当前位置:文档之家› 直驱式和双馈式风力发电机组介绍

直驱式和双馈式风力发电机组介绍

直驱式和双馈式风力发电机组介绍
直驱式和双馈式风力发电机组介绍

双馈式和直驱式风力发电机组介绍

1、双馈式发电机组

双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机,主要结构包括风轮、传动装置、发电机、变流器系统、控制系统等。双馈式风力发电机组系统将齿轮箱传输到发电机主轴的机械能转化为电能,通过发电机定子、转子传送给电网。发电机定子绕组直接和电网连接,转子绕组和频率、幅值、相位都可以按照要求进行调节的变流器相连。变流器控制电机在亚同步和超同步转速下都保持发电状态。在超同步发电时,通过定转子两个通道同时向电网馈送能量,这时变流器将直流侧能量馈送回电网。在亚同步发电时,通过定子向电网馈送能量、转子吸收能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈技术。

双馈风力发电变速恒频机组示意图

变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要进行有功和无功的独立控制。变流器控制双馈异步风力发电机

实现并网,减小并网冲击电流对电机和电网造成的不利影响。提供多种通信接口,用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。提供实时监控功能,用户可以实时监控风机变流器运行状态。

变流器采用三相电压型交-直-交双向变流器技术。在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网和最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形,改善双馈异步发电机的运行状态和输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前双馈异步风力发电机组的一个代表方向。

2、直驱式发电机组

直驱式风力发电机组的风轮直接驱动发电机,主要由风轮、传动装置、发电机、变流器、控制系统等组成。为了提高低速发电机效率,直驱式风力发电机组采用大幅度增加极对数(一般极数提高到100左右)来提高风能利用率,采用全功率变流器实现风力发电机的调速。

直驱风力发电变速恒频机组示意图

直驱发电机按照励磁方式可分为电励磁和永磁两种。电励磁直驱风力发电机组采用与水轮发电机相同的工作原理。永磁直驱是近年来研发的风电技术,该技术用永磁材料替代复杂的电励磁系统,发电结构简单,重量相对励磁直驱机组较轻。但永磁部件存在长期强冲击振动和大围温度变化条件下的磁稳定性问题,永磁材料的抗盐雾腐蚀问题,空气中微小金属颗粒在永磁材料上的吸附从而引起发电机磁隙变化问题,以及在强磁条件下机组维护困难问题等。此外,永磁直驱式风力发电机组在制造过程中,需要稀土这种战略性资源的供应,成本较高。

3、直驱式变速恒频风力发电系统变流器要完成以下功能:

1)最大限度捕获风能;

2)较宽的转速运行围,适用于风力机变速运行;

3)可以灵活地调节系统的有功和无功功率;

4)采用先进的PWM控制技术可以抑制谐波,减小开关损耗,提高效率。

双馈式风力发电机剖析

双馈式风力发电机 【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。 关键词:风能风力发电变速恒频双馈式发电机 一、风力发电 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)

直驱式永磁风力发电系统设计

直驱式永磁风力发电控制系统设计 泮斌斌 (浙江海洋学院机电学院,浙江舟山316000) 摘要 风力发电作为绿色能源在全世界迅速发展,这是解决世界能源危机的重要途径,在这个背景下本文对直驱式永磁风力发电控制系统进行了应用设计。 本文以风力发电的工作原理等基础理论为基本理论,得到一种控制风能的利用效率的变桨控制的基本控制策略;通过比较当前流行的几个风力发电机组的结构和不同控制方案之间的不同特点;分析了直驱式永磁风力发电的性能和特点,最终得出本机组需要采用以“同步高速、无刷励磁旋转、全功率的逆变’’为核心的技术路线。 本论文最后完成了风力发电机控制系统的设计,以控制系统所要实现的功能为基础,根据控制系统的要求,分析了系统输出和输入的信号,简单阐述了组成控制系统的硬件系统的可编程处理器和最主要的控制信号变送器,确定了传感器的类型以及各硬件的配置;以这些为基础讨论了一些控制系统的控制策略,研究设计了主程序的流程图,变桨距控制图,并详细的研究了变桨距的控制过程,得出了控制原理和结构组成。 关键词:风力发电机;控制系统;变桨控制

ABSTRACT Wind power as the rapid development of green energy in the world, it is important to solve the world energy crisis means, in this context of this paper, direct-drive permanent magnet wind power control system for the application design. In this paper, wind power and other basic working principle of the theory of the basic theory, a control variable wind energy utilization efficiency of the basic control strategy for pitch control.A couple of current by comparing the wind turbine structure and the difference between the different characteristics of the control program;Analysis of direct-drive permanent magnet wind power generation performance and features, and ultimately come to the unit needs to adopt a "synchronous high-speed, brushless rotary, full-power inverter technology''as the core line. Finally completed the wind turbine control system to control system functions to be achieved, based on the control system according to the requirements of the system output and input signal composed of a simple control system described in the programmable hardware system The main control signal processor and transmitter, to determine the type of sensors as well as the hardware configuration;Based on these discussions a number of control system control strategy, research and design of the main program flow chart, variable pitch control charts, and detailed study of the pitch control of the process, obtained the control principle and structure. KEY WORDS:wind turbine;control system;pitch control

双馈风力发电模拟实验机组

双馈风力发电模拟实验机组 双馈风电机组(又称:双馈风力发电机模拟试验台),是风力发电行业广泛应用的模拟实验机组,该机组具有模拟变速恒频风力机组并网发电的功能及特性,是风电行业科学研究、教学实验的理想产品。 双馈风电机组分为拖动单元、控制单元、发电单元、测量单元。 本机组使用原动电机为拖动单元,电动机通过联轴器拖动双馈发电机。用户可根据设计的实验目的由控制单元调节电动机转速,达到宽范围模拟大自然风速变化引起的发电机发电状况之变化。用户通过开放式测量单元,可以根据自己的实验需求给定发电机转矩,通过控制双馈发电机的功率输出,达到变速恒频风力机组的并网发电等过程各参数的实验研究。通过机组故障模拟,达到对机组常见故障的认识和处理方法。 拖动单元的原动机选用异步电动机(也可选用永磁同步电动机、交流同步电动机、直流电动机):模拟机组因风速变化而引起的转速变化。 发电单元选用双馈发电机(也可选用永磁同步发电机、直流发电机、交流异步发电机,交流同步发电机):双馈发电机变速恒频发电。 控制单元选用变频器控制拖动电机转速,用以模拟风速的变化,同时可以方便的通过计算机控制变频器实现电机的转速调节模拟风机出力。 测量单元选用光电编码器采集发电机的转子位置和实时转速,光电编码器安装于发电机后端输出轴上(两台电机联轴间也可安装扭矩传感器,用于测量轴功率和转速);选用电压、电流、频率等测量传感元件及检测显示表面板、按键,开关模块等,对电量信号进行采集、分析、处理。 机组实现变速恒频风力机组发电状态的模拟,包括转速、转矩、发电量及有功、无功调节。拖动单元:模拟机组因风速变化而引起的转速变化。 机组模拟实验内容 1、风力发电机接线形式实验 2、空载运转实验 3、风速模拟实验 4、转距模拟实验

国家风力发电机组并网安全性评价标准

华北区域风力发电机组并网安全性评价标准 (试行) 国家电力监管委员会华北监管局 二○○八年十月

目录 一、华北区域风力发电机组并网安全性评价标准(试行)说明 (1) 二、必备项目 (4) 三、评分项目 (8) 1、电气一次设备 (8) 1.1、发电机组 (8) 1.3、主变压器和高压并联电抗器 (8) 1.4、外绝缘和构架 (9) 1.5、过电压保护和接地 (10) 1.6、高压电器设备 (10) 1.7、场(站)用配电系统 (12) 1.8、防误操作技术措施 (13) 2、二次设备 (14) 2.1、并网继电保护及安全自动装置 (14) 2.2、调度自动化 (16) 2.3、通信 (19) 2.4、直流系统 (22) 2.5、二次系统安全防护 (23) 2.6、风力发电机组控制系统 (23) 3、调度运行 (25) 4、安全生产管理 (26)

华北区域风力发电机组并网安全性评价标准(试行)说明 一、根据电监会《发电机组并网安全性评价管理办法》要求,风力发电机组并网安全性评价主要内容包括:风力发电机组的电气一次、二次设备、调度运行和安全生产管理。其中电气一次设备包括:发电机组、变压器和高压并联电抗器、电容器(包括无功动态补偿装置)、外绝缘和构架、过电压保护和接地、高压电器设备、站用配电系统和防误操作技术措施。电气二次设备包括:继电保护及安全自动装置、调度自动化、通信、直流操作系统、二次系统安全防护及风力发电机组控制系统。 二、根据对电网安全、稳定、可靠运行的影响程度,风力发电机组并网安全性评价内容分成“必备项目”和“评分项目”两部分。 “必备项目”是指那些如果不满足本评价标准的要求,则可能对电网的安全、稳定运行造成严重后果的项目。 “评分项目”是指除了必备项目之外,对电网安全稳定运行也会造成不良影响,应当满足本评价标准的其他项目。 三、本评价标准中,“必备项目”18条;“评分项目”包括四个评价单元,各单元应得分为:电气一次设备925分、二次设备1075分、调度运行100分、安全生产管理450分,共计2550分。

永磁直驱式风力发电机的工作原理

你好,你的这个问题问的比较广。我大概给你阐述下,对于现在国内国外大型水平轴风力发电机组,有双 馈机和永磁直驱发电机。 永磁直驱发电机顾名思义是在传动链中不含有增速齿轮箱。 总所周知,一般发电机要并网必须满足相位、幅频、周期同步。而我国电网频率为50hz这就表示发电机要发出50hz的交流电。学过电机的都知道。转速、磁极对数、与频率是有关系的n=60f/p。 所以当极对数恒定时,发电机的转速是一定的。所以一般双馈风机的发电机额定转速为1800r/min。而叶轮转速一般在十几转每分。这就需要在叶轮与发电机之间加入增速箱。 而永磁直驱发电机是增加磁极对数从而使得电机的额定转速下降,这样就不需要增速齿轮箱,故名直驱。而齿轮箱是风力发电机组最容易出故障的部件。所以,永磁直驱的可靠性要高于双馈。 对于永磁直驱发电机的磁极部分是用钕铁硼的永磁磁极,原料为稀土。 风轮吸收风能转化为机械能通过主轴传递给发电机发电,发出的电通过全功率变流器之后过升压变压器上网。 不知道有木有解释清楚。 还有什么不清楚可以继续追问,知无不言。 风力发电机也在逐步的永磁化。采用永磁风力发电机,不仅可以提高发电机的效率,而且能在增大电机容量的同时,减少体积,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,这也是风电发电机的发展趋势之一。

风力机的直驱化也是当前的一个热点趋势。目前大多风电系统发电机与风轮 并不是直接相连,而是通过变速齿轮相连,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,同时增大了电机的体积和设计制造以及控制的难度。直驱型风力发电系统是采用风轮直接驱动多极低速永磁同步发电机发电,通过功率变换电路将电能转换后并入电网,相对于双馈型发电系统,直驱式发电机采用较多的极对数,使得在转速较低时,发电机定子电压输出频率仍然比较高,完全可以在电机的额定等级下工作,并且其定子输出电压通过变流器后再和电网相接,定子频率变化并不会影响电网频率。在直驱风力发电系统中风机与发电机直接耦合,省去了传统风力发电系统中的国内难以自主生产且故障率较高的齿轮箱这一部件,减少了发电机的维护工作,并且降低了噪音。另外其不需要电励磁装置,具有重量轻、效率高、可靠性好的优点。 直驱永磁发电机与双馈异步发电机技术相比,由于不需要转子励磁,没有增速 齿轮箱,效率要比双馈发电机高出20%以上,年发电量要比同容量的双馈机型高;增 速齿轮箱故障较高,维护保养成本高,直驱永磁发电机不需要齿轮箱,易于维修保养;直驱永磁发电机采用全功率的交-直-交变频技术,与电网隔离,具有低电压穿越能力,对电网友好; 直驱永磁发电机的缺点是稀土永磁材料成本高,导致整机成本相对较高,永磁 材料在高温、震动和过电流情况下,有可能永久退磁,致使发电机整体报废,这是直驱永磁发电机的重大缺陷。

双馈风电机组与永磁直驱机组对比

双馈风电机组与永磁直驱机组对比 发表时间:2019-03-14T16:13:57.780Z 来源:《建筑模拟》2018年第34期作者:李兵[导读] 清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。 李兵 辽宁大唐国际新能源有限公司辽宁沈阳 110000 摘要:清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。 关键词:电力系统;风力机组;永磁直驱机 风力发电机组主要包括变频器、控制器、齿轮箱,发电机、主轴承、叶片等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括两种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但机组体积和重量都很大,1.5MW的用词直驱发电机机舱会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,在带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在额定转速下运行,目前流行的是双馈异步发电机,主要有1.25MW\1.5MW\2MW三种机型,异步发电机组的机组单价低,技术成熟,国产化高。 一、双馈风力发电系统 双馈风力发电机组的控制核心是通过变流器对双馈发电机转子电流(频率、幅值、相位)的控制,以达到与风电机组机械部分运行特性匹配、提高风能的利用效率及改善供电质量的目的。 1、双馈变速恒频型风力发电机组的风轮叶片桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能; 2、在低于额定风速时,他通过改变转速和叶片桨距角使风力发电机组在最佳叶尖速比下运行,输出最大的功率; 3、在高风速时通过改变叶片桨距角使风力发电机组功率输出稳定在额定功率。 双馈风力发电系统主要由叶片、增速齿轮箱、双馈发电机、双向变流器和控制器组成。双馈式风力发电机组将风轮吸收的机械能通过增速机构传递到发电机,发电机将机械能转化为电能,通过发电机定子、转子传送给电网。发电机定子绕组直接和电网连接,转子绕组和变频器相连。变频器控制电机在亚同步和超同步转速下都保持发电状态。在超同步发电时,通过定转子两个通道同时向电网馈送能量,双馈式风力发电机在亚同步和超同步转速下都可发电。故称双馈技术主要特点 发电机采用绕线式异步电机,定子直接与电网相连,转子侧通过变流器与电网相连。当双馈发电机的负载和转速变化时,通过调节馈入转子绕组的电流,不仅能保持定子输出的电压和频率不变,而且还能调节双馈发电机的功率因数。 1发电机转子侧变流器功率仅需要25%~30%的风机额定功率,大大降低了变流器的造价; 2发电机体积小、运输安装方便、成本低; 3可承受电压波动范围:额定电压±10%; 4网侧及直流侧滤波电感、电容功率相应缩小,电磁干扰也大大降低; 5可方便地实现无功功率控制。 主要缺点 1需要采用双向变频器,变速恒频控制回路多,控制技术复杂,维护成本高 2发电机需安装集电环和刷架系统,且须定期维护、检修或更换随着风电机组单机容量的增大,双馈型风电系统中齿轮箱的高速传动部件故障问题日益突出,于是没有齿轮箱而将主轴与低速多极同步发电机直接连接的直驱式布局应运而生;从中长期来看,直驱型和半直驱型传动系统将逐步在大型风电机组中占有更大比例,另外,在传动系统中采用集成化设计和紧凑型结构是未来大型风电机组的发展趋势。在大功率变流技术和高性能永磁材料日益发展完善的背景下,大型风电机组越来越多地采用pmsg(无功控制和低电压穿越能力),pmsg不从电网吸收无功功率,无需励磁绕组和直流电源,也不需要滑环碳刷,结构简单且技术可靠性高,对电网运行影响小。Pmsg与全功率变流器结合可以显著改善电能质量,减轻对低压电网的冲击,保障风电并网后的电网可靠性和安全性,与双馈型机组相比,全功率变流器更容易实现低电压穿越等功能,更容易满足电网对风电并网日益严格的要求。 二、直接驱动型风力发电系统 典型的永磁直驱型变速恒频风力发电系统,包括永磁同步发电机(pmsg)和全功率背靠背双pwm变流器,无齿轮箱。Pmsg通过全功率变流器直接与电网连接,通常极对数较多,低转速,大转矩,径向尺寸较大,轴向尺寸较小,呈圆环状;由于省去了齿轮箱,从而简化了传动链,提高了系统效率,降低了机械噪声,减小了维修量,提高了机组的寿命和运行可靠性;发电机通过变流器与电网隔离,因此其应对电网故障的能力更强,但是变流器容量较大,损耗较大,变流器的成本较高。

双馈异步风力发电机(西莫讲堂)

主讲人:aser 关键词:双馈异步风力发电机 协助讨论: Edwin_Sun lidb856 pat baizengchen g zslzsl xfq7111 wayne 会议摘要: 1. 引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW的永磁直驱发电机机舱

会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPM下运行,目前流行的是双馈异步发电机,主要有1.25MW,1.5MW,2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技 术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能,发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速

到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱变速,带动电机高速旋转,同时转子接变频器,通过变频器PWM控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也 能发出功率出来。有个大致感觉是 1.5MW发电机的定子发电量大概1200KW,转子大约300KW,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3. 双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,

风力发电机标准IEC中文版

IEC61400-1第三版本2005-08 风机-第一分项:设计要求 1.术语和定义 1.1声的基准风速acoustic reference wind speed 标准状态下(指在10m高处,粗糙长度等于0.05m时),8m/s的风速。它为计算风力发电机组视在声功率级提供统一的根据。注:测声参考风速以m/s表示。 1.2年平均annual average 数量和持续时间足够充分的一组测试数据的平均值,用来估计均值大小。用于估计年平均的测试时间跨度应是一整年,以便消除如季节性等非稳定因素对均值的影响。 V annual average wind speed 1.3年平均风速 ave 基于年平均定义的平均风速。 1.4年发电量annual energy production 利用功率曲线和在轮毂高度处不同风速频率分布估算得到的一台风力发电机组一年时间内生产的全部电能。假设利用率为100%。 1.5视在声功率级apparent sound power level 在测声参考风速下,被测风力机风轮中心向下风向传播的大小为1pW点辐射源的A—计权声级功率级。注:视在声功率级通常以分贝表示。 1.6自动重合闸周期auto-reclosing cycle 电路发生故障后,断路器跳闸,在自动控制的作用下,断路器自动合闸,线路重新连接到电路。这过程在约0.01秒到几秒钟内即可完成。 1.7可利用率(风机)availability 在某一期间内,除去风力发电机组因维修或故障未工作的时数后余下的小时数与这一期间内总小时数的比值,用百分比表示。 1.8锁定(风机)blocking 利用机械销或其它装置,而不是通常的机械制动盘,防止风轮轴或偏航机构运动,一旦锁定发生后,就不能被意外释放。 1.9制动器(风机)brake 指用于转轴的减速或者停止转轴运转的装置。注:刹车装置利用气动,机械或电动原理来控制。 1.10严重故障(风机)catastrophic failure 零件或部件严重损坏,导致主要功能丧失,安全受到威胁。 1.11特征值characteristic value 在给定概率下不能达到的值(如超越概率,超越概率指出现的值大于或等于给定值的概率)。

双馈风力发电机组

双馈风力发电机组 一前言 风力发电作为清洁、丰富、可再生能源,日益受到全世界广泛重视,特别就是在近年得到了迅猛发展。当风流过风力机叶片,带动风力机转动时,风能转化为机械能,风力机又拖动发电机转子旋转,发电机向电网供电,机械能转化为电能。采用双馈绕线型异步发电机的变速恒频风力发电系统与传统的恒速恒频风力发电系统相比具有显著优势:风能利用系数高,不但能吸收由风速突变所产生的能量波动且避免主轴及传动机构承受过大的扭矩与应力,还可以自由调整有功与无功功率,改善系统的功率因数,可实现对频率与电压的方便调节等。目前,双馈风力发电技术就是应用最为广泛的风力发电技术之一。 二双馈绕线型异步风力发电系统的组成 变速恒频VSCF(Variable Speed Constant Frequency)双馈绕线型异步风力发电系统主要由风力机、增速齿轮箱、双馈绕线型异步发电机DFIG(Doubly-fed Induction Generator)、双向变频器与控制单元等组成。双馈发电机定子绕组接工频电网,转子绕组接“交—交”、“交—直—交”或“矩阵式”双向变频器,该变频器可实现对转子绕组的频率、相位、幅值与相序等调节控制。控制系统采用正弦波脉宽调制技术SPWM(Sinusoidal Pulse Width Modulation)与绝缘栅双极晶体管控制技术IGBT(Insulated Gate Bipolar Transistor),可四象限运行,变速运行范围一般在同步转速的±35 %左右。 三实现变速恒频的两种基本方式 实现变速恒频的基本方式一般有两种:一种就是采用传统直流电励磁或永磁同步发电机(以及笼型异步发电机等),另一种就是采用交流励磁的同步化双馈绕线型异步发电机。 当系统采用传统直流电励磁或永磁同步发电机(以及笼型异步发电机等)时,变频器 设置在发电机定子侧。随着转速不断变化,发电机发出变频交流电,经整流与逆变,最终转换成恒频电源再并网发电,永磁直驱同步发电机系统结构如图1(永磁半直驱同步发电机系统须在风力机与发电机之间增加增速齿轮箱):

最新风力发电标准大全

风力发电标准大全 本文从国家标准、电力行业标准、机械行业标准、农业标准、IEC标准、AGMA美国齿轮制造商协会标准、ARINC美国航空无线电设备公司标准、ASTM 美国材料和实验协会标准等几个方面总结风力发电标准大全。1、风力发电国家标准 GB/T 2900.53-2001电工术语风力发电机组 GB 8116—1987风力发电机组型式与基本参数 GB/T 10760.1-2003离网型风力发电机组用发电机第1部分:技术条件 GB/T 10760.2-2003离网型风力发电机组用发电机第2部分:试验方法 GB/T 13981—1992风力设计通用要求 GB/T 16437—1996小型风力发电机组结构安全要求GB 17646-1998小型风力发电机组安全要求 GB 18451.1-2001风力发电机组安全要求 GB/T 18451.2-2003风力发电机组功率特性试验 GB/T 18709—2002风电场风能资源测量方法 GB/T 18710—2002风电场风能资源评估方法 GB/T 19068.1-2003离网型风力发电机组第1部分技术条件 GB/T 19068.2-2003离网型风力发电机组第2部分试验方法 GB/T 19068.3-2003离网型风力发电机组第3部分风洞试验方法 GB/T 19069-2003风力发电机组控制器技术条件 GB/T 19070-2003风力发电机组控制器试验方法 GB/T 19071.1-2003风力发电机组异步发电机第1部分技术条件

GB/T 19071.2-2003风力发电机组异步发电机第2部分试验方法 GB/T 19072-2003风力发电机组塔架 GB/T 19073-2003风力发电机组齿轮箱 GB/T 19115.1-2003离网型户用风光互补发电系统第1部分:技术条件 GB/T 19115.2-2003离网型户用风光互补发电系统第2部分:试验方法 GB/T 19568-2004风力发电机组装配和安装规范 GB/T 19960.1-2005风力发电机组第1部分:通用技术条件 GB/T 19960.2-2005风力发电机组第2部分:通用试验方法 GB/T 20319-2006风力发电机组验收规范 GB/T 20320-2006风力发电机组电能质量测量和评估方法GB/T 20321.1-2006离网型风能、太阳能发电系统用逆变器第1部分:技术条件 GB/T 21150-2007失速型风力发电机组 GB/T 21407-2008双馈式变速恒频风力发电机组 2、风力发电电力行业标准 DL/T 666-1999风力发电场运行规程 DL 796-2001风力发电场安全规程 DL/T 797—2001风力发电厂检修规程 DL/T 5067—1996风力发电场项目可行性研究报告编制规程 DL/T 5191—2004风力发电场项目建设工程验收规程DL/T 5383-2007风力发电场设计技术规范3、风力发电机械行业标准 JB/T 6939.1—2004离网型风力发电机组用控制器第1部分:技术条件

直驱式风力发电机知识

是我们初中学的磁极数,一个发电机是有南北极的(货是正负极),就是指的这个,但是3相的就不是了,你可以通过数住绕组的个数来辨别是多少级数,或者说发电机的转速也可以看出来是多少级数 以50HZ为例,2级的就是3000转,4级就3000/2,1500转这样就好理解了直驱永磁风力发电机组特点 直驱式风力发电机(Direct-driven Wind Turbine Generators),是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。 直驱式(无齿轮)风力发电机始于20多年前,由于电气技术和成本等原因,发展较慢。随着近几年技术的发展,其优势才逐渐凸现。德国、美国、丹麦都是在该技术领域发展较为领先的国家,其中德国西门子公司开发的(直驱式)无齿轮同步发电机安装在世界最大的挪威风力发电场,最高效率达98%。 1997年的风机市场上出现了兼具无齿轮、变速变桨距等特征的风力发电机,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,容量从330千瓦至2兆瓦,由德国ENERCONGmbH公司制造,它们的研制始于1992年。2000年,瑞典ABB公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Wind former,容量3兆瓦、高约70米、风扇直径约90米。2003年,在Okinawa电力公司开始运行的MWT-S2000型风力发电机,是日本三菱重工首度完全自行制造的2兆瓦级风机,采用小尺寸的变速无齿轮永磁同步电机,新型轻质叶片。 目前,国内多家企业也开始进军直驱式风力发电机领域,湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,2兆瓦直驱式永磁风力发电整机机组已试车成功;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合推出的2.5兆瓦直驱变桨风力发电也将于2008年二季度完成样机;具有自主知识产权的新疆金凤科技股份公司、哈尔滨九州电气公司也分别研制出1.5兆瓦直驱式风力发电机。 编辑本段直驱永磁风力发电机组特点 直驱永磁风力发电机有以下几个方面优点[1]: 1.发电效率高:直驱式风力发电机组没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低风速环境下,效果更加显著。

直驱式风力发电机原理及发电机组概述

直驱式风力发电机原理及发电机组概述 二极三相交流发电机转速约每分钟3000转,四极三相交流发电机转速约每分钟1500转,而风力机转速较低,小型风力机转速约每分钟最多几百转,大中型风力机转速约每分钟几十转甚至十几转,必须通过齿轮箱增速才能带动发电机以额定转速旋转。下图是一台采用齿轮箱增速的水平轴风力发电机组的结构示意图。 使用齿轮箱会降低风力机效率,齿轮箱是易损件,特别大功率高速齿轮箱磨损厉害、在风力机塔顶环境下维护保养都较困难。不用齿轮箱用风力机浆叶直接带动发电机旋转发电是可行的,这必须采用专用的低转速发电机,称之为直驱式风力发电机。近些年直驱式风力发电机已从小型风力发电机向大型风力发电机应用发展,国内具有自主知识产权的2MW永磁直驱风力发电机已研制成功,据报道目前国外最大的风力发电机组已达7MW,是直驱式发电机组。 低转速发电机都是多极结构,水轮发电机就是低速多极发电机,风力机用的直驱式发电机也有类似原理构造,一种多极内转子结构,只是要求在结构上更轻巧一些。

近些年高磁能永磁体技术发展很快,特别是稀土永磁材料钕铁硼在直驱式发电机中得到广泛应用。采用永磁体技术的直驱式发电机结构简单、效率高。永磁直驱式发电机在结构上主要有轴向与盘式结构两种,轴向结构又分为内转子、外转子等;盘式结构又分为中间转子、中间定子、多盘式等;还有开始流行的双凸极发电机与开关磁阻发电机。 下图是一个内转子直驱式风力发电机组的结构示意图。其定子与普通三相交流发电机类似,转子由多个永久磁铁构成。 外转子永磁直驱式风力发电机的发电绕组在内定子上,绕组与普通三相交流发电机类似;转子在定子外侧,由多个永久磁铁与外磁軛构成,外转子与风轮轮毂安装成一体,一同旋转。本栏有对外转子直驱式风力发电机的专门介绍,下图是一个外转子直驱式风力发电机组的结构示意图。

双馈风力发电机工作原理

双馈异步风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其有独立的励磁绕组,可以像同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量,通过改变励磁频率,可改变电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或者吸收负荷,对电网扰动远比常规电机小。改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位置,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可以调节无功功率,也可以调节有功功率。 双馈电机的定转子绕组均为对称绕组,电机的极对数为 p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速 n1称为同步转速,它与电网频率 f1 及电机的极对数 p的关系如下:

P f n 1 160= 同样在转子三相对称绕组上通入频率为f 2 的三相对称电流,所 产生的旋转磁场相对于转子本身的旋转速度为: P f n 2260= 由上式可知,改变频率 f 2,即可改变 n 2,而且若改变通入转子三 相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设n 1 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持n ±n2=n1=常数,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为f 1 不变。 n ±n2=n1=常数 双馈电机的转差率 11n n n S -= ,则双馈电机转子三相绕组内通入的电流频率应为: 11 11122606060sf n n n Pn n n P Pn f =-=-==)( 根据上式表明:在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即f 1S )的电流,则在双馈电机 的定子绕组中就能产生50Hz 的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。 根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态: (1) 亚同步运行状态。在此种状态下n

国外风电整机情况

: 世界风电整机设备制造业主要集中欧洲的丹麦、德国、西班牙和亚洲的印度,北美洲的美国。其中欧洲地区的风电整机设备制造业生产能力占世界的50%以上,是最重要的风电整机生产地,也是最大的风电设备出口地区。 美国和印度是后来居上的国家,其发展速度不容小视。美国的GE WIND公司占世界风电设备市场的16%左右,成为世界上风电设备制造业发展最快的国家之一。 进入二十一世纪以来,国际上风电整机设备制造企业之间频频发生并购重组事件,巨型企业加入风电机组制造业,行业集中度不断上升,中小企业生存和发展空间变得狭小艰难。 2003年,丹麦的Vestas公司吞并了NEGMicon,成为世界上最大的风机制造商;美国通用电气(GE)在2002年通过并购安然风力公司进入风能市场;德国西门子公司于2004年兼并了丹麦Bonus公司,成为风机制造业第五大公司; 2007年6月,Suzlon收购了REPOWER,在市场中的份额又有了进一步的提高。 目前,经过近些年的兼并重组,行业集中度的不断上升,世界风电设备行业的竞争格局也较为稳定,形成了五大企业控制了较大部分风电设备市场的局面。在2007年全球新增装机中,丹麦的VESTAS市场份额位居第一,达到了22.5%;美国GE WIND位居第二,市场份额为16.6%;西班牙的GEMES A、德国的ENERCON、印度的SUZLON市场份额也都达到了15.4%、 14.0%、10.5%。前五大风电设备生产企业牢牢占据全球80%以上的市场份额。 随着风电技术的发展,以及大单机容量机型的优势,目前,单机容量在兆瓦级以上的机型已经成为市场主流,约占新增装机容量的85%以上,而单机容量在兆瓦级以下的机型所占比例已经下降到15%左右。 虽然大单机容量凭借其优势,其所占比例越来越高,但是为满足各类细分风电市场要球,单机容量在兆瓦级以下的风电机组未来仍将存在。

第二章 风力发电机组并网方式分析

2风力发电机组并网运行方式分析 2.1风力发电系统的基本结构和工作原理 风力发电系统从形式上有离网型、并网型。离网型的单机容量小(约为0.1~5 kW,一般不超过10 kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电一水电互补、风电一柴油机组发电联合)形成微电网。并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。 2.1.1恒速恒频风力发电系统 恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速)、鼠笼式异步发电机(SCIG)。且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速的转速(一般在(1~1.05)n)之间稳定发电运行。如图2.1所示采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为n的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。在整个运行风速范围内(3 m/s < <25 m/s),气流的速度是不断变化的,为了提高中低风速运行时的效率,定桨距风力1 发电机普遍采用三相(笼型)异步双速发电机,分别设计成4极和6极,其典型代表是NEGMICON 750 kW机组。

风 图2.1采用SCIG的恒速恒频风力发电系统 恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。 2.1.2变速恒频风力发电系统 为了克服恒速恒频风力发电系统的缺点,20世纪90年代中期,基于变桨距技术的各种变速恒频风力发电系统开始进入市场,其主要特点为:低于额定风速时,调节发电机转矩使转速跟随风速变化,使风轮的叶尖速比保持在最佳值,维持风电机组在最大风能利用率下运行;高于额定风速时,调节桨距以限制风力机吸收的功率不超过最大值;恒频电能的获得是通过发电机与电力电子变换装置相结合实现的。目前,变速恒频风电机组主要采用绕线转子双馈异步发电机,低速同步发电机直驱型风力发电系统亦受到广泛重视。 (1)基于绕线转子双馈异步发电机的变速恒频风力发电系统 绕线转子双馈异步发电机(DFIG)的转子侧通过集电环和电刷加入交流励磁,既可输入电能也可输出电能。图2.2为基于绕线转子双馈异步发电机的变速恒频风力发电系统结构示意图,其中,DFIG的转子绕组通过可逆变换器与电网相连,通过控制转子励磁

第七章 双馈风力发电机工作原理

第七章双馈风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。 通过改变励磁频率,可改变发电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。 改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可调节无功功率,还可以调节有功功率。 交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策

略。 一、 双馈电机的基本工作原理 设双馈电机的定转子绕组均为对称绕组,电机的极对数为p ,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速1n 称为同步转速,它与电网频率 1f 及电机的极对数p 的关系如下: p f n 1 160= (3-1) 同样在转子三相对称绕组上通入频率为2f 的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为: p f n 2 260= (3-2) 由式3-2可知,改变频率2f ,即可改变2n ,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设1n 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持 常数==±12n n n ,见式3-3,则双馈电机定子绕组的感应电势,如同在同步发电机 时一样,其频率将始终维持为1f 不变。 常数==±12n n n (3-3) 双馈电机的转差率1 1n n n S -=,则双馈电机转子三相绕组内通入的电流频率应为: S f pn f 12 260 == (3-4)

国内外风力发电技术的现状与发展趋势_田德

2007.01 Renewable Energy Industry 51 风能是一种可再生的清洁能源。近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。风力发电技术日臻完善,并网型风力发电机单机额定功率最大已经到5MW,叶轮直径达到126m。截止2005年世界装机容量已达58,982MW,风力发电量占全球电量的1%。中国成为亚洲风电产业发展的主要推动者之一,其总装机容量居世界第8位,2005年新增装机容量居世界第6位。今后,国内外风力发电技术和产业的发展速度将明显加快。 1 引 言 风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(WMO)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kW,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。 风能是一种技术比较成熟、很有开发利用前景的可再生能源之一[1]。风能的利用方式不仅有风力发电、风力提水,而且还有风力致热、风帆助航等。因此,开发利用风能对世界各国科技工作者具有极强的魅力,从而唤起了世界众多的科学家致力于风能利用方面的研究。在本文中,将对国内外风力发电技术的现状和发展趋势进行论述。 2 风力发电基本知识 2.1 风能的计算公式 空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为A,则当风速为V的风流 经叶轮时,单位时间风传递给叶轮的风能为 其中:单位时间质量流量m=ρ AV 在实际中,式中: PW—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,W; Cp—叶轮的风能利用系数; ?m—齿轮箱和传动系统的机械效率,一般为0.80—0. 95,直驱式风力发电机为1.0;?e—发电机效率,一般为0.70—0.98;?—空气密度,kg/m3; A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。 田 德 (内蒙古农业大学新能源技术研究所,呼和浩特 010018) 国内外风力发电技术 的现状与发展趋势

相关主题
文本预览
相关文档 最新文档