当前位置:文档之家› 水下机器人发展现状ROV

水下机器人发展现状ROV

水下机器人发展现状ROV
水下机器人发展现状ROV

多功能水下脐带缆夹检测车综述1

水下机器人是一种可以在水下运行并能够独立完成特定功能的机械设备,通常可以分为载人水下机器人(Human Occupied Vehicle ,简称HOV ),遥控机器人(Remotely Operated Vehicle ,简称ROV )和自治无人水下机器人(Autonomous Underwater Vehicle ,简称AUV )三类。

AUV 在水下通过各类传感器测量信号,经过机载CPU 进行处理决策,独立完成各种操作,例如进行水下机动航行,动力定位,信息采集,水下探测等。通常这种机器人依靠水声通讯技术与岸基和船基进行联络,或者浮出水面,撑起无线电天线,与陆基和卫星进行通讯。AUV 的能源完全依靠自身提供,往往自身携带可充电电池、燃料电池、闭式柴油机等。该类设备优点是活动范围可以不受空间限制,并且没有脐带缆,不会发生脐带缆与水下结构物缠绕问题,但是水下的续航能力和负载能力受到自身能源的强烈制约,只能完成一些短程和轻载的工作,而自身的CPU 处理能力又很大程度上限制了AUV 所能从事工作的复杂程度。典型的AUV 有美国海军研究生院的Phoenix AUV和性能更优越的Aries AUV,这两个机器人的研发主要是为了研究智能控制、规划和导航功能。麻省理工大学Odyssey II是一种主要用于海冰检测和标图的机器人。美国新罕布什尔自主水下系统研究所与俄罗斯远东科学院水下技术研究所联合开发的太阳能自主水下AUV 正在尝试克服AUV 的远程续航缺陷。美国的C.S.Droper 实验室则在仿生AUV 方面有巨大的突破,代表产品是仿黄鳍金枪鱼机器人VCUUV 。

加拿大在1994年冰层电缆铺设方面率先采用AUV 技术,研制出Theseus AUV,该机器人配备了一块70kWh 铝氧燃料电池,续航能力达到36小时。后来该机器人的能源装置不断升级,到1997年完成第二代电池试验,续航能力较第一代显著提高。日本东京生产技术研究所主要致力于水下电缆检测领域,研发出了包括Twin-Burger I 型和II 型、PTEROA150型和250型等多系列电缆铺设和检测维护AUV 。在国内AUV 的研制主要由两所机构完成,一是一中科院沈阳自动化研究所为核心,该所与中船重工业集团702所,哈尔滨工程大学等合作研发出“探索者1号”AUV 等机器人,之后与俄罗斯合作研发了CR 系列机器人。另一个是以哈

尔滨工程大学为中心,主要研发军用智能机器人。北京航空航天大学致力于仿生机器鱼的研究,为新推进器技术和新型结构的研究奠定了良好的基础。

遥控机器人(ROV )能够克服AUV 的能源动力不足的缺陷,他的能源和控制指令都由水面控制台提供,通过脐带缆传递给ROV 。ROV 的有点在于动力充足可以支撑复杂或大型的探测设备,信息采集和数据传送工作快捷方便,数据采集量大,由于其操作控制和信号处理等工作全部由水面的计算机和工作站来完成,人机交互水平高于AUV ,所以ROV 的总体决策能力要高于AUV 。ROV 的致命缺陷就是自身的生命线脐带缆,在短程操作中问题不大,但是在长距离水下作业中,脐带缆很容易与水下其他结构发生缠绕,当距离较长时,对ROV 的动力也是一个很大的挑战。

ROV 最早的产品是“CURV ”,该设备由美国研制成功,该机器人被用做打捞一颗沉没在西班牙外海的一颗失落的海底氢弹而震惊全世界。

CURV-1水下ROV CURV-2水下ROV CURV-3水下ROV

ROV 的商业化产品则要到1975年才问世,这个商业系列ROV 由Hydro Production公司在1975年到1980年之间研发,分别推出了RCV-125和RCV-150主要任务是进行水下管道的连接和辅助水下钻井工作。

但是随后的很长一段时间,ROV 更主要的是用于军事用途,用来完成探测和销毁水雷,比较先进

的油美国的探测水雷系统RMS (V )、

日本的KAIKO “海沟”号。法国的

PAP104、意大利的PLUTO-plus 德

国的企鹅-B3,瑞典的海鹰,加拿大

的开路先锋等。其中日本的KAIKO

可以到达海洋的最深点——

10911.4m 的马里亚纳海沟。

KAIKO 是两个潜器系统发射器通过12000m

的主光纤与母船相日本Kaiko 潜水器

连,通过250米的二级电缆与潜器相连接,该潜水器可以在半径200m 的范围内自由运动,当潜器工作时,KAIKO 拥有三个任务模式,第一个是通过拖拽系统调查6500m 的海床,二是将海床的研究扩展到整个海洋,第三个就是为SHINKAI6500提供救援工作。

我国国内经过近三十年的发展已经可以自主研发和生产包括浮游式、爬行式和拖拽式的各种型号的ROV 。在海洋电缆埋设方面。2002年中国沈阳自动化探究所研制的第一台自走式电缆埋设机器人“CISTAR ”可以实现光缆的铺设和检测维修工作。2004年我国上海交通大学研发的下潜深度最大的、功能最强的取样机器人“海龙号”成功下水,2004年该潜水器成功下潜至3500m 深海并且测试成功。“海龙”号ROV 长3m ,宽和高都是1.8m ,重达600m 的范围内活动。“海龙”号配备有5个各种性能的摄像机和一台静物监视机,还装备特殊有水下照明设备,可在水下照明范围大几百米,其声纳可以在浑浊的水中作业。海龙号配备有两只分别为7功能和5功能的机械手,可在水面的遥控下进行比较复杂的工作。最大提举重量达数百公斤。

目前,全世界有将近300家厂商提供各种ROV ,早期的浮游式水下机器人主要用来进行观察和作业,但是近期由于回收的需要,爬行式机器人得到了更好的市场,也成为各领域研究的热点。

【经营计划书】水下机器人创业策划书(终稿)

低成本水下机器人 策 划 书 申报项目: 低成本水下机器人 申报人: 孟永志 项目负责人: 孟永志 申报日期: 年4月17日

低成本水下机器人策划书 机器人项目创业计划执行概要 水下机器人从20世纪后半叶诞生,是工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称无人遥控潜水器,主要运用在海上救援。由于水下环境恶劣危险,人的潜水深度有限,所以水下机器人日益成为开发海洋的重要工具。在军事斗争中,无人化作战平台将在未来现代化战争中发挥重要的作用,无人舰艇将与无人地面战车、无人飞机一起在战场上进行高效卓越地作战。另外,无论战争期间还是和平时期,水下机器人还可以定期对航道、训练场、舰艇机动区实施定期或不定期检查,保障这些水域的作业安全。 载人潜水器由人工输入信号操控各种动作,由潜水员和科学家通过观察窗直接观察外部环境。其优点是由人工亲自做出各种核心决策,便于处理各种复杂问题,但是人生命安全的危险性增大,由于载人需要足够的耐压空间、可靠的生命安全保障和生命维持系统,这将为潜水器带来体积庞大、系统复杂、造价高昂、工作环境受限等不利因素。 有缆水下机器人(ROV)需要由电缆从母船接受动力,并且ROV不是完全自主的,它需要人为的干预。主要由水面设备(包括操纵控制台、电缆绞车、吊放设备、供电系统等)和水下设备(包括中继器和潜水器本体)组成。潜水器本体在水下靠推进器运动,本体上装有观测设备(摄像机、照相机、照明灯等)和作业设备(机械手、切割器、清洗器等)。潜水器的 水下运动和作业,是由操作员在水面母舰上控制和监视,电缆向本体提供动力和交换信息,中继器可减少电缆对本体运动的干扰。由于人们通过电缆对ROV进行遥控操作,电缆对ROV像“脐带”对于胎儿一样至关重要,但是由于细长的电缆悬在海中成为ROV最脆弱的部分,大大限制了机器人的活动范围和工作效率。 无缆水下机器人(AUV)又称自治水下机器人、智能水下机器人,是将人工智能、探测识别、信息融合、智能控制、系统集成等多方面的技术集中应用于同一水下载体上,在没有人工实时控制的情况下,自主决策、控制完成复杂海洋环境中的预定任务使命的机器人。是从简单的遥控式向监控式发展,即由母舰计算机和潜水器本体计算机实行递阶控制,它能对观测信息进行加工,建立环境和内部状态模型。操作人员通过人机交互系统以面向过程的抽象符号或语言下达命令,并接受经计算机加工处理的信息,对潜水器的运行和动作过程进行

国内外机器人发展现状及发展动向

国外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间(15%-25%),表明这

水下机器人发展概述

水下机器人发展概述 1水下机器人发展背景 在浩瀚的宇宙中,有一个蔚蓝色的星球,那是人类赖以生存的地方——地球。地球的表面积为5.1亿平方公里,而海洋的面积为3.6亿平方公里。地球表面积的71%被海洋所覆盖。在烟波浩渺的海洋深处,蕴藏着什么样的宝藏?是否存在着智慧生命?海底生物是怎样生活的?海底的地形地貌又是什么样的?所有这一切都使海洋充满了神秘的色彩,也吸引了无数科学家、探险家为之探索。从远古时代起,人们就泛舟于海上。从19世纪起,人们开始利用各种手段对海洋进行探察。20世纪,水下机器人技术作为人类探索海洋的最重要的手段,受到了人们普遍的关注。进入21世纪,海洋作为人类尚未开发的处女地,已成为国际上战略竞争的焦点,因而也成为高技术研究的重要领域。毫不夸张地说,本世纪是人类进军海洋的世纪。人类关注海洋,是因为陆上的资源有限,海洋中却蕴藏着丰富的矿产资源、生物资源和能源。另一个重要原因是,占地球表面积49%的海洋是国际海底区域,该区域内的资源不属于任何国家,而属于全人类。但是如果哪一个国家有技术实力,就可以独享这部分资源。因此争夺国际海底资源也是一项造福子孙后代的伟大事业。水下机器人作为一种高技术手段,在海底这块人类未来最现实的可发展空间中起着至关重要的作用,发展水下机器人的意义是显而易见的。 2水下机器人的定义与分类 2.1水下机器人的定义与概述 水下机器人也称作无人水下潜水器(unmannedunderwatervehicles,UUV),它并不是一个人们通常想象的具有类人形状的机器,而是一种可以在水下代替人完成某种任务的装置。在外形上更像一艘微小型潜艇,水下机器人的自身形态是依据水下工作要求来设计的。生活在陆地上的人类经过自然进化,诸多的自身形态特点是为了满足陆地运动、感知和作业要求,所以大多数陆地机器人在外观上都有类人化趋势,这是符合仿生学原理的。水下环境是属于鱼类的“天下”,人类身体的形态特点与鱼类相比则完全处于劣势,所以水下运载体的仿生大多体现在对鱼类的仿生上。目前水下机器人大部分是框架式和类似于潜艇的回转细长体,随着仿生技术的不断发展,仿鱼类形态甚至是运动方式的水下机器人将会不断发展。水下机器人工作在充满未知和挑战的海洋环境中,风、浪、流、深水压力等各种复杂的海洋环境对水下机器人的运动和控制干扰严重,使得水下机器人的通信和导航定位十分困难,这是与陆地机器人最大的不同,也是目前阻碍水下机器人发展的主要因素。 2.2水下机器人的分类 水下潜水器根据是否载人分为载人潜水器和无人潜水器两类。载人潜水器由人工输入信号操控各种机动与动作,由潜水员和科学家通过观察窗直接观察外部环境,其优点是由人工亲自做出各种核心决策,便于处理各种复杂问题,但是人生命安全的危险性增大。由于载人需要足够的耐压空间、可靠的生命安全保障和生命维持系统,这将为潜水器带来体积庞大、系统复杂、造

水下机器人1

水下机器人 一、摘要 摘要:无人遥控潜水器,也称水下机器人。一种工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称潜水器。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。本文从过去、现在、未来三个时间段介绍了水下机器人,并且就其中的关键技术也简要做了介绍,全方面的认识了水下机器人。 关键字:水下机器人、潜水器、海洋 Abstract :No one remote control submersibles, also called the underwater robot. A kind of work in the limit of the underwater robot homework, can submerge instead of people finish some operating, and calls the scuba machine. Underwater environments are dangerous, the person's diving depth is limited, so underwater robot has become an important tool development of ocean. This article from the past, present, and future three time underwater robot is introduced, and the key technology is briefly introduced, all aspects of the understanding of the underwater obot. Key words: underwater robot、scuba machine、ocean 二、引言 海洋这一广阔的水域,蕴藏着丰富的矿产资源、海洋生物资源和能源,是人类社会可持续发展的重要财富。研究和合理开发海洋,是对人类的经济和社会发展具有重要的意义。随着科学技术的发展,人类已经进入了开发和利用海洋的时代。在各种海洋技术中,作为用在一般潜水技术不可能到达的深度进行综合考察和研究并能完成多种作业的水下机器人,使海洋开发进入了新时代。 从20世纪30年代,美国研制出了第一台现代意义上的潜水器开始,无人遥控潜水器,也称水下机器人,开始进入人类的发展史,虽然只有短短的几十年,但其却发挥了极大的作用,为人类在海洋等水域的探索开发提供了有力的支持。由于水下机器人目前多用于海洋,故也可称为海洋机器人。而且水下作业对于人来说是一项危险作业,特别是在深海作业更加的危险,在10000米深的深海中,其压力是地面压力的1000倍,那里是迄今为止人类难以到达的地方。海底,特别是深海海底对人类还是一个未知世界。水下机器人主要用于海洋开发、打捞、扫雷、侦察、援潜、救生等。 而在近几十年,水下机器人的发展是非常迅速的。在信息技术的支持下,其发展趋势向着以下几个方面发展:一是水深普遍在6000米;二是操纵控制系统多采用大容量计算机,实

机器人发展概况

目录 (一)、机器人运动系统的组成、基本结构 (1) 1、驱动系统 (2) 2、感受系统 (2) 3、机器人——环境交互系统 (3) 4、人机交互系统 (3) 5、控制系统 (3) 6、机械传动结构 (3) (二)、国内外机器人厂家的对比 (4) 1、技术差距 (4) 2、品牌厂家 (5) 3、产品系列 (5) 4、产品价格及成本 (8) (三)机器人控制的智能化、网络化发展 (9) 1、国产机器人的发展状况 (9) 2、应用市场和产品类型的变化 (10) 3、高端智能化机器人将成重点 (11)

智能机器人运动控制系统的综述及发展摘要:本文简述了机器人控制系统,讨论了该系统的分类。综述了机器人控制系统最新的研究内容和成果,调研了机器人控制系统的市场应用。发现,机器人在工业、国防、科研、教育以及人们的日常生活等诸多领域都已广泛应用,并向着标准化、模块化、智能化不展。 关键词:机器人控制系统研究市场 (一)、机器人运动系统的组成、基本结构如图1和图2所示,机器人由机械部分、传感部分、控制部分三大部分组成。这三大部分可以分成驱动系统、机械结构系统、感受系统、机器人—环境交互系统六个子系统。

图1 机器人的基本结构示意图 图2 机器人基本组成示意图 1、驱动系统 要使机器人运作起来,各需各个关节即每个运动自由度安置传动装置。这就是驱动系统。驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。 2、感受系统 它由内部传感器模块和外部传感器模块组成,获取内部和外部环境状态中有意义的信息。智能化传感器的使用提高了机器人的机动性、适应性和智能化水准。人类的感受系统对感知外部世界信息是极其灵巧

水下机器人发展趋势(汇编)

水下机器人发展趋势 关键词:水下机器人、智能水下机器人、智能体系、运动控制、通讯导航、探测识别、高效能源 随着人类海洋开发的步伐不断加快,水下机器人技术作为人类探索海洋最重要的手段得到了空前的重视和发展。作者对水下机器人进行了定义与分类。介绍了近年来国内外水下机器人的发展现状与发展趋势,重点针对智能水下机器人的主要关键技术及未来发展方向进行了分析。地球的表面积为5.1亿km2,而海洋的面积为3.6亿km2。占地球表面积71%的海洋是人类赖以生存和发展的四大战略空间——陆、海、空、天中继陆地之后的第二大空间,是能源、生物资源和金属资源的战略性开发基地,不但是目前最现实的,而且是最具发展潜力的空间。作为蓝色国土的海洋密切关系到人类的生存和发展,进入21世纪后,人类更加强烈的感受到陆地资源日趋紧张的压力,这是人类面临的最现实的问题。海洋即将成为人类可持续发展的重要基地,是人类未来的希望。水下机器人从20世纪后半叶诞生起,就伴随着人类认识海洋、开发海洋和保护海洋的进程不断发展。专为在普通潜水技术较难到达的区域和深度执行各种任务而生的水下机器人,将使海洋开发进人一个全新的时代,在人类争相向海洋进军的21世纪,水下机器人技术作为人类探索海洋最重要的手段必将得到空前的重视和发展[1]。 1海洋对人类的重要性

海洋作为蓝色国土,首先是一个沿海国家的“门户”,是其与远方联系的便捷途径,并且“门户”的安全是国家安全的重要组成部分,早在2 500多年前古希腊海洋学家锹未斯托克就提出过“谁控制了海洋,谁就控制了一切”。很久以来人们就依赖于海洋航道进行大量的物品贸易,现在整个世界大部分的货物运输都依赖于海上运输,海洋运输是整个经济正常运转必要的一环。更重要的是,现在很多国家的石油、矿石等最基本的生产资料大部分都依赖于海洋运输,海洋运输的安全和对海洋的控制力成为一个国家生存的基本保障。 近年来再次掀起海洋热的浪潮是因为陆上的资源有限,很多资源已经开发殆尽,而海洋中蕴藏着丰富的能源、矿产资源、生物资源和金属资源等,人们急需开发这些资源以接替所剩不多的陆上资源来维持发展。更为重要的是,地球上半数以上面积的海洋是国际海域,这些区域内全部的资源属于全体人类,不属于任何国家。但目前的现状是只有少数国家有能力对这些资源进行初步开采,这些国家在其已探明的区域拥有优先开采权,相对于那些没有能力开采的国家这几乎就等于独享这部分资源。因此海洋已经成为国际战略竞争的焦点,争夺国际海洋资源是一项造福子孙后代的伟大事业。所以水下技术成为目前重点研究的高新技术之一,智能水下机器人作为高效率的水下工作平台在海洋开发与利用中起到至关重要的作用。 2水下机器人的定义与分类

关于发展智能水下机器人技术的思考

第30卷第4期2008年8月舰 船 科 学 技 术 SH I P SC I E NCE AND TECHNOLOGY Vol .30,No .4 Aug .,2008   关于发展智能水下机器人技术的思考 徐玉如,苏玉民 (哈尔滨工程大学船舶工程学院,黑龙江哈尔滨150001) 摘 要: 智能水下机器人在海洋开发和海洋军事领域具有极为广阔的应用前景。智能水下机器人技术是世界各国都在致力发展的技术领域。简要介绍了国外智能水下机器人的发展状况,提出了应重点开展研究的关键技术和发展智能水下机器人技术的建议。 关键词: 智能水下机器人;关键技术 中图分类号: U6741941 文献标识码: A 文章编号: 1672-7649(2008)04-0017-05 DO I:1013404/j 1issn 11672-7649120081041001 Th i n k on the developm en t i n autonom ous underwa ter veh i cles XU Yu 2ru,S U Yu 2m in (College of Shi pbuilding Engineering,Harbin Engineering University,Harbin 150001,China )Abstract: App licati on foregr ound of aut onomous under water vehicles is very wide in ocean exp l oita 2ti on and naval affairs .Technol ogy of aut onomous under water vehicle is technical field that is devel oped by every country in the world .I n this paper the devel opment of aut onomous under water vehicles abr oad is intr o 2duced briefly .The key techniques those should be f ocused our attenti on on and the several suggesti ons are put f or ward . Key words: aut onomous under water vehicle;key technique 收稿日期:2008-03-31 作者简介:徐玉如(1942-),男,中国工程院院士,教授,主要研究方向为水下机器人技术。 0 引 言 海洋是生命的摇篮、资源的宝库、交通的要道,也 是兵戎相见的战场。占地球表面积71%的海洋,是一个富饶而远未得到充分开发的宝库。人类要维持自身的生存、繁衍和发展,就必须充分利用海洋资源,这也是人类无法回避的必然选择。对于人均资源不 丰的我国来说,海洋开发更具有特殊的意义[1-3] 。 智能水下机器人是将人工智能、自动控制、模式识别、信息融合与理解、系统集成等技术应用于传统的载体上,在无人驾驶的情况下自主地完成复杂海洋环境中预定任务的机器人。 智能水下机器人技术具有多学科交叉融合、集成性和前瞻性的特点,涉及到船舶与海洋工程、信息技术、网络与通信技术、机器人技术、计算机技术、仿生技术、新材料和新能源等众多学科领域。 智能水下机器人的应用领域逐步扩大,如海洋科 学考察、海洋开发和水下工程等。在军事方面,智能水下机器人将成为未来水下战争中争夺信息优势、实施精确打击与智能攻击、完成战场中特殊作战任务的重要手段之一。因此,引起美国等许多国家的高度重视,目前正处于飞速发展的关键阶段。 1 国外发展现状 2007年6月,在美国弗罗里达州举行了规模空 前的自主水下航行器节。来自西方8个国家的约500名军方和科技人员参加了此次活动,共展示了81台套各类水下、地面和空中自主平台。 从近期国内外已公布的研究资料可以看出,水下机器人一方面向着大型化、大航程、功能多样化发展;另一方面向着微小型化、功能专业化方面发展。美国等西方国家一直致力于发展智能水下机器人,具有代

机器人研究现状及发展趋势

机器人发展历史、现状、应用、及发展 趋势 院系:信息工程学院 专业:电子信息工程 姓名:王炳乾

机器人发展历史、现状、应用、及发展趋势 摘要:随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测。 关键词:机器人;发展;现状;应用;发展趋势。 1.机器人的发展史 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶并公开表演。 1738年,法国技师杰克·戴·瓦克逊发明了机器鸭,它会嘎嘎叫、进食和游泳。 1773年,瑞士钟表匠杰克·道罗斯发明了能书写、演奏的玩偶,其体内全是齿轮和发条。它们手执画笔、颜料、墨水瓶,在欧洲很受青睐。 保存至今的、最早的机器人是瑞士的努萨蒂尔历史博物馆里少女形象的玩偶,有200年历史。她可以用风琴演奏。 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。 20世纪以后,机器人的研究与开发情况更好,实用机器人问世。 1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。 1959年第一台可以编程、画坐标的工业机器人在美国诞生。 现代机器人 有关现代机器人的研究始于20世纪中期,计算机以及自动化技术的发展、原子能的开发利用是前提条件。1946年,第一台数字电子计算机问世。随后,计算机大批量生产的需要推动了自动化技术的发展。1952年,数控机床诞生,随后相关研究不断深入;同时,各国原子能实验室需要代替人类处理放射性物质的机械。

2016年水下机器人发展状况分析报告(完美版)

(此文档为word格式,可任意修改编辑!) 2016年3月

目录 1、水下机器人发展概况 3 11、水下机器人分类 3 12、水下机器人发展历程 5 13、国外水下机器人发展状况9 131、美国9 132、欧洲10 133、日本11 14、我国水下机器人发展状况12 15、水下机器人的关键技术14 151、仿真技术15 152、智能控制技术16 153、水下目标探测和识别技术17 154、水下导航(定位)技术17 155、通讯技术18 156、能源系统技术18 2、从军用到民用,从浅海到深海18 21、从军用到民用、应用广泛18 22、从浅海到深,无处不在20 23、未来十年是我国水下机器人发展最关键期22 3、水下机器人的发展目标24 31、向远程发展24

32、向深海发展24 33、向智能型发展24 1、水下机器人发展概况 水下机器人从20世纪后半叶诞生,是工作于水下的极限作业机器人,能潜入水中代替人完成某些操作,又称无人遥控潜水器,主要运用在海上救援。由于水下环境恶劣危险,人的潜水深度有限,所以水下机器人日益成为开发海洋的重要工具。在军事斗争中,无人化作战平台将在未来现代化战争中发挥重要的作用,无人舰艇将与无人地面战车、无人飞机一起在战场上进行高效卓越地作战。另外,无论战争期间还是和平时期,水下机器人还可以定期对航道、训练场、舰艇机动区实施定期或不定期检查,保障这些水域的作业安全。 11、水下机器人分类

广义上水下机器人也可以称作潜水器(Underwater Vehicles),是一种可以在水下代替人在充满未知和挑战的海洋环境中完成某种任务的装臵,风、浪、流、深水压力等各种复杂的海洋环境对水下机器人的运动和控制干扰严重,使得水下机器人的通信和导航定位十分困难,这是也是它与陆地机器人最大的不同,也是目前阻碍水下机器人发展的主要因素。 就外形看,目前大部分水下机器人是框架式或类似于潜艇的回转细长体,随着仿生技术的不断发展,仿鱼类形态甚至是运动方式的水下机器人将会不断发展。 无缆水下机器人代表目前水下机器人的发展趋势。从种类上看,根据是否载人可以将潜水器分为载人潜水器和无人潜水器两类。无人潜水器按照与水面支持系统间联系方式的不同可以分为有缆遥控水下机器人(remotely operated vehicle,简称ROV)、无缆水下机器人(autonomous underwater vehicle,简称AUV))两种。有缆水下机器人都是遥控式的,根据运动方式不同可分为拖曳式、(海底)移动式和浮游(自航)式三种。无缆水下机器人一般是自治式机器人(又称智能机器人),它能够依靠本身的自主决策和控制能力高效率地完成预定任务,在一定程度上代表了目前水下机器人的发展趋势。

2020年水下机器人行业市场分析调研报告

2020年水下机器人行业市场分析调研报告 2020年1月

目录 1. 水下机器人行业概况及市场分析 (5) 1.1 中国水下机器人行业市场驱动因素分析 (5) 1.2 水下机器人行业特征分析 (5) 1.3 水下机器人行业结构分析 (6) 1.4 水下机器人行业PEST分析 (7) 1.5 水下机器人行业国内外对比分析 (9) 1.6 水下机器人市场规模分析 (11) 2. 水下机器人行业存在的问题分析 (11) 2.1 政策体系不健全 (11) 2.2 基础工作薄弱 (11) 2.3 地方认识不足,激励作用有限 (12) 2.4 产业结构调整进展缓慢 (12) 2.5 技术相对落后 (12) 2.6 隐私安全问题 (13) 2.7 与用户的互动需不断增强 (13) 2.8 管理效率低 (14) 2.9 盈利点单一 (15) 2.10 过于依赖政府,缺乏主观能动性 (15) 2.11 法律风险 (15) 2.12 供给不足,产业化程度较低 (16) 2.13 人才问题 (16)

3. 水下机器人行业政策环境 (18) 3.1 行业政策体系趋于完善 (18) 3.2 一级市场火热,国内专利不断攀升 (18) 3.3 “十三五”期间水下机器人建设取得显著业绩 (19) 4. 水下机器人产业发展前景 (21) 4.1 中国水下机器人行业市场规模前景预测 (21) 4.2 水下机器人进入大面积推广应用阶段 (21) 4.3 政策将会持续利好行业发展 (21) 4.4 细分化产品将会最具优势 (22) 4.5 水下机器人产业与互联网等产业融合发展机遇 (22) 4.6 水下机器人人才培养市场大、国际合作前景广阔 (23) 4.7 巨头合纵连横,行业集中趋势将更加显著 (24) 4.8 建设上升空间较大,需不断注入活力 (24) 4.9 行业发展需突破创新瓶颈 (25) 5. 水下机器人行业发展趋势 (27) 5.1 宏观机制升级 (27) 5.2 服务模式多元化 (27) 5.3 新的价格战将不可避免 (27) 5.4 社会化特征增强 (27) 5.5 信息化实施力度加大 (28) 5.6 生态化建设进一步开放 (28)

水下机器人智能控制技术

水下机器人智能控制技术 机械工程学院张杰189020008 智能水下机器人作为一个复杂的系统集成了人工智能水下目标的探测和识别、数据融蛤智能控制以及导航和通信各子系统是一个可以在复杂海洋环境中执行各种军用和民用任务的智能化无人平台。目前主要采用的智能控制方法有:模糊控制、神经网络控制、专家控制、自适应控制、PID调节器、滑模控制等。本文比较全面地查阅了水下机器人运动控制理论相关的文献,阐述了几种主要控制方法的基本原理,给出了控制器结构的设计方法,对水下机 器人运行控制方法的选取、控制器的设计具有较好的参考意义。 水下机器人的运动控制是其完成特定任务的前提和保障,是水下机器人关键技术之一。 随着水下机器人应用范围的扩大,对其自主性,运动控制的精度和稳定性的要求都随之增 加,如何提高其运动控制性能就成了研究的一个重要课题。导致AUV难于控制的主要因素包括:①水下机器人高度的非线性和时变的水动力学性能;②负载的变化引起重心和浮心的改变;③附加质量较大,运动惯性较大,不能产生急剧的运动变化;④难于获得精确的水动力系数;⑤海流的干扰。这些因素使得AUV的动力学模型难以准确,而且具有强耦合和非线性的特点。目前已被采用的控制方法有:模糊控制、神经网络控制、专家控制、PID控制、自适应控制、S面控制等。 智能控制是一个由人工智能自动控制和运筹学的交叉构成的交叉学科近年来,智能控制技术成为水下机器人发展的一个重要技术水下机器人难于控制的原因有几个方面,水下机器人在运行中收到海流等外界极不稳定环境因素的干扰,使其控制变得更加困难;水下机器人各项参数的高度的非线性的特点;水下机器人的水动力性能在不同的海洋环境下会改变较明显;海底水下机器人水动力系数难以测量,不能获得一个较为准确的数据;水下机器人体积大质量大,因此所受惯性大,运动变化难以在较短的时间内实现;水下机器人在运动过程中重心和浮心易改变会引起控制较为困难等智能控制如果能用在水下机器人,可以更好的使其适应复杂的海洋环境。 智能控制系统的类型

工业机器人发展现状与趋势

工业机器人发展现状与趋势 工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统(FMS)、自动化工厂(FA)、计算机集成制造系统(CIMS)的自动化工具。 广泛采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。 一、工业机器人技术现状及国内外发展的趋势 工业机器人是最典型的机电一体化数字化装备,技术附加值很高,应用范围很广,作为先进制造业的支撑技术和信息化社会的新兴产业,将对未来生产和社会发展起着越来越重要的作用。国外专家预测,机器人产业是继汽车、计算机之后出现的一种新的大型高技术产业。据联合国欧洲经济委员会(UNECE)和国际机器人联合会(IFR)的统计,世界机器人市场前景看好,从20世纪下半叶起,世界机器人产业一直保持着稳步增长的良好势头。进入20世纪90年代,机器人产品发展速度加快,年增长率平均在10%左右。2004年增长率达到创记录的20%。其中,亚洲机器人增长幅度最为突出,高达43%,如图1所示。

各区域用户工业机器人定购指数(以1996年作为100) 国外机器人领域发展近几年有如下几个趋势: 1.工业机器人性能不断提高(高速度、高精度、高可*性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。 2.机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。 3.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可*性、易操作性和可维修性。 4.机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。

水下机器人发展现状ROV&AUV

多功能水下脐带缆夹检测车综述1 水下机器人是一种可以在水下运行并能够独立完成特定功能的机械设备,通常可以分为载人水下机器人(Human Occupied Vehicle,简称HOV),遥控机器人(Remotely Operated Vehicle,简称ROV)和自治无人水下机器人(Autonomous Underwater Vehicle,简称AUV)三类。 AUV在水下通过各类传感器测量信号,经过机载CPU进行处理决策,独立完成各种操作,例如进行水下机动航行,动力定位,信息采集,水下探测等。通常这种机器人依靠水声通讯技术与岸基和船基进行联络,或者浮出水面,撑起无线电天线,与陆基和卫星进行通讯。AUV 的能源完全依靠自身提供,往往自身携带可充电电池、燃料电池、闭式柴油机等。该类设备优点是活动范围可以不受空间限制,并且没有脐带缆,不会发生脐带缆与水下结构物缠绕问题,但是水下的续航能力和负载能力受到自身能源的强烈制约,只能完成一些短程和轻载的工作,而自身的CPU处理能力又很大程度上限制了AUV所能从事工作的复杂程度。典型的AUV有美国海军研究生院的Phoenix AUV和性能更优越的Aries AUV,这两个机器人的研发主要是为了研究智能控制、规划和导航功能。麻省理工大学Odyssey II是一种主要用于海冰检测和标图的机器人。美国新罕布什尔自主水下系统研究所与俄罗斯远东科学院水下技术研究所联合开发的太阳能自主水下AUV正在尝试克服AUV的远程续航缺陷。美国的C.S.Droper实验室则在仿生AUV方面有巨大的突破,代表产品是仿黄鳍金枪鱼机器人VCUUV。

加拿大在1994年冰层电缆铺设方面率先采用AUV技术,研制出Theseus AUV,该机器人配备了一块70kWh铝氧燃料电池,续航能力达到36小时。后来该机器人的能源装置不断升级,到1997年完成第二代电池试验,续航能力较第一代显著提高。日本东京生产技术研究所主要致力于水下电缆检测领域,研发出了包括Twin-Burger I型和II型、PTEROA150型和250型等多系列电缆铺设和检测维护AUV。在国内AUV的研制主要由两所机构完成,一是一中科院沈阳自动化研究所为核心,该所与中船重工业集团702所,哈尔滨工程大学等合作研发出“探索者1号”AUV等机器人,之后与俄罗斯合作研发了CR系列机器人。另一个是以哈尔滨工程大学为中心,主要研发军用智能机器人。北京航空航天大学致力于仿生机器鱼的研究,为新推进器技术和新型结构的研究奠定了良好的基础。 遥控机器人(ROV)能够克服AUV的能源动力不足的缺陷,他的能源和控制指令都由水面控制台提供,通过脐带缆传递给ROV。ROV 的有点在于动力充足可以支撑复杂或大型的探测设备,信息采集和数据传送工作快捷方便,数据采集量大,由于其操作控制和信号处理等工作全部由水面的计算机和工作站来完成,人机交互水平高于AUV,所以ROV的总体决策能力要高于AUV。ROV的致命缺陷就是自身的生命线脐带缆,在短程操作中问题不大,但是在长距离水下作业中,脐带缆很容易与水下其他结构发生缠绕,当距离较长时,对ROV的动力也是一个很大的挑战。

智能水下机器人技术研究现状与未来展望

24 | 电子制作 2019年02月 国各项海洋技术都得到了大幅度的发展,水下机器人是海洋开发技术的重要技术之一。水下机器人可在被严重污染环境、危险程度高的环境以及可见度为零的水域代替人工在水下长时间作业,具有良好的工作能力。同时,水下机器人在石油开发、科学研究、海底地貌勘察、水下实施检查和军事等领域也得到了广泛应用。1 水下机器人的定义和分类 水下机器人也称作无人水下潜水器,它可以在水下代替 人类完成某些复杂任务。水下机器人的分类方式有很多种,通常可以分为载人水下机器人(HOV),遥控机器人(ROV) 和智能水下机器人(AUV)三类,见表1。表1 水下机器人的分类类型特点缺点代表HOV 人 机协作、精准操作、实时通信成本高、活动环境受限、对工作人员有危险 蛟龙号、深海勇士、探索者ROV 信息传播能力强、水面基站提供动力电缆脆弱、活动范围小海马号、海星6000 AUV 灵活性强、安全性能高、隐蔽性好、活动范围大、智能性高通信技术有限、回收工作困难、能源有限CR-01、CR-02、潜 龙一号、潜龙二号2 国内外水下机器人研究现状 ■2.1 载人水下机器人发展现状 载人水下机器人包括蛟龙号和深海勇士号等。蛟龙号载 人潜水器是中国自行设计、自主集成研制的第一台作业型深海载人潜水器,在2012年6月,蛟龙号创造了下潜7062 米的中国深潜载人记录。深海勇士号载人潜水器是中国第二台深海载人潜水器,它可以下潜到水下4500米处进行作业。 ■2.2 遥控机器人发展现状遥控机器人包括海马号、海星6000等。海马号是我国 自主研制的首台4500米级深海遥控无人潜水器作业系统, ■2.3 智能水下机器人发展现状智能水下机器人包括包括AUV 以及水下滑翔机(UG)等,潜龙一号是由中科院沈阳自动化所联合中科院声学所、哈工程大学研制的AUV,深入水下6000米,可以在水下工作中完成了探测海底地形地貌等一系列任务。潜龙二号是以中科院沈阳自动化作为技术总体单位,与多个研究所共同研制的水下机器人,可以用于多金属硫化物等深海矿产资源的勘探作业。“海燕-II”是由天津大学研发的一款水下滑翔机,针对于工作深度、航行速度等方面实现优化发展。“海翼”深海UG 是中国科学院沈阳自动化研究所在2017年研制出的一款7000米级水下机器人。天津大学研制的“海燕-10000”以8213 米的深度创造深海UG 的世界纪录。 ■2.4 国外研究情况国外一些国家对AUV 的研制开始较早,有较长的发展历史,在近代的海上工作中发挥了巨大作用。主要AUV 包括:REMUS 6000(挪威Kongsberg 公司)、Blue?n21(美国Hydroid 公司)、Autosub 6000(英国南安普顿国家海洋中心)、SeaBed AUV(美国伍兹霍尔研究所)等[1]。3 水下机器人关键技术研究概述 ■3.1 智能控制技术3.1.1 智能控制智能控制是一个由人工智能、自动控制和运筹学的交叉构成的交叉学科。近年来,智能控制技术成为水下机器人发展的一个重要技术。水下机器人难于控制的原因有几个方面,水下机器人在运行中收到海流等外界极不稳定环境因素的干扰,使其控制变得更加困难;水下机器人各项参数的高度的非线性的特点;水下机器人的水动力性能在不同的海洋环境下会改变较明显;海底水下机器人水动力系数难以测量,不能获得一个较为准确的数据;水下机器人体积大、

国内外机器人发展现状及发展动向

国内外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在内的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间内(15%-25%),表明

2020-2025年中国水下机器人行业发展趋势预测及投资规划研究报告

订购须知 1、此定制服务由华经产业研究院(https://www.doczj.com/doc/f09521851.html,)提供。 2、此报告为定制报告,在我们确认收到您的款项后3个工作日提供。 3、下载文档内容为定制报告大纲,最终报告不能通过下载方式获取,付款后请将订单编号及商品名称通过邮箱发送至kf@https://www.doczj.com/doc/f09521851.html,,我们会在规定时间内通过邮件发送。 4、最终提供文档格式为PDF版本,价格不含纸介版。

2020-2025年中国水下机器人行业发展趋势预测及投资规划研 究报告 【出版日期】2020年 【交付方式】Email电子版 【价格】电子版:8000元 水下机器人也称无人遥控潜水器,是一种工作于水下的极限作业机器人。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。 无人遥控潜水器主要有:有缆遥控潜水器和无缆遥控潜水器两种,其中有缆遥控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 报告目录: 第一部分产业环境透视 第一章水下机器人的定义与发展水平 第一节水下机器人市场概况 一、水下机器人的定义

二、全球水下机器人的发展现状调研 三、全球水下机器人价值链环境 四、全球水下机器人的发展情况分析 第二节中国水下机器人市场概况 一、中国水下机器人发展状况分析 二、中国水下机器人商业模式和特点 三、中国水下机器人实用性与优越性分析 四、发展水下机器人用户的关键因素 第二章我国水下机器人行业发展现状调研 第一节中国水下机器人行业的发展概况 一、水下机器人产业布局的演变分析 二、制约水下机器人业生态链的因素 三、水下机器人业的价值分析 第二节2019年我国水下机器人行业发展情况分析 一、行业发展回顾 二、行业发展情况分析 三、市场特点分析 四、市场发展分析 第三节2019年中国水下机器人行业供需分析 一、市场需求总量分析 二、市场需求结构分析 三、市场供需平衡分析

相关主题
文本预览
相关文档 最新文档