,即采用自顶向下的递归方式构造决策树。在每一步中,决策树评估所有的属性然后选择一个属性把数据分为m个不相交的子集,其中m是被选中的属性的不同值的数目。一棵决策树可以被转化成一个规则集,规则集用来分类。 规则推理算法则直接产生规则集合,规则推理算法的核心是Separate-and-Conquer的策略,它评估所有的属性-值对(条件),然后选择一个。因此,在一步中,Divide-and-Conquer策略产生m条规则,而Separate-and-Conquer策略只产生1条规则,效率比决策树要高得多,但就基本的思想而言,两者是相同的。 朴素贝叶斯分类的基本思想是:分类的任务可以被看作是给定一个测试样例d后估计它的后验概率,即Pr(C=c j︱d),然后我们考察哪个类c j对应概率最大,便将那个类别赋予样例d。构造朴素贝叶斯分类器所需要的概率值可以经过一次扫描数据得到,所以算法相对训练样本的数量是线性的,效率很高,就分类的准确性而言,尽管算法做出了很强的条件独立假设,但经过实际检验证明,分类的效果还是

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV 机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面

数据挖掘原理与实践蒋盛益版期末复习

第一章 数据挖掘定义 技术层面:数据挖掘就是从大量数据中,提取潜在有用的信息和知识的过程。 商业层面:数据挖掘就是一种商业信息处理技术,其主要特点是对大量业务数据进行抽取、转换、分析和建模处理,从中提取辅助商业决策的关键性数据。 数据挖掘任务 预测任务 根据其它属性的值预测特定属性的值,如分类、回归、离群点检测。 描述任务 寻找概括数据中潜在联系的模式,如聚类分析、关联分析、演化分析、序列模式挖掘。 (1) 分类(Classification)分析 分类分析,通过分析示例数据库中的数据为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用此分类规则对其它数据库中的记录进行分类。 分类分析广泛应用于用户行为分析(受众分析)、风险分析、生物科学等。 (2) 聚类(Clustering)分析 “物以类聚,人以群分”。聚类分析技术试图找出数据集中的共性和差异,并将具有共性的对象聚合在相应的类中。聚类可以帮助决定哪些组合更有意义,广泛应用于客户细分、定向营销、信息检索等等。 (3) 回归(Regression )分析 回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种分析方法。其可应用于风险分析、作文自动评分等领域。 (4) 关联(Association)分析 关联分析,发现特征之间的相互依赖关系,通常是从给定的数据集中发现频繁出现的模式知识(又称为关联规则)。关联分析广泛用于市场营销、事务分析等领域。 聚类与分类的主要区别 聚类与分类是容易混淆的两个概念,聚类是一种无指导的观察式学习,没有预先定义的类。而分类问题是有指导的示例式学习,预先定义的类。 数据挖掘过程 数据挖掘和知识发现紧密相连。知识发现是从数据中发现有用知识的整个过程 ?知识发现的主要步骤: ?数据清洗。其作用是清除数据噪声和与挖掘主题明显无关的数据。 ?数据集成。其作用是将来自多数据源中的相关数据组合到一起。 ?数据转换。其作用是将数据转换为易于进行数据挖掘的数据存储形式。 ?数据挖掘。其作用是利用智能方法挖掘数据模式或规律知识。 ?模式评估。其作用是根据一定评估标准从挖掘结果筛选出有意义的相关知识。 ?知识表示。其作用是利用可视化和知识表达技术,向用户展示所挖掘的相关知识

学习18大经典数据挖掘算法

学习18大经典数据挖掘算法 本文所有涉及到的数据挖掘代码的都放在了github上了。 地址链接: https://https://www.doczj.com/doc/f9501656.html,/linyiqun/DataMiningAlgorithm 大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。 1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。 详细介绍链接:https://www.doczj.com/doc/f9501656.html,/androidlushangderen/article/details/42395865 2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法, 详细介绍链接:https://www.doczj.com/doc/f9501656.html,/androidlushangderen/article/details/42558235 3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。 详细介绍链接:https://www.doczj.com/doc/f9501656.html,/androidlushangderen/article/details/42613011 4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。 详细介绍链接:https://www.doczj.com/doc/f9501656.html,/androidlushangderen/article/details/42680161 5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。 详细介绍链接:https://www.doczj.com/doc/f9501656.html,/androidlushangderen/article/details/42780439 6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。

数据挖掘原理与实践-蒋盛益-答案

习题参考答案 第1 章绪论 1.1 数据挖掘处理的对象有哪些?请从实际生活中举出至少三种。 答:数据挖掘处理的对象是某一专业领域中积累的数据,对象既可以来自社会科学,又可以来自自然科学产生的数据,还可以是卫星观测得到的数据。数据形式和结构也各不相同, 可以是传统的关系数据库,可以是面向对象的高级数据库系统,也可以是面向特殊应用的 数据库,如空间数据库、时序数据库、文本数据库和多媒体数据库等,还可以是Web 数据 信息。 实际生活的例子: ①电信行业中利用数据挖掘技术进行客户行为分析,包含客户通话记录、通话时间、所 开通的服务等,据此进行客户群体划分以及客户流失性分析。 ②天文领域中利用决策树等数据挖掘方法对上百万天体数据进行分类与分析,帮助天文 学家发现其他未知星体。 ③制造业中应用数据挖掘技术进行零部件故障诊断、资源优化、生产过程分析等。 ④市场业中应用数据挖掘技术进行市场定位、消费者分析、辅助制定市场营销策略等。 1.2 给出一个例子,说明数据挖掘对商务的成功是至关重要的。该商务需要什么样的数据挖掘功能?它们能够由数据查询处理或简单的统计分析来实现吗? 答:例如,数据挖掘在电子商务中的客户关系管理起到了非常重要的作用。随着各个电子商务网站的建立,企业纷纷地从“产品导向”转向“客户导向”,如何在保持现有的客户 同时吸引更多的客户、如何在客户群中发现潜在价值,一直都是电子商务企业重要任务。但是,传统的数据分析处理,如数据查询处理或简单的统计分析,只能在数据库中进行 一些简单的数据查询和更新以及一些简单的数据计算操作,却无法从现有的大量数据中 挖掘潜在的价值。而数据挖掘技术却能使用如聚类、关联分析、决策树和神经网络等多 种方法,对数据库中庞大的数据进行挖掘分析,然后可以进行客户细分而提供个性化服务、可以利用挖掘到的历史流失客户的特征来防止客户流失、可以进行产品捆绑推荐等,从而使电子商务更好地进行客户关系管理,提高客户的忠诚度和满意度。 1.3 假定你是Big-University 的软件工程师,任务是设计一个数据挖掘系统,分析学校课程数据库。该数据库包括如下信息:每个学生的姓名、地址和状态(例如,本科生或研究生)、所修课程,以及他们的GPA。描述你要选取的结构,该结构的每个成分的作用是什么?答:任务目的是分析课程数据库,那么首先需要有包含信息的关系型数据库系统,以便查找、提取每个属性的值;在取得数据后,需要有特征选择模块,通过特征选择,找出要分析 的属性;接下来需要一个数据挖掘算法,或者数据挖掘软件,它应该包含像分类、聚类、关联分析这样的分析模块,对选择出来的特征值进行分析处理;在得到结果后,可以用 可视化软件进行显示。 1.4 假定你作为一个数据挖掘顾问,受雇于一家因特网搜索引擎公司。通过特定的例子说明,数据挖掘可以为公司提供哪些帮助,如何使用聚类、分类、关联规则挖掘和离群点检测 等技术为企业服务。 答: (1) 使用聚类发现互联网中的不同群体,用于网络社区发现; 第2 页共27 页 (2) 使用分类对客户进行等级划分,从而实施不同的服务; (3) 使用关联规则发现大型数据集中间存在的关系,用于推荐搜索。如大部分搜索了“广外”的人都会继续搜索“信息学院”,那么在搜索“广外”后会提示是否进进一步搜 索“信息学院”。

数据挖掘十大待解决问题

数据挖掘领域10大挑战性问题与十大经典算法 2010-04-21 20:05:51| 分类:技术编程| 标签:|字号大中小订阅 作为一个数据挖掘工作者,点可以唔知呢。 数据挖掘领域10大挑战性问题: 1.Developing a Unifying Theory of Data Mining 2.Scaling Up for High Dimensional Data/High Speed Streams 3.Mining Sequence Data and Time Series Data 4.Mining Complex Knowledge from Complex Data 5.Data Mining in a Network Setting 6.Distributed Data Mining and Mining Multi-agent Data 7.Data Mining for Biological and Environmental Problems 8.Data-Mining-Process Related Problems 9.Security, Privacy and Data Integrity 10.Dealing with Non-static, Unbalanced and Cost-sensitive Data 数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

数据挖掘十大算法

数据挖掘十大算法 数据挖掘十大算法—K 近邻算法 k -近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。 一、基于实例的学习。 1、已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法只是简单地把训练样例存储起来。 从这些实例中泛化的工作被推迟到必须分类新的实例时。每当学习器遇到一个新的查询实例,它分析这个新实例与以前存储的实例的关系,并据此把一个目标函数值赋给新实例。 2、基于实例的方法可以为不同的待分类查询实例建立不同的目标函数逼近。事实上,很多技术只建立目标函数的局部逼近,将其应用于与新查询实例邻近的实例,而从不建立在整个实例空间上都表现良好的逼近。当目标函数很复杂,但它可用不太复杂的局部逼近描述时,这样做有显著的优势。 3、基于实例方法的不足: (1)分类新实例的开销可能很大。这是因为几乎所有的计算都发生在分类时,而不是在第一次遇到训练样例时。所以,如何有效地索引训练样例,以减少查询时所需计算是一个重要的实践问题。(2)当从存储器中检索相似的训练样例时,它们一般考虑实例的所有属性。如果目标概念仅依赖于很多属性中的几个时,那么真正最“相似”的实例之间很可能相距甚远。 二、k-近邻法基于实例的学习方法中最基本的是k -近邻算法。这个算法假定所有的实例对应于n 维欧氏空间?n 中的点。一个实例的最近邻是根据标准欧氏距离定义的。更精确地讲,把任意的实例x 表示为下面的特征向量:其中a r (x ) 表示实例x 的第r 个属性值。那么两个实例x i 和x j 间的距离定义为d (x i , x j ) ,其中: 说明: 1、在最近邻学习中,目标函数值可以为离散值也可以为实值。 2、我们先考虑学习以下形式的离散目标函数。其中V 是有限集合 {v 1,... v s }。下表给出了逼近离散目标函数的k-近邻算法。 3、正如下表中所指出的,这个算法的返回值f' (x q ) 为对f (x q ) 的估计,它就是距离x q 最近的k 个训练样例中最普遍的f 值。 4、如果我们选择k =1,那么“1-近邻算法”

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

数据挖掘分类算法介绍

数据挖掘分类算法介绍 ----------------------------------------------------------------------------------------------------------------------------- 分类是用于识别什么样的事务属于哪一类的方法,可用于分类的算法有决策树、bayes分类、神经网络、支持向量机等等。 决策树 例1 一个自行车厂商想要通过广告宣传来吸引顾客。他们从各地的超市获得超市会员的信息,计划将广告册和礼品投递给这些会员。 但是投递广告册是需要成本的,不可能投递给所有的超市会员。而这些会员中有的人会响应广告宣传,有的人就算得到广告册不会购买。 所以最好是将广告投递给那些对广告册感兴趣从而购买自行车的会员。分类模型的作用就是识别出什么样的会员可能购买自行车。 自行车厂商首先从所有会员中抽取了1000个会员,向这些会员投递广告册,然后记录这些收到广告册的会员是否购买了自行车。 数据如下:

在分类模型中,每个会员作为一个事例,居民的婚姻状况、性别、年龄等特征作为输入列,所需预测的分类是客户是否购买了自行车。 使用1000个会员事例训练模型后得到的决策树分类如下:

※图中矩形表示一个拆分节点,矩形中文字是拆分条件。 ※矩形颜色深浅代表此节点包含事例的数量,颜色越深包含的事例越多,如全部节点包含所有的1000个事例,颜色最深。经过第一次基于年龄的拆分后,年龄大于67岁的包含36个事例,年龄小于32岁的133个事例,年龄在39和67岁之间的602个事例,年龄32和39岁之间的229个事例。所以第一次拆分后,年龄在39和67岁的节点颜色最深,年龄大于67岁的节点颜色最浅。 ※节点中的条包含两种颜色,红色和蓝色,分别表示此节点中的事例购买和不购买自行车的比例。如节点“年龄>=67”节点中,包含36个事例,其中28个没有购买自行车,8个购买了自行车,所以蓝色的条比红色的要长。表示年龄大于67的会员有74.62%的概率不购买自行车,有23.01%的概率购买自行车。 在图中,可以找出几个有用的节点: 1. 年龄小于32岁,居住在太平洋地区的会员有7 2.75%的概率购买自行车; 2. 年龄在32和39岁之间的会员有68.42%的概率购买自行车; 3. 年龄在39和67岁之间,上班距离不大于10公里,只有1辆汽车的会员有66.08%的概率购买自行车;

10大算法R实现

10大算法R实现 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继 承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过 程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它 是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面

大数据常用的算法

大数据常用的算法(分类、回归分析、聚类、关联规则) 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。 (3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。(4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信

数据挖掘中十大经典算法

数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 5. 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6. PageRank PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个

数据挖掘主要算法

朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。 2. 计算公式如下: 其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知, = ,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。 3. 如果中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace 光滑, 分母加k的原因是使之满足全概率公式)。 朴素贝叶斯的优点: 对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点: 对输入数据的表达形式很敏感。 决策树: 决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。 信息熵的计算公式如下:

其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。 现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。 决策树的优点: 计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征; 缺点: 容易过拟合(后续出现了随机森林,减小了过拟合现象); Logistic回归: Logistic是用来分类的,是一种线性分类器,需要注意的地方有: 1. logistic函数表达式为: 其导数形式为: 2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为: 到整个样本的后验概率:

机器学习10大经典算法.

1、C4.5 机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。 决策树学习也是数据挖掘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,他由他的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。决策树同时也可以依靠计算条件概率来构造。决策树如果依靠数学的计算方法可以取得更加理想的效果。决策树一般都是自上而下的来生成的。 选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。从根到叶子节点都有一条路径,这条路径就是一条“规则”。决策树可以是二叉的,也可以是多叉的。对每个节点的衡量: 1)通过该节点的记录数 2)如果是叶子节点的话,分类的路径 3)对叶子节点正确分类的比例。 有些规则的效果可以比其他的一些规则要好。由于ID3算法在实际应用中存在一些问题,于是Quilan提出了C4.5算法,严格上说C4.5只能是ID3的一个改进算法。相信大家对ID3算法都很.熟悉了,这里就不做介绍。 C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

数据挖掘算法摘要

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了

数据挖掘 资源

Data Mining: What Is Data Mining ? https://www.doczj.com/doc/f9501656.html,/faculty/jason.frand/teacher/technologies/palace/datamining .htm Data Mining - An Introduction https://www.doczj.com/doc/f9501656.html,/library/weekly/aa100700a.htm?iam=excite_1&terms=data+m ining Data Mining - An Introduction Student Notes https://www.doczj.com/doc/f9501656.html,/tec/courses/datamining/stu_notes/dm_book_1.html Data Mining Overview https://www.doczj.com/doc/f9501656.html,/dm/index.php3 Data Mining - Award Winning Software https://www.doczj.com/doc/f9501656.html,/?source=goto Data Mining With MicroStrategy Best In Business Intelligence https://www.doczj.com/doc/f9501656.html,/Software/Mining.asp?CID=1818dm Data Mining, Web Mining and Knowledge Discovery Directory https://www.doczj.com/doc/f9501656.html,/ Data Miners Home Page https://www.doczj.com/doc/f9501656.html,/ Data Mining and Knowledge Discovery Journal https://www.doczj.com/doc/f9501656.html,/usama/datamine/ Data Mining and Knowledge Discovery Journal https://www.doczj.com/doc/f9501656.html,/issn/1384-5810

相关主题
文本预览
相关文档 最新文档