当前位置:文档之家› 1哈密顿原理

1哈密顿原理

1哈密顿原理
1哈密顿原理

牛顿质点动力学

1 牛顿第二定律 dt

d p f 从三个方面来应用:

全局性研究:对称性、守恒律、稳定性;

局部研究:平均值、动量定理、动能定理;

瞬时研究:极限求导、奇异性、突变性;

2 重点研究非惯性、矢量性、连续性、相对性的问题;

3 从动力学观点上升到能量的观点。

哈密顿原理、保守力及其势

4 五大类典型模型

概括:

一个原理:哈密顿原理(稳定性与对称性原理);

二种建模方法:动力学方法、能量法;

三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时);

四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式)

哈密顿原理、对称性和稳定性

1.拉格朗日函数和哈密顿量

拉格朗日函数L

对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q

q L i i 来描述,其中i q 是广义坐标,=i q dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x =,θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。

在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差;U T L -=

哈密顿量H

物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和

),,(t p q H i i =U T +(i=1,2…s )

其中)(/i i q

L p ??=是广义动量,哈密顿量是广义坐标和广义动量的函数,在直角坐标下对于质点运动的广义动量可写成v p m =。作用量I 定义为

?=21

t t Ldt I 其中,积分上下限是质点初末态I q 、F q 对应的时间。

2.哈密顿原理及轨道稳定性

哈密顿原理指出:当系统由I q 演化到F q ,其真实的轨道总是满足作用量I 取极值的条件。具体来讲,当给予广义坐标和速度一个无穷小扰动i q δ、)/(dt dq i δ,而作用量十分稳定,不受扰动,即δI =0。因此哈密顿原理的实质就是轨道的稳定性原理,质点从I q 运动到F q 总是选择一条最稳定的轨道。

其次,I 在扰动下是不变量,所以哈密顿原理也是一个对称性原理;总之哈密顿原理是物理学的最高原理。

考察空间平移的对称性,设一个系统由两个粒子组成,它们只限于在具有空间平移对称性的x 轴上运动,设两粒子坐标为x1和x2,系统的势能),(21x x E E P P =,当体系发生一平

移x ?时,两粒子坐标变为:x x x x x x ?+='?+='2211

,,但两粒子的相对距离未变,即x x x x x x =-='-'='1212

,空间平移对称性意味着势能与x ?无关。此外,两粒子在相互作用势能下,所受的力

x

E x x x E x E f P P P ??=????-=??=111 x

E x x x E x E f P P P ??-=????-=??-=222 所以021=+f f ,即作用力等于反作用力的牛顿第三定律成立,故有动量守恒。

一般可以表述为:系统的哈密顿量在空间坐标平移下保持不变,称系统具有空间平移对称性,它对应着动量守恒律。

3.哈密顿正则方程

当以变数),(i i p q 为参数时,由哈密顿原理可以得到一组哈密顿正则方程:

i i q H dt dp ?-?=// i i p H dt dq ??=// 例如一个一维弹簧振子的哈密顿量

2/2/22kx m p H +=

正则方程为:

kx x H dt dp -=?-?=// m p p H dt dx ///=??= 其中m p dt dx //=即动量的定义,而kx dt dp -=/是一维简谐振子的牛顿方程;一般情况下,哈密顿正则方程组的第一

个方程是牛顿方程,第二个方程是动量的定义。

例1、弹簧连接体:如右图所示,用轻弹簧联接的两个质量同为m 的滑块放置在光滑的水平桌面上,试用能量法建立动力学方程。

解:

系统的动能 m P m P T 2/2/2221+=

11x m P =、22x m P =分别为两滑块的动量 系统的弹性势能 212)(2

1l x x k U --= , 其中k 是弹簧的劲度系数,l 是弹簧的原长;

哈密顿量 正则方程

引力势模型

???????=??=---=??-==??=--=??-=m P P H dt dx l x x k x H dt

dP m P P H dt dx l x x k x H dt dP 2

2212221111211),(,)(2122221)(2122l x x k m P m P H --++

=1 2

图2-3-10Java 学件弹簧连接体 图2-3-11Java 学件行星运动

质量为m 的粒子在中心引力势r B /-作用下如何运动,其中GMm B =,G 是万有引力常数,M 为中心天体的质量。 在平面极坐标下粒子的哈密顿量

r

B m p mr L r B m H r -+=-=2222

222p 径向动能2222)(21)(212θωd dr m dt dr m m p r ==242)(21θd dr r m L = 其中4242222mr L r m I m m ==ωω; 2221mr L 是横向动能, 22

22222221/2121mr L r I I m mr ==ωω。

由总能量守恒和角动量守恒

22222r L r mB mE p r -+= 22222r

m L mr B m E dt dr -+= 又 dt d θmr L 2= 即

L d mr dt /2θ= 于是

22

222)/(2122r L r B E m L r L

Bmr mEr r d dr -+=-+=θ

22)/(2L r B E mr r Ldr

d -+=θ

φθ++-=2222

2arcsin mEL m B r L Bmr

)

sin(211)

/(222

φθ-+-=m B EL Bm L r

取2/πφ=, θφθcos )sin(-=-

θεθ

cos 1cos 211)/(222

+=++=p

m B EL Bm L r

讨论:

1)0,0>>εE 双曲线轨道;

2)1,0==εE 抛物线轨道;

3)1,0<<εE 椭圆轨道,其中,)

2/(22L m B E ->;

4))2/(22L m B E -=,0=ε 圆轨道;

开普勒定律参考源程序

static Point3f p0,p,p1,p2[3200],p3,S[2],m_path[50];

Orient direct = {0.0f, 90};

static Color4f color = {1.0f, 1.0f, 1.0f, 1.0f}, color1 = {0.0f, 0.0f, 1.0f, 0.9f};

static float a,b,c,T,s,e,r0,ll;

static float m_sita,t,dt,st,sita,dsita;

void demoApp::RenderScene(int sceneIndex)

{

int i,j;

a=P_radius; b=P_omega; T=V;

title.Show(30.0f, 0.0f, 60.0f);

title1.Show(55.0f, 0.0f, 45.0f);

c=2*3.14*a*b/T; //单位时间扫过面积

e=pow((1-b*b/a/a),0.5); //偏心率

r0=pow(b,2)/a;

s=pow(a*a-b*b,0.5);

ll=c/500.0; //角动量守恒量

p0.x=0; p0.y=0; p0.z=-30;

p.x=0; p.y=-s/2; p.z=-30; //太阳在焦点

p3.x=0; p3.y=-s/2; p3.z=ll;

S[0].x=p.x; S[0].y=p.y; S[0].z=p.z;

glt::EnableLight();

draw::Arrow3D(p, p3, 0.0, 0.5, 10, 2, color, color, false,0,0,0);

tex.EnableTexture(); //贴图

glt::BeginTransform();

glt::ZTransform(S[0], direct, step); // 中心

center,轴向direct,旋进角0

draw::Sphere(8, color, 32, 31); // 太阳球体,半径r,经线分段数32,纬线分段数31

glt::EndTransform();

t=0;

sita=0;

for(i=0;i

{

dt=0.01;

dsita=c/pow(r0/(1-0.5*e*cos(sita)),2)*dt;

sita=sita+dsita; // dsita/dt=c/mr2

t=t+dt;

p2[i].x=p0.x+b*cos(1.57+sita);//初始出发点

p2[i].y=p0.y+a*sin(1.57+sita);

p2[i].z=-30;

S[1].x=p2[i].x; S[1].y=p2[i].y; S[1].z=p2[i].z;

glt::SetLineWidth(3);

if(i>0)

draw::Line(p2[i-1],p2[i],cRED);

glt::SetLineWidth(6);

if((i>step-30)&&(step>30))

draw::Line(p,p2[i],color1);

}

tex.DisableTexture();

glt::BeginTransform();

glt::ZTransform(S[1], direct, 0); // 中心center,轴向direct,旋进角0

draw::Sphere(4, color1, 11, 11); // 球体,半径r,经线分段数32,纬线分段数31

glt::EndTransform();

}

哈密顿系统一些保结构算法的构造和分析

哈密顿系统一些保结构算法的构造和分析一切真实的,耗散可忽略不计的物理过程都可以用哈密顿系统进行描述.哈密顿系统有两个最重要的性质,一个是辛结构,另一个就是能量守恒.正确计算哈密顿系统非常重要.近年来,能够保持哈密顿系统辛结构或能量的保结构方法已经得到了很大的发展.本文讨论哈密顿系统一些保结构算法的构造和分析,主要研究成果如下:I.近几年,人们构造了等离子物理中洛伦兹力系统的保结构格式,比如保体积格式和保辛格式.然而这些格式都不能保持系统能量.我们把洛伦兹力系统写为一个非典则的哈密顿系统,然后利用Boole离散线积分方法进行求解,得到洛伦兹力系统的一个新的格式.该方法可以保持系统哈密顿能量达到机器精度.II.我们研究如何利用二,三和四阶AVF方法求解哈密顿偏微分方程.对非线性薛定谔方程,空间用Fourier拟谱方法半离散,时间用三个AVF方法进行离散,得到该方程三个不同精度的AVF格式.我们用数值实验验证了这三个格式的精度和保能量守恒特性.III.基于根树和B-级数理论,我们给出了5阶树的带入规则的具体公式.利用新得到的带入规则,我们把二阶AVF方法提高到高阶精度,给出了一个新的AVF方法.我们证明了,新方法具有6阶精度,并且可以保持哈密顿系统能量.我们利用六阶AVF方法求解非线性哈密顿系统,并测试了其精度和能量守恒特性.IV.在哈密顿偏微分方程保结构算法框架下,我们研究了基于系统弱形式的空间离散方法.首先,空间用有限元法或谱元法对偏微分方程进行半离散,把得到的常微分方程组写成一个哈密顿系统.然后,我们用一个保结构方法对这个常微分哈密顿系统进行求解,得到一个全离散保结构格式.我们用这个方法对一维非线性薛定谔(NLS)方程进行求解,其中空间用Legendre谱元法,时间用AVF 方法,得到一个新的保能量方法.同样对一维NLS方程,我们在空间用Galerkin

1哈密顿原理

牛顿质点动力学 1 牛顿第二定律 dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。 哈密顿原理、保守力及其势 4 五大类典型模型 概括: 一个原理:哈密顿原理(稳定性与对称性原理); 哈密顿原理的文字表述如下: 二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时);

四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性 1.拉格朗日函数和哈密顿量 拉格朗日函数L 对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q q L i i &来描述,其中i q 是广义坐标,=i q &dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x =,θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差;U T L -= 哈密顿量H 物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和

算子总结;哈密尔顿算子;拉普拉斯算子

?:向量微分算子、哈密尔顿算子、Nabla算子、劈形算子,倒三角算子是一个微分算 子。Strictly speaking, ?del is not a specific operator, but rather a convenient mathematical notation for those three operators, that makes many equations easier to write and remember. The del symbol can be interpreted as a vector of partial derivative operators, and its three possible meanings—gradient, divergence, and curl—can be formally viewed as the product of scalars, dot product, and cross product, respectively, of the del "operator" with the field. Δ、?2 or ?·?:拉普拉斯算子(Laplace operator),定义为梯度(▽f)的散度(▽·f)。 , grad F=▽F,梯度(gradient),标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。▽f= div F=▽·F,散度(divergence),是算子▽点乘向量函数,矢量场的散度是一个标量函数,与求梯度正好相反,div F表示在点M处的单位体积内散发出来的矢量F的通量,描述了通量源的密度,可用表征空间各点矢量场发散的强弱程度。当div F>0 ,表示该点有散发通量的正源;当div F<0 表示该点有吸收通量的负源;当div =0,表示该点为无源场。即闭合曲面的面积分为0是无源场,否则是有源场。 rot F 或curl F=? ×F,旋度(curl,rotation),是算子▽叉乘向量函数,矢量场的旋 度依然是矢量场,意义是向量场沿法向量的平均旋转强度,向量场在曲面上旋量的总和等于该向量场沿该曲面边界曲线的正向的环量,也就是封闭曲线的线积分。旋量为0的向量场叫无旋场,只有这种场才有势函数,也就是保守场。即闭合环路的线积分为0是无旋场,否则就是有旋场。 基本关系: 一个标量场f的梯度场是无旋场,也就是说它的旋度处处为零:

哈密顿系统的数学建模与动力学分析.

1 引言 Hamilton动力系统理论有着悠久而丰富的历史,它本身是Lagrange力学的升华与推广,从数学角度看又是一门内容精深的相空间几何学,如辛几何、辛拓扑等都源于此.近几十年来,随着纯数学理论的不断发展与计算机的普遍应用,Hamilton动力系统理论又成为当今非线性科学中极其活跃而富有魅力的研究领域.由于这类系统广泛存在于数理科学、生命科学以及社会科学的各个领域,特别是天体力学、等离子物理、航天科学以及生物工程中的很多模型都以Hamilton系统的形式出现,因此该领域的研究多年来长盛不衰.本文利用Hamilton原理推导出了Hamilton系统的正则方程.最后利用Hamilton正则方程给出一个具体物理实例的数学模型并对其进行动态模拟仿真.

2 预备知识 2.1 状态空间的基本概念 1)状态 任何一个系统在特定时刻都有一个特定的状态,系统在0t 时刻的状态是0t 时刻的一种信息量,它与此后的输入一起惟一地确定系统在0t t ≥时的行为. 2)状态变量 状态变量是一个完全表征系统时间域行为的的最小内部变量组. 3)状态向量 设系统有n 个状态变量,用()()()12,, ,n x t x t x t 表示,而且把这些状态变量看做向量 ()x t 的分量,则向量()x t 称为状态向量,记为 ()()()()12,, ,T n x t x t x t x t =????. 4)状态空间 以状态变量()()()12,,,n x t x t x t 为轴的n 维实向量空间称为状态空间. 5)状态方程 描述系统状态变量与输入变量之间关系的一阶微分方程组(连续时间系统)或一阶差分方程组(离散时间系统)称为系统的状态方程,它表征了输入对内部状态的变换过程,其一般形式为: ()()(),,x t f x t u t t =???? 其中,t 是时间变量,()u t 是输入变量. 6)输出方程 描述系统输出量与系统状态变量和输入变量之间函数关系的代数方程称为输出方程,它表征了系统内部状态变化和输入所引起的系统输出变换,是一个变化过程.输出方程的一

对数哈密顿方法及其应用

对数哈密顿方法及其应用 天体力学数值方法作为天体力学的重要领域之一在辛算法的提出后得到长足发展,辛算法保持哈密顿系统辛结构且计算过程中系统没有能量和角动量的长期误差累积。辛算法适用于哈密顿系统的长期定性演化研究同时也具有数值精度不高、显辛算法要求固定步长的不足。 通常积分计算天体紧密交汇问题或大偏心率轨道运动都需缩短步长来克服天体受引力过大而剧增的加速度,直接变步长将丢失辛算法保持辛结构的优势,考虑时间变换的思路,原时间变量取变步长而新的时间变量仍为固定步长,则既能调节步长又能保持辛算法固有优势。本文的主要内容为构造针对不同哈密顿系统的对数哈密顿算法及论证其在具有更高的数值精度和保证获得有效的混沌判别结果方面的优势。 针对不同的哈密顿系统结构构造不同形式的时间变换辛算法。对于可分解为分别只含状态量广义动量和广义坐标的动能部分和势能部分的哈密顿函数,可构造取时间变换函数为形式不同但等价的两个函数得到显式对数哈密顿方法,其中时间变换作用于哈密顿函数,本文构造了由三个二阶蛙跳算子构成的显式对数哈密顿Yoshida四阶方法。 对于动能部分具有广义动量和广义坐标的交叉项而势能部分仅含位置变量的系统构造显隐式混合对数哈密顿方法,对于动能部分应用隐式中点法。而对于更一般的系统则构造隐式对数哈密顿方法。 隐式方法具有更广泛的应用但也由于算法构造中包括迭代需耗费更多的计算机时间降低计算效率。本文详细论证了显式对数哈密顿方法在应用于牛顿圆型限制性三体问题及相对论圆型限制性三体问题时较于非时间变换辛算法更具数

值精度优势。 且在前一系统的精度优势独立于轨道偏心率的变化。对于后一系统这一现象未能发生但数值精度也明显优越于常规辛算法。 特别对于高偏心率轨道,非时间变换算法得到的虚假的混沌判别指标,如Lyapunov指标和快速Lyapunov指数(FLI)。而通过对数哈密顿方法则可获得可靠地定性分析结果,彻底地解决后牛顿圆型限制性三体问题的高偏心率轨道Lyapunov指数的过度估计和FLI快速增大的问题。 在得到论证后本文应用对数哈密顿方法讨论了动力学参数两主天体间距离的变化对动力学系统有序和混沌转化的影响。本文通过数值模拟验证了对数哈密顿方法具有更高的数值精度及可得到可靠的定性研究成果的优势。 适用于定性研究和定量计算高偏心率问题,为天体力学研究开拓了新思路。在实际的天体紧密交汇处的动力学演化提供反映动力学实质的积分工具。

7第5章哈密顿原理

第5章哈密顿原理 如前所述,力学的变分原理的实质是:将真实运动与可能发生的运动加以比较,建立判别准则以区分真实运动和可能的运动。哈密顿原理是通过真实运动与可能的运动在位形空间的位形轨迹加以比较,而哈密顿作用量S 是对不同的位形轨线取不同值的泛函,从而得到对真实运动来讲,哈密顿作用量的变分等于零。 将拉格朗日方程引人哈密顿函数,导出哈密顿正则方程;给出了一种对偶的数学体系,开拓了应用前景;由动力学普遍方程对时间积分,导出一个重要的力学变分原理——哈密顿原理,提出了将真实运动与同样条件下的可能运动区分开来的准则;对于有限过程,提供了一种动力学问题的直接近似解法。 5.1 哈密顿正则方程 哈密顿正则方程是分析力学中又一个重要的力学方程,它与拉格朗日方程等价,是2n 个一阶常微分方程组。我们知道,对于一个质点系统,在建立拉格朗日方程后,重要的问题是研究这个微分方程组的积分,但是求解往往是很困难的。哈密顿正则方程的重要性在于它将n 个二阶微分方程变换为2n 个一阶方程,而且结构对称、简洁,为正则积分理论创造了有利条件。若是说拉格朗日方程对分析力学起着开拓性作用,则哈密顿正则方程对分析力学中的积分理论起着基础的和推动的作用。哈密顿正则方程的重要性还在于在许多理论的定性研究中,并不需要求解微分方程组,而是将二阶微分方程变换为二个一阶方程并应用几何方法求解。 5.1.1 正则方程的建立 对于主动力均有势的k 个自由度的完整约束系统,其拉格朗日方程为 ),,2,1(0d d k j q L q L t j j ==??-???? ???? (5-1) 引入广义动量 ),,2,1(k j q L p j j =??= (5-2) 代入式(5-1),有 ),,2,1(k j q L p j j =??= (5-3) 设拉格朗日函数L 满足条件 0det 2≠??? ? ? ????k j q q L 于是,可由式(5-2)反解出 ),,2,1(),,,,,,(11k j t p p q q f q k k j j == (5-4) 式(5-3)和式(5-4)就把方程(5-1)由k 个二阶微分方程化为2k 个一阶微分方程,其中方程 组(5-4)并非正则形式。引入哈密顿函数

耗散动力学系统的广义哈密顿形式及其应用

耗散动力学系统的广义哈密顿形式及其应用经典力学中所研究大部分系统不是保守系统,所以很难将这类系统表示为经典的哈密顿力学形式(偶数维)以及与此等效的拉格朗日力学形形式或最小作用量变分原理形式。由于这几种数学形式是数值计算方法中辛几何算法的的基础和现代物理学的基础,所以极大地限制了辛几何算法在耗散系统的数值模拟领域的应用以及耗散系统的量子化等理论物理领域中的应用。 耗散动力学系统长时间跟踪问题是当前非线性力学研究领域的难点之一。对于低维耗散动力学系统,可以用各种半解析方法(小参数法,摄动法)求解。 即便如此,对于长时间跟踪,也存在所谓久期项问题(由方法本身的误差累积导致)。对于高维耗散动力系统,直接应用解析方法显然是十分困难的。 因此多采用数值方法求解该类问题。但是不同的数值方法求解的结果可能会有较大偏差,甚至相差甚远,而且大部分问题是缺乏判断其算法偏差量的参考标准的。 所以为这类问题挑选或者创立公认可行的数值积分方法,成为一个问题。我国著名学者冯康先生提出并研究了在保守系统领域的这类问题,给出了辛几何算法的思想并系统的表述构造辛差分格式的一般方法,指出了原有差分格式中的适于长时间跟踪的格式。 钟万勰先生发展了这种思想,进一步提出了时间有限元和精细积分的的思想,并对耗散动力学系统引入辛算法作了尝试。本文的最初的目的是在转子稳定性分析等耗散动力学问题中使用辛数值积分方法(或者说利用辛几何算法的思想找到合适的算法)。 为达到此目的研究了耗散系统和保守系统的一种特殊关系,在此基础上用相

应的保守系统的数值解替代原耗散系统,即将辛数值方法应用求解相应的保守系统来得到所要研究系统的数值解。在这种关系的基础上,借鉴流体力学的广义哈密顿方程和最小作用量变分原理,将耗散系统表示成一种无穷维广义哈密顿系统,相应地带来一种新型的最小作用量变分原理。 可以将冯康文献中广义哈密顿系统辛算法的思想应用于求解这个特殊的无穷维哈密顿系统。上述最小作用量变分原理,可以和路径积分量子力学形式结合,应用于量子力学领域。 以上工作的主要创新点可以归纳如下:1.发现了耗散力学系统和某一保守力学系统相曲线重合原理:对于一个耗散力学系统和它一个初始条件,对应于不同时间区段一定存在一族保守力学系统,这族保守力学系统和耗散力学系统有且仅有一条共同的相曲线;这族保守系统的哈密顿量就是前述耗散力学系统的总能。对于非保守的振动问题来说,这个保守系统就是一个非线性保守力学系统,其中的保守力在某一初始条件下和非保守振子系统的阻尼力和恢复力之和相等,那么其在相空间运动轨迹必然相同。 在此基础上,引入了无穷维广义哈密顿格式来表示耗散力学系统,在其中定义了一个新的哈密顿量,并且引入了新的泊松括号,这个格式类似于表示等离子问题和理想流体的广义哈密顿格式。在这里把耗散力学系统看作是相空间内一种特殊流体(内部无压力),初始条件看作是物质坐标,上述轨迹重合的保守力学系统的哈密顿量看作是哈密顿量密度。 对应于经典的哈密顿变分原理,这个广义哈密顿格式等效于一个新的变分原理。在这个变分原理中作用量为相空间的某一区域中所有微元的作用量之和。 2.从创新点1出发本文研究了有阻尼振动问题的中心差分格式,发现中心差

哈密顿原理

§7-4 哈密顿原理 人们为了追求自然规律的统一、 和谐, 按照科学的审美观点, 总是力图用尽可能少的原理(即公理)去概括尽可能多的规律. 牛顿提出的三个定律, 是力学的基本原理. 由这些基本原理出发, 经过严格的逻辑推理和数学演绎, 可以获得经典力学的整个理论框架. 哈密顿原理是分析力学的基本原理, 它潜藏着经典力学的全部内容并把这门学科的所有命题统一起来. 也就是说, 由它出发, 亦可得到经典力学的整个框架. 哈密顿原理是力学中的积分变分原理. 变分原理提供了一个准则, 使我们能从约束许可条件下的一切可能运动中, 将力学系统的真实运动挑选出来. 变分原理的这一思想, 不仅在力学中, 而且在物理学科的其他领域中, 都具有重要意义. 一、变分法简介 1. 函数的变分. 自变量为x 的函数表示为)(x y y =. 函数的微分x y y d d ′=是由自变量x 的变化引起的函数的变化. 函数的变分也是函数的微变量, 但它不是因为自变量x 的变化, 而是由于函数形式的变化引起

的. 这种由于函数形式变化造成的函数的变更称为函数的变分, 记作y δ. 与函数y 邻近但形式与y 不同的函数有许多, 这些函数可以表示如下: )()0,(),(* x x y x y εηε+= 其中ε是任意小的参数, ()x η是任意给定的可微函数. 因0=ε时()()x y x y =0,, 所以函数形式的变化决定于上式的第二项. 因此, 函数的变分写成 ()()()x x y x y y εηε=?=0,,δ* 在自由度为1的力学系统中讨论变分的概念. 设广义坐标为q , )(t q q =. 建立以t q ,为轴的二维时空坐标系(又称事件空间), 曲线I 是)(t q q =的函数曲线, 代表了系统的真实运动. q t d d →函数的微分. 在曲线I 附近, 存在 着许多相邻曲线, 这些曲 线都满足力学系统的约束 条件, 称为可能运动曲线, 它们的方程表示为 ()()()t t q t q εηε+=0,,* 在t 不变的情况下, 函数形式的改变也能引起函数的变化, 这种变化纯粹是由函数形式变化引起的, 它就是函数的变分q δ, ()()()t t q t q q εηεδ=?=0,,*

5.7哈密顿原理作业

1 哈哈密密顿顿原原理理作作业业 1.如图示,质量为m 的复摆绕通过某点O 的水平轴作微小振动,复摆对转轴的转动惯量为0I ,质心C 到悬点O 的距离为 ,试用哈密顿原理求该复摆的运动方程及振 动周期。 1.解:取θ为广义坐标,则拉格朗日函数为: θ+θ=-=cos mg I 21 V T L 2 0 其中取悬点O 为零势能点。 于是哈密顿原理0dt L 21t t =δ?可得:0dt cos mg I 2 121t t 20=??? ??θ+θδ? 即:()0dt sin mg I 2 1t t 0=θδθ-θδθ ? 而δθθ-δθθ=δθθ=θδθ 0 000I )I (dt d )(dt d I I 则:()0dt sin mg I )I (dt d dt sin mg I 212 1t t 00t t 0=??? ??θδθ-δθθ-δθθ=θδθ-θδθ ?? 即:()0dt sin mg I I 212 1t t 0t t 0=δθθ+θ-δθθ ? 而0I 21t t 0=δθθ ,δθ取任意值 所以:0sin mg I 0=θ+θ 即:0sin I mg 0=θ+θ 而θ≈θsin ,则:0I mg 0 =θ+θ ,此即为所求的运动方程。 其中角频率0I /mg =ω 所以振动周期)mg /(I 2/2T 0 π=ωπ=。 2.试用哈密顿原理求质量为m 的质点在重力场中用直角坐标系表示的运动微分方程。 2.解:取x,y,z 为广义坐标,则: 体系的动能)z y x (m 2 1 T 222 ++= 势能mgz V =(以地面为零势能点) 拉氏函数mgz )z y x (m 21 V T L 222-++=-=

哈密顿算符不同坐标下的表示

哈密顿算符不同形式下的表达式 胡连钦(08180218) 范世炜(08180218) 摘要:由直角坐标系中的哈密顿算符向不同坐标系转换,将得到不同形式(极坐标、柱坐标、球坐标和矩阵)的哈密顿表达式。本文采用直接微分运算的方法,详细的介绍了哈密顿算符表达式的数学推导过程,降低了初学时的难度。另外本文还通过计算,直接给出了动量分量的算符表述,并且针对不同情况补充相应的例题或是加上哈密顿算符的具体应用。 关键词:哈密顿算符 微分运算 推导过程 动量分量 算符表述 应用 1.引言 在经典力学中,我们定义哈密顿算符为总能量算符: V m p V T H +=+=2/????2 如果我们从波函数)?(r ψψ=出发,位置算符是空间矢量自身: r r =? 它的分量是 x x =? ,y y =? , z z =? 动量算符表示为 ?-= i p ? 它的分量是 x i p x ??-= ? ,y i p y ??-= ? ,z i p z ??-= ? 对应的哈密顿算符可以通过标准的替换规则?-→ i p 得到 V m H +?-=22 2? 在教科书中,给出了哈密顿算符的柱坐标及球坐标的表达式,但因数学推导过程难度过大,一般教科书中都是略去的。接下来,我们给出了方程的数学推导过程,降低初学时的难度。 2、哈密顿算符在不同坐标中推广表达式 2.1、极坐标下的哈密顿算符 极坐标中独立变量ρ、?与直角坐标中独立变量 x 、y 之间的关系: ?? ? ??=+=x y y x a r c t a n 22?ρ 图1 极坐标与直角坐标的关系 根据上述关系有: ? ρ?ρ? ??ρρ?? - ??=????+ ????= ??s i n c o s x x x ? ρ?ρ ???ρρ?? + ??=????+????=??cos sin y y y x y ρ ?

约束Hamilton系统的稳定性研究

约束Hamilton 系统的稳定性研究 郑明亮1) 傅景礼 2) 1)(浙江理工大学 机械设计与控制学院 杭州 310018) 2)(浙江理工大学 理学院 杭州 310018) 摘要:本文给出了一种约束Hamilton 系统的稳定性判断方法。首先,提出将因系统奇异性导致的内在限制方程看作是非完整约束方程,采用Routh 方法导出了约束Hamilton 系统的运动正则方程。其次,将约束Hamilton 系统转化成力学梯度系统,给出转化微分方程表示的条件和表达形式;接着,根据梯度系统的性质结合李雅普诺夫的一次近似理论直接来判定约束Hamilton 系统的平衡位置稳定性。最后,举例说明结果的应用。 关键词:约束Hamilton 系统;梯度系统;李雅普诺夫;稳定性 PACS:45.10.Hj,02.30.Hq 1引言 力学系统的运动稳定性在数学、力学、航空、航海、航天、新技术和高技术中得到广泛应用,发挥了越来越大的作用[1]。关于稳定性的问题Lyapunov 首先给出了稳定性的严格数学定义,并提出一种研究运动稳定性的直接方法。Bottema [2]研究了在·ГAO Ⅱ?意义下,各种力学系统平衡位置的稳定性判断方法。Risito [3]和 Laloy [4]总结了保守系统和耗散系统的平衡和运动稳定性,得到线性、齐次、定常非完整系统平衡位置稳定与不稳定的一些更特殊的结果。我国著名力学专家梅凤翔[5]系统地论述了约束力学系统的运动稳定性问题。朱海平 [6]研究了非完整系统的稳定性。傅景礼等[7-8]研究了相对论性和转动相对论性Birkhoff 系统的平衡稳定性。Zhang [9]利用Noether 守恒量构造了Lyapunov 函数,研究了广义Birkhoff 系统的运动稳定性。姜文安等[10]研究了广义Hamilton 系统的运动稳定性。Cheng [11]研究了系统参数对带附加广义力项的约束力学系统运动稳定性的影响。 在Legendre 变换下,奇异Lagrange 系统在过渡到相空间用Hamilton 正则变量描述时,其正则变量之间存在固有约束,称之为约束Hamilton 系统[12]。机械工程和数学物理上许多重要的动力系统是约束Hamilton 系统,如非树形多体机器人系统动力学模型一般为微分/代数方程组形式[13]、光的横移现象和量子电动力学[14]等。但是,关于约束Hamilton 系统的稳定性研究一直鲜有报道。如果一个力学系统能够成为梯度系统,那么就可用梯度系统的特性来研究力学系统的性质, 特别是运动稳定性质[15]。本文研究仅含第二类约束的约束Hamilton 系统的稳定性,将其转化成梯度系统,直接利用Lyapunov 定理来研究其平衡稳定性。 2约束Hamilton 系统的正则方程 设力学系统的位形由n 个广义坐标),...,1(n s q s =来确定,系统的Lagrange 函数为 ),,(q q t L ,广义动量为),...,1(n s q L p s s =??= ,设L 的Hess 矩阵?? ???????k s q q L 2的秩为n r <。 引入系统的Hamilton 函数为),(1q p,t L q p H n i i i -=∑= ,将奇异Lagrange 系统描述过渡到Hamilton 系统描述时,在相空间中正则变量之间存在代数约束方程: ),...,1(,0),(r n j t j -==Φq p, (1)

1哈密顿原理

1哈密顿原理

牛顿质点动力学 1 牛顿第二定律 dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。 哈密顿原理、保守力及其势 4 五大类典型模型 概括: 一个原理:哈密顿原理(稳定性与对称性原理); 哈密顿原理的文字表述如下: 保守的、完整的力学体系在相同时间内,由某一初位形转移到另一已知位形的一切可能运动中,真实运动的主函数具有稳定值,即对于真实运动来讲,主函数的变分等于0。 二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时);

四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性 1.拉格朗日函数和哈密顿量 拉格朗日函数L 对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q q L i i &来描述,其中i q 是广义坐标,=i q &dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x =,θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差;U T L -= 哈密顿量H 物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和

1哈密顿原理-新版.pdf

牛顿质点动力学 1 牛顿第二定律dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性;局部研究:平均值、动量定理、动能定理;瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。哈密顿原理、保守力及其势 4 五大类典型模型概括: 一个原理:哈密顿原理(稳定性与对称性原理); 哈密顿原理的文字表述如下: 保守的、完整的力学体系在相同时间内,由某一初位形转移到另一已知位形的一切可能运动中, 真实运动的主函数具有 稳定值,即对于真实运动来讲,主函数的变分等于0。二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部)求极限、求导、突变及奇异性研究方法(瞬时) ;

四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法);五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性 1.拉格朗日函数和哈密顿量拉格朗日函数 L 对于一个物理系统,可用一个称为拉格朗日函数的量 ),,(t q q L i i 来描述,其中i q 是广义坐标,i q dt dq i /是广义速 度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上 运动,其坐标显然有x 、y 、z 三个,但广义坐标只有 ,两 个,其中cos sin R x ,cos ,sin sin R z b R y ;一 般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐 标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势 能之差;U T L 哈密顿量H

哈密顿算符的运算规则

哈密顿算符的运算规则 厦门大学物理系李明哲 【摘要]本文从哈密顿算符的定义出发,根据哈密顿算符的性质.给|_}{哈离顿算符完整、统…的运算规划,以克服现有物理教剩书中该算符运算规则升;…‘致的缺点,进而帮助学习者更好地掌握该算符。 【关键词】晗密顿算符运算规则场论 物理学中处理“场”的问题时,熟练掌握哈鬻顿算符非常关键。例如。本科《电动力学》整门谋程在菜种程度上可以说就是利用哈密顿算符的性质处理壹克斯市方程组的。该课程被物理系的本科生视为最难的谋私之。,实质原幽在于对晗密顿算符的运算掌握ai好。所以,在正式学习该课程之前,总是需要先温习这部分知识。 然而,~些常用教科书(例如《电动力学》…)在舟绍哈密顿算符的运算规则时并没有给出宠籀、统一、清晰的规则,导致读肴不耪理解和掌握;而另外一然教科书(例如《经典电动力学》“)则直接将其列为公式,并未给山证明,读者遇到列出的公式之外的运算就无法进行,当然也就无法真正掌握。 本文希望能克服这一不足之处,从哈密顿算符豹定义出发,分析暗密顿算符的两个报本性质,并由此给出一套哈密顿算符的完整、统…的运算规则。 一、哈密顿算符的定义 哈密顿算符定义为: 甲=磋+瑶+礓 ∞W∞ 由上图可以看出算符同时具有失罱性和微分性两个根本性质,所以在其运算过程中要同时j主意这两方面的性质。由该定义,场的梯度、教度和旋度可以分别理解为算符V直接作用、点乘和义乘该场。 二、哈密顿算符的运算规则 根姑前商晗密顿算符的定义和性质的分析,哈密顿算符的运算规则为: 步骤1.根据口的微分性写成几项,在V的下标标明算符V作用于哪个函数上。 步骤2.将甲看成….个矢量,利用失?90?量和标量的性质重新排列,使得甲叫纠。【即舻+∥l纠(41)墨繁慕嚣翌霈善v㈤:嗽7+四回㈣面。排列时注意汛注意各符号7够』2V掣;歹+掣Vjq纠荽嚣差耋篁嚣兰嚣置。和,。㈤书曲。刊v。刁㈤X的位置;b.注意正负号。…惮,一t’…,“,1…~’“o,…叫:≤凳耋耋耋0等萝二墓v西司:i婶x7卜7p函")三个运算步骤充分体现了哈密…叫。、 叫。㈩’’ 篓苎篓竺翌0警烹性质?以下举F×西裔:善形.(V疆+p裔再旷v蓐(45)例示范这三个步骤: …“”’…、……。。 步骤1.类似于做微分运算。例如: V啦曲=口,缸¨+已∞∽(21) v∞却,㈤+v㈤(2.2) vx∞=F,x∞+L×∞o.3) V晒=V,嘲+v,黼儡4) 9xB西=Dx|7硝+V。×∞西让5) 步骤2.常用的矢量性质有: 于将看成个矢量,然后还需注意正在 处理的是矢量和标量的点乘(标秘)和叉 乘(矢积)等逛算。它是有别于数乘的。掌 握了.匕述哈密顿算符的运葬规则,对物 理学中场的问题的处理就能够得心应手 了。 于喜=g,,/xg=一gx, 7Ex茅)=;F×动=≯F×动,A管×习:矿疆一萨蕊例如:V,扣囝十V,(£f计=妒∥≯+“0∽o1) 甲,翰+o㈤=帆∞丸妒,回(32) ox㈤+巧x∞=盹办丸毋,×另 0x够j+巧x㈣=R咖,十心,×力(3筇 LVx鲫+可lp×g)=gP,x,J一,甲lx酣(34)÷÷_—}{,■~●—*÷,.h●__ V,x扩。g)+Vjx矿。gj=培,V,弦一p,j,)g+审,g驴一VV,量(35) 步骤3壤简单,抹玉的下标即可-所参考文献 以,由(2.1)~(2.5)和(3.1)一(3.5)得【1]郭硕鸿.电动力学【M】.北京:高总结;由以L哈密顿V算符的运算等教育出版社.1997 规则的三个步骤可以看出,第二二步垠容【2]蘩圣善,束耘经典电动力学【M】,崭出错。在做这一步运算时茸先要习惯t海:复旦夫学出版社,1985※  万方数据

简单的论述哈密顿原理

简单的论述哈密顿原理 摘要:证明力积分变量与变分无关的情况下积分运算与变分运算次序的可交换性,从不同角度论述了哈密顿原理的含义。 关键词:哈密顿原理,拉格朗日函数,变分,拉格朗日方程 1.引言 哈密顿原理是分析力学中几个重要原理之一,但它不是一个独立原理,它可已从其他原理推导出来,因而可以从不同角度说明它的物理含义。一般理论力学教材都是在拉格朗日方程两边同时乘以虚位移求所有自由度下的虚功之和,然后再求从位形1即(到位形2,即(之间或时间至 之间的作用量得出,最后变换成,并没有说明最后一步为 什么要那样做,也没有说明那样做的意义。本文先证明当积分变量与变分无关的条件下积分运算与变分运算次序的可交换性,然后再从不同角度论述哈密顿原理的意义。 2.理论 2.1变分运算与积分运算次序的可交换性 假定变量由一个或一组函数的选取而确定,则变量称 为函数的泛函,记作[]。泛函由n个函数的形式确定,是函数的“函数”。泛函与函数的概念略有不同,函数中的变量是可以变化的数值,而对于泛函处于自变量地位的是形式可以变化的函数。下面举例说明,如图1中有,两个固定点,连接两个固定点之间的曲线的长度由下式确定,即

显然,依赖于函数的选取,若函数的形式发生变化,则曲线的形状随 之变化,曲线的长度也随之变化。长度就是的 泛函。 下面证明变分运算与积分运算顺序的可交 换性,该泛函只依赖一个函数,即 自变量为的函数表示为。函数的变分是函数的微变量,它与函数的微分有本质有本质的不同,函数的微分,粗略的讲,它是由自变量的变化引起的。而函数的变分不是因为自变量的变化,它是来自函数形式的变化引起,这种由于函数形式变化造成的函数的变化称为函数的变分,记作。与函数临近但形 式与不同的函数有许多。 假设这些函数可以表示为如下的形式: 其中是非常小的参数,是任意给定的可微函数,因时,函 数形式的变化决定于上式的第二项。因此函数的变分写成 引入(2)式的记法(1)可记为 被积函数的形式是已知的,积分的上下限是固定的。当函数 的形式上发生变化时,泛函就会发生变化,这种由于函数形式的变化引起泛函的变化就为泛函的变分,记作。现将被积函数

经典力学的哈密顿理论.

第八章 经典力学的哈密顿理论 教学目的和基本要求:理解正则共轭坐标的物理意义并掌握如何用正则坐标表示体系哈密顿函数;能熟练应用正则方程求解简单的力学问题的;了解变分问题的欧拉方程;掌握用变分法表示的哈密顿原理并能正确理解哈密顿原理的物理含义;初步掌握正则变换、泊松括号的物理意义和使用方法。 教学重点:在正确理解正则共轭坐标的物理意义的基础上能熟练应用正则方程求解简单的力学问题。 教学难点:正则共轭坐标的意义和哈密顿原理的物理含义。 §8.1 正则共轭坐标 坐标的概念是随着物理学的发展而发展,我们在本节将要讨论一种全新的坐标——正则共轭坐标。 一:坐标的发展历史. 1.笛卡儿直角坐标。为了研究物体在三维空间的位置、速度和加速度而引入的坐标。其用 z y x ,,三个变量来描述物体在空间任一点的位置,坐标轴的方向不随物体的运动而改变, 用k j i ,,来表示三个坐标轴方向的单位矢量。 2.极坐标、柱坐标和球坐标。用两个或三个变量来反映物体在平面或空间的位置。在处理转动问题和中心势场的力学问题时比直角坐标更优越。其代表坐标轴方向的单位矢量为变 矢量,利用这些矢量可以很方便地表达上述力学问题的a v ,等物理量。从直角坐标到极坐 标、柱坐标和球坐标等曲线坐标是坐标历史上的第一次飞跃。 另外曲线坐标还包括自然坐标,利用它处理运动规律已知的物体的力学问题更为方便。 3.广义坐标。反映力学体系在空间位形的独立变量被称为广义坐标。它是拉格朗日方程建立的基础和优越性所在,也是分析力学的基础。广义坐标不仅拓宽了坐标的概念,而且由它所列出的动力学方程不含非独立变量,使方程的求解过程得到了简化。另外我们在研究体系的微振动时引入了简正坐标,使微振动方程的求解过程非常简单,这是坐标概念的第二次飞跃。 下面我们将介绍的正则共轭坐标是坐标概念的第三次飞跃。

哈密顿系统中混沌的几何判据

哈密顿系统中混沌的几何判据 【摘要】:用几何方法研究哈密顿系统的混沌是近二十年来出现的新领域。本论文研究了几类典型的哈密顿系统,并给出了一系列哈密顿系统混沌的几何判据,揭示了哈密顿系统内在的几何性质与其混沌行为的本质联系。第二章我们推广了L.Horwitz等人在2007年提出的判断混沌的几何方法,使得该方法不仅适用于标准哈密顿系统,还适用于势能与动量弱耦合的情况。提出了平均不稳定比(MUR)的概念,并对Dicke模型的经典系统做了计算。推广的方法MUR不仅和Poincare 截面方法的结果吻合得很好,而且在数值稳定性上优于人们熟知的最大李雅普诺夫指数方法。第三章主要研究了二维哈密顿系统势能面、等势线与混沌之间的关系。我们发现势能面的凹陷区域是稳定区域,凸起区域和既不凸也不凹的区域都是不稳定的。另外还证明了如果系统的等势线有凹向平衡点的部分,系统将是不稳定的。以此为依据我们提出了判断二维哈密顿系统混沌的平均凸指标(MCI)和凹比率(CR)。我们对典型的混沌模型进行数值计算后,发现MCI、CR和Poincare截面、L.Horwitz等人的新几何方法的数值结果完全一致。MCI和CR直观简洁,为混沌的几何研究方法提供了新观点和新内容。第四章研究了Dicke模型中混沌与几何相位之间的联系。当光场和原子的耦合强度增大至临界点时,Dicke系统的能级间距概率分布从泊松分布变为Wigner分布,而Wigner分布被视为量子混沌的标志,这说明Dicke量子系统在临界点开始出现量子混沌;与Dicke量子系统对

应的经典系统在临界点也从规则运动变为混沌运动。在临界点处Dicke量子系统基态的几何相位即Berry相位也发生了剧烈的变化。我们引入了几何相位阶数的概念,Dicke系统几何相位的阶数在临界点从有限值跃变为∞。我们把Dicke量子系统基态几何相位阶数的跃变作为量子混沌出现的标志。【关键词】:哈密顿系统混沌量子混沌几何方法几何相位 【学位授予单位】:山西大学 【学位级别】:博士 【学位授予年份】:2011 【分类号】:O415.5 【目录】:中文摘要8-10ABSTRACT10-12第一章绪论12-341.1混沌研究简史12-141.2混沌的基本特征14-171.3哈密顿系统中的混沌17-241.3.1哈密顿力学17-201.3.2KAM定理20-241.4混沌研究的常用方法24-31参考文献31-34第二章混沌研究的几何方法34-502.1混沌研究的几何方法34-372.2混沌的新几何判断方法37-422.3推广的新几何判断方法42-462.4小结46-47参考文献47-50第三章二维哈密顿系统中的势能面、等势线与混沌50-683.1二维哈密顿系统的不稳定判据50-523.2二维哈密顿系统中的势能面与混沌52-573.3二维哈密顿系统中的等势线与混沌57-653.4小结65-66参考文献66-68第四章混

哈密顿原理

哈密顿原理 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

牛顿质点动力学 1 牛顿第二定律 dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。 哈密顿原理、保守力及其势 4 五大类典型模型 概括: 一个原理:哈密顿原理(稳定性与对称性原理); 二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时); 四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性

1.拉格朗日函数和哈密顿量 拉格朗日函数L 对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q q L i i 来描述,其中i q 是广义坐标,=i q dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x = , θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义 坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差; U T L -= 哈密顿量H 物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和 ),,(t p q H i i =U T +(i=1,2…s ) 其中 )(/i i q L p ??=是广义动量,哈密顿量是广义坐标和广义动量的函数,在直角坐标下对于质点运动的广义动量可写成v p m =。作用量I 定义为 ?=2 1 t t Ldt I 其中,积分上下限是质点初末态I q 、F q 对应的时间。 2.哈密顿原理及轨道稳定性

量子力学 第二章 算符理论

第二章(一维)算符理论 本章提要:本章从线性变换和微分算子出发,建立算符理论统一它们来处理「观测行为」,引入观测公设。接着,从观测值=本征值为实数的要求出发,找到了符合条件的厄米矩阵来描述力学量,引入算符公设。之后介绍了运算法则、基本的位置和动量算符、复合算符的对易子、哈密顿算符等。最后,作为对上述内容的综合应用,讨论了不确定性原理。 1.算符:每一个可观测量,在态空间中被抽象成算符。在态空间中,观测行为被抽象为,某可测量对应的算符「作用」在态矢量上 ①线性变换:线性代数告诉我们,一个线性变换「作用」到n 维向量上会获得一个新的n 维向量,这等价于一个n 阶方阵「作用」在n 行1列矩阵上得到新的n 行1列矩阵,用数学语言可表示为()Ta b T =?=αβ 。总之,方阵与线性变换一一对应。由于方阵性质比矩阵更丰富,我们将只研究方阵。 ②微分算子:在微积分中2222,,,i i x f x f dx f d dx df ???? 也可简写成f f f D Df 22,,,??。前两种在解 欧拉方程和高阶方程式时常用,后两种则经常出现在矢量分析中。简写法可看作是微分算子「作用」在函数上,我们知道它遵守加法和数乘法则,是一种线性运算 ③本征值和本征矢:在矩阵方程x Ax λ=中,把λ称为矩阵本征值,x 称为矩阵的本征矢 ④本征值和本征函数:在微分方程f f D mix μ=中,把μ称为问题本征值,f 称为本征函数 ⑤线性算符:现在把上述概念统一为线性算符理论。 考虑一个可测量Q ,定义它的对应算符为Q ?,它的本征方程是ψ=ψλQ ?或λψψ=Q ?,把λ称为算符的「本征值」,λ的取值集合称为算符的「谱」, ψ称为算符的「本征态」 (或本征矢),ψ称为算符的「本征函数」 (注意:有时也把ψ记作本征值的对应本征态λ, 如后面将遇到的坐标算符本征态x 、动量算符本征态p ) ⑥第三公设——观测公设:对于量子系统测量某个量Q ,这过程可以抽象为对应的算符Q ?作用于系统粒子的态矢量ψ,测量值只能为算符Q ?的本征值i λ。在这次测量后,假设得到

相关主题
文本预览
相关文档 最新文档