当前位置:文档之家› 汽车倒车雷达的Simulink仿真测试_姚曼

汽车倒车雷达的Simulink仿真测试_姚曼

汽车倒车雷达的Simulink仿真测试_姚曼
汽车倒车雷达的Simulink仿真测试_姚曼

动感仿真汽车驾驶模拟器设备

ZG-DG6型动感汽车驾驶模拟器(六自由度) 一、ZG-DG6型4D动感驾驶模拟器系统组成: ZG-DG6型4D动感驾驶模拟器由模拟驾驶舱、视景模拟驾驶软件、数据采集系统、六自由度运动平台、微型控制器、伺服驱动系统等组成(如下图)。二、ZG-DG6型4D动感驾驶模拟器六自由度运动平台: 六自由度平台系统由Stewart机构的六自由度运动平台、计算机控制系统、驱动系统等组成。下平台安装在地面的固定基座基上,上平台为支撑平台。计算机控制系统通过协调控制电动缸的行程,实现运动平台的六个自由度的运动,实现前后平移、左右平移、上下垂直运动、俯仰、滚转和偏航及复合运动。 三、ZG-DG6型4D动感驾驶模拟器产品特点: 3.1、动感平台结构稳定,设计合理,科技先进,质量有保障,部件耐磨性强,适合于长时间运行; 3.2、4D动感矢量合力智能模拟技术实现,让你在驾驶中随时感受前后左右四个方向实时变化,沉浸于驾车的状态中; 3.3、还原各种路况效果,驾驶者可以体验路面颠簸起伏造成的垂直方向的失重或超重带来的冲击力; 3.4、最新采用二自由度电动缸动感平台设计原理,改善了液压、气动和电动推杆驾驶模拟器的成本高、笨重动态。 四、ZG-DG6型4D动感驾驶模拟器软件: 新版汽车驾驶模拟器软件符合“公安部123号令”考评规则。小车(科目二)场地5项,分别为:倒车入库、坡道定点停车和起步、侧方停车、曲线行驶、直角转弯;大车(科目二)场地16项,分别为:桩考、坡道定点停车和起步、侧方停车、通过单边桥、曲线行驶、直角转弯、通过限宽门、通过连续障碍、起伏路行驶、窄路掉头、模拟高速公路、连续急弯山区路、隧道、雨天、雾天湿滑路、紧急情况处置。新版汽车驾驶模拟器软件道路驾驶技能考试(科目三)内容包括:上车准备(系安全带)、起步、直线行驶、加减挡位操作、变更车道、靠边停车、直行通过路口、路口左转弯、路口右转弯、通过人行横道线、通过学校区域、通过公共汽车站、会车、超车、掉头、夜间行驶等训练考试项目。产品完全符合“中

验证自动驾驶汽车的性能及功能扩展性

验证自动驾驶汽车的性能及功能扩展性 随着自动驾驶量产时间点的临近,各大汽车OEM厂商也在加快相关技术的测试和验证。 在日前举行的奥迪Q8 SUV发布会上,德国奥迪表示将于2021年打造并推出基于Aicon 概念车的首个自动驾驶车队。 近日,奥迪公司宣布与以色列自动驾驶仿真测试初创公司Cognata合作,以加快自动驾驶技术的开发进程。后者的仿真平台可以再现真实世界的城市,提供了一系列测试场景,包括模拟现实条件的交通模型。 Cognata的这款模拟平台利用了人工智能、深度学习、计算机视觉等技术,旨在提供一款方案,验证自动驾驶汽车的性能及功能扩展性。 今年初,Cognata就宣布公司正在投放一款基于云端的自动驾驶车辆验证用模拟引擎,英伟达与微软为其提供了相应的技术。 Cognata在2017年拿到了500万美元的融资,投资方包括Maniv Mobility(主要来自捷豹路虎、法雷奥等汽车OEM及零部件厂商)、空中客车公司的风险基金等。 传统汽车要走向自动驾驶,除了各家技术方案公司的努力,包括但不限于OEM、自动驾驶公司,还需要对实验结果进行不断测验,进行对称调试优化。 路测无疑是最直接的方式,但由于汽车的重量以及速度,在实际场景中测试有重大的安全隐患,尤其是在技术尚未成熟之前。可是没有实际的路测,技术的更新升级似乎难度又很大。 尤其是今年上半年,UBER的自动驾驶车在美国亚利桑那州坦佩市的全球首例由自动驾驶汽车酿成的死亡事故发生之后,对于自动驾驶测试是否应该在技术未成熟之前上路测试引发了业界的反思与讨论。 随后,英伟达宣布推出一套名为“NVIDIA DRIVE Constellation”,使用照片级真实感模拟、基于云的自动驾驶汽车测试系统,是一款基于两种不同服务器的计算平台。

自动驾驶汽车测试的重要性 (是德科技)

白皮 书 《测试对于自动驾驶汽车的 推广至关重要》 随着传统汽车制造商与新参与者纷纷投资研发创新技术,自动驾驶汽车(AV)领域的发展日新月异。尽管自动驾驶汽车有可能提升汽车的安全性和驾驶便利性, 但其复杂的设计要求必须使用测试和验证系统进行严格测试,确保在各种交通、路况和天气条件下的行车安全。当然,自动驾驶汽车将使用基于人工智能(AI)的方法,这将使汽车能够通过电信业务和基础设施提供商进行通信。 自动驾驶汽车技术的基础是互联汽车概念。系统会与汽车进行通信,交流道路和交通状况、附近的汽车以及与驾驶体验有关的其他关键信息。自动驾驶汽车技术将多种传感器、计算机和软件整合在一起,创造出自动驾驶汽车。从统计学上来说,这些汽车在安全行驶里程方面已经超越人工驾驶汽车。在大约 94% 的重大车祸中,常见的、可预见的驾驶员人为错误往往是肇事原因之一,例如超速或注意力分散等。

根据 Waymo(Google 以前的自动驾驶汽车项目)的报告,在以 2 英里时速行驶总共超过500 万英里的过程中,仅发生过一次事故,但没有造成任何人身伤害。即使这样,让消费者树立对全自动驾驶汽车的信任也是一个挑战。例如,根据 2018 年美国汽车协会(AAA)的一项调查1,有 73% 的美国驾驶员表示,他们非常担心驾驶自动驾驶汽车;而 63% 的美国成年人表示他们在步行或骑车时与自动驾驶汽车共享道路会感觉不安全。 安全性及其他优点 基于驾驶员错误所造成的事故数量,安全性是最受关注的问题,而自动驾驶汽车可能带来的最大好处就是安全性的提高。将人为错误排除在驾驶环节之外,可以大大减少交通事故中的人身伤亡。 部署自动驾驶汽车技术还有其他好处。例如,随着人口的老龄化,自动驾驶汽车技术将为老年人和残疾人提供更多的出行自由。此外,它还可能创造新的运输方式和商业模式,例如自动驾驶出租车队和共享自动驾驶汽车公司;这些模式可以提高个人生产率。

三屏汽车驾驶模拟器介绍讲解学习

三屏汽车驾驶模拟器 介绍

ZG-601A3P型主被动式三屏汽车模拟器 一、ZG-601A3P型主被动式三屏汽车模拟器产品概述: 座舱外壳材质:驾驶座舱采用ABS外壳用模具一次铸造成型,无小块拼接,防潮防裂,坚固耐用,永不变型;外观简洁大方、时尚亮丽。五大操作件及仪表台采用真车实件配置,转向机构采用真车方向机总成构建,实车转数方向自动回位;档位外罩采用桑塔纳真车中央通道,具有真车实感。 变速器:采用桑塔纳实车变速箱总成。档位为:倒档、一档、二档、三档、四档、五档和空挡(自动档只含前进档、倒车档和驻车档)。 离合器:离合器采用实车压盘,实现半联动力感,离合器结合、分离、半联动状态感觉明显,分级输出。知名品牌真实汽车配件。 驾驶座舱:驾驶舱是由转向器、油门、离合器、脚刹车、手刹车等操纵机件及座椅等组成。组件必须是真车实物配件。环保,防火外壳。 传感器:信号为模拟量或数字量,输出变化时声音、视像同步变化(音量变化不少于5级),滞后小于50毫秒。有力度变化,力度均适合青少年儿童使用。 转向器:转向器转向范围不小于0-1060度(数字量分级不小于180脉冲/圈),反应灵敏,能够自动回正。油门、刹车信号分级输出,不少于5级,或无级输出。 汽车座椅:专业汽车座椅、美观、耐用。前后可调,适合青少年及儿童使用。 (公司可根据客户要求订做:奥迪、帕萨特、富康、捷达、长安逸动、宝来、北汽勇士、东风猛士、南京依维柯、东风EQ1118/1121/1122/1141、解放CA1121/1122/1141、斯太尔、猎豹、陕汽等车型) 二、ZG-601A3P型主被动式三屏汽车模拟器软件概述: ZG-601A3P型主被动式三屏汽车模拟器软件是我公司在2017年新款软件,全角度视角,画面清楚真实感强,功能强大,外观时尚,配有3台32寸液晶显示器,带有主被动式练习训练功能。整体画面宽大逼真,它突破了原来在行驶十字路口向左拐的视线盲区,在驾驶过程中能清楚看到左右两侧交通状况,训练时更加方便自如,从而清楚的观察车辆与路面的位置关系;并新增加“公安部123号令场地考试项目。” ZG-601A3P型主被动式三屏汽车模拟器完全符合“中华人民共和国公安部 令第123 号令”及教育部新的国家机动车驾驶员训练大纲要求,小型汽车、小型自动挡汽车、残疾人专用小型自动挡载客汽车和低速载货汽车场地5项必考;大型客车、牵引车、城市公交车、中型客车、大型货车场地16项必考,产品具有自主知识产权。

自动驾驶虚拟仿真测试介绍

自动驾驶虚拟仿真测试介绍 自动驾驶虚拟仿真测试介绍(1):是什么 一、引子 二、自动驾驶汽车的仿真测试的不同手段 三、不同仿真测试手段的选择 一、引子 说到仿真测试大家可能会觉得陌生,不过其原理其实已经被广泛采用。 比如李雷想要开车从北京去上海,但是不知道需要多长时间,于是他做了这样的估算: 北京到上海距离s=1200km,开车时速v=120km/h,那么需要的时间为t=s/v=10h;考虑到不是全程高速、中间可能会休息,假设平均时速v’=80km/h会更合理,于是需要的时间为t=s/v’=15h。 通过这个例子,我们可以体会到两点:

仿真即是通过一组公式模仿真实世界,或者说使用一个数学模型简化替代真实世界; 数学模型的复杂度越高,计算结果与真实世界越相近,但是建模难度越高、计算速度越慢。 二、自动驾驶汽车的仿真测试的不同手段 我们首先考虑真实世界的情况,自动驾驶汽车在开放道路进行测试时,可以用下图来表示: 自动驾驶车辆主要由传感器、控制器和执行器构成(当然这主要是指自动驾驶部分,车身、底盘等传统车辆部分暂且不提),驾驶员驾驶车辆在不同的道路、交通和天气环境下接受测试。当然高级别的自动驾驶不需要驾驶员,所以图中用虚线表示。 当在仿真环境中模拟其中的不同部分时,可以得到仿真测试的不同手段。列举如下表所示:

注:后面会有一篇详细介绍不同仿真测试手段的区别,敬请关注。 三、不同仿真测试手段的选择 经常会有人遇到要不要做HIL、要不要买个视频暗箱、要不要买个驾驶模拟器等等疑问,这时如果能先自问自答这样一个问题应该会有所帮助:我们准备测试的被测对象是什么? 如果被测对象仅仅是开发阶段的算法,那只使用MIL/SIL就可以;如果被测对象是要在实车使用的控制器,那可能需要一套HIL设备提前进行测试、提前发现问题。如果不采用视频暗箱、雷达回波模拟器等设备就不能实现测试闭环,那此类传感器信号仿真设备也是需要的。 诸如此类,如果能时刻谨记被测对象是什么和测试目的是什么,应该对选择仿真测试手段有很大帮助。 自动驾驶虚拟仿真测试介绍(2):为什么 一、仿真测试是汽车工程师的自然需求 二、仿真测试是汽车开发流程的必然要求

TCMAX116-01—2018自动驾驶车辆道路测试能力评估内容与方法

ICS 01.110 T00/09 T/CMAX 中关村智通智能交通产业联盟团体标准 2018-02-11 发布2018-02-11 实施 中关村智通智能交通产业联盟发布

T/CMAX 116-01—2018 目次 前言 .................................................................... II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 评估内容 (3) 5 评估操作要求 (6) 6 评估评判 (20) 附录 A (31) 附录 B (63) I

T/CMAX 116-01—2018 II 前言 本标准按照GB/T1.1-2009《标准化工作导则_第1部分》给出的规则起草。 本标准作为《北京市关于加快推进自动驾驶车辆道路测试有关工作的指导意见(试行)》 及《北京市自动驾驶车辆道路测试管理实施细则(试行)》配套落实技术文件。 本标准除编辑性修改外,主要内容变化如下: ——修改了规范性引用文件(见2,见2018.2版2) ——增加了术语和定义自动驾驶系统(见3.3) ——增加了术语和定义相同自动驾驶车辆(见3.9) ——增加了术语和定义背景车辆(见3.10) ——增加了术语和定义评估车辆(见3.11) ——修改了评估内容评估车型(见4.2,见2018.2版4.2) ——修改了评估内容评估内容与评估分级(见4.4,见2018.2版4.4) ——修改了评估内容评估内容与评估车型(见4.5,见2018.2版4.5) ——修改了评估操作要求一般规定的章条编号(见5.1,见2018.2版5.1) ——增加了评估操作要求申请能力评估前提(见5.1.1) ——修改了评估操作要求评估操作要求(见5.1.3,见2018.2版5.1.2) ——修改了评估操作要求评估记录工具(见5.1.4,见2018.2版5.1.3) ——修改了评估操作要求场景布置规定(见5.1.5,见2018.2版5.1.4) ——修改了专项操作要求的章条编号(见5.2,见2018.2版5.2) ——修改了专项操作要求交通标志(见5.2.1,见2018.2版5.2.1) ——修改了专项操作要求紧急情况处置(见5.2.11,见2018.2版5.2.11) ——修改了专项操作要求人工介入后的可操控性(见5.2.12,见2018.2版5.2.12)

智能驾驶测试解决方案

智能驾驶测试解决方案 智能网联汽车集中运用了计算机、现代传感、信息融合、模式识别、通信网络及自动控制等技术,是一个集环境感知、规划决策和多等级自动驾驶控制于一体的技术综合体。 为此在智能网联汽车研发过程中测试和验证面临巨大的挑战。一方面,需要新的测试方法以改进传统路测方法,解决传统测试中需要大量行驶里程所带来的一些问题。另一方面,由于发展初期有限的市场渗透率,测试验证过程还需考虑混合交通环境下其他交通参与者的驾驶行为对自动驾驶汽车功能产生的重大影响。 AA作为Vector、Rohde & Schwarz、IPG、Pi innovo公司、PikeTec、HQRadar 公司的技术合作伙伴,将为中国汽车客户提供智能网联相关测试系统及服务,主要包括L1-L5自动驾驶控制系统的快速原型开发工具、MIL/HIL/VIL测试系统、车联网功能测试系统、FOTA功能测试,毫米波雷达测试及仿真系统等,全面助力智能网联汽车的研发与生产。

概述 随着技术的发展,汽车量产搭载的自动驾驶技术已经由初级的L1/L2辅助驾驶,向L3甚至更高级别演进。高级别的自动驾驶技术依赖更多传感器,那么在环境感知、多传感器融合、决策规划、车辆控制执行、功能安全等方面测试的挑战将日益增大。 AA作为国内一流测试方案服务商,为各主机厂、控制系统/传感器供应商在研发的各阶段提供解决方案。 ●智能驾驶车辆架构设计 AA提供PREEvision架构设计工具,给用户一个完整的协同开发平台,支持从电子电气架构设计到产品系列开发的全过程。 ●智能驾驶快速原型

AA提供OpenECU快速原型开发工具。该工具可在Matlab/Simulink环境进行开发,具有高效的自动代码生成功能,可为自动驾驶控制原型开发提供有效支撑。 ●智能驾驶仿真测试:MIL/SIL/HIL/VIL 美国兰德公司研究表明,自动驾驶需要行驶数亿、甚至数千亿英里验证其可靠性,实车驾驶需要行驶数十年、甚至数百年才能完成可靠性验证。同时美国N-FOT项目研究表明“完成一次公共道路测试的成本至少在100万美元以上”。 基于时间和成本的综合考量,我们可以通过虚拟仿真技术,对道路环境、交通、感知系统、决策规划系统和执行系统进行仿真建模,在实验室环境下实现智能驾驶系统的虚拟仿真测试,加速智能驾驶研发。 智能驾驶仿真测试与传统仿真测试相比,对车辆动力学仿真精度要求更高,更关注车与环境的交互,更重视测试场景的分析和测试场景数据库的建设。 ●智能驾驶MIL/SIL解决方案 MIL/SIL测试主要测试算法模型的功能逻辑。AA基于行业主流的虚拟仿真软件(如IPG公司的CarMaker、TESIS公司的DYNA4等)和PikeTec公司的TPT自动化测试工具,提供完整智能驾驶MIL/SIL解决方案,覆盖AEB、LDW、TSR、HMA、LCDA、LKA、IACC、TJP、TJA、APA等决策规划控制算法MIL测试,同时也能覆盖传感融合

PDF资料:自动驾驶汽车软件单元测试

HEICON Global Engineering GmbH Kreuzweg 22, 88477 Schwendi Internet: www.heicon-ulm.de Blog: http://blog.heicon-ulm.de Software unit testing: Aerospace best practices usable in autonomous vehicles?

HEICON –Global Engineering GmbH HEICON is a specialized engineering company which provides consulting-and development support with a focus on software-based embedded systems. The efficient implementation of methods and processes is the area of our engagement. Founding: 2018 Headquarter:Schwendi near Ulm Membership: Revenue Distribution: 71% 72% 39% 16% 23%20% 28% 36% 35% 6%18% 14% 4% 3%10%11%19% 1%2%8%19%18%2%8%4%5%7%0% 10%20%30%40%50%60%70%80%90%100% 2013 2014 2015 2016 2017 Other Sectors Military Space Railway Industrial Automation Automotive Aerospace

【CN109801534A】基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910124021.7 (22)申请日 2019.02.19 (71)申请人 上海思致汽车工程技术有限公司 地址 201108 上海市闵行区金都路3669号6 幢1层B14室 (72)发明人 邹博  (74)专利代理机构 上海科盛知识产权代理有限 公司 31225 代理人 蔡彭君 (51)Int.Cl. G09B 9/04(2006.01) (54)发明名称 基于自动驾驶模拟器的驾驶行为硬件在环 仿真测试系统 (57)摘要 本发明涉及一种基于自动驾驶模拟器的驾 驶行为硬件在环仿真测试系统,包括仿真模块、 传感器模块、域控制器DCU、摄像头暗箱和驾驶模 拟器,摄像头暗箱包括第二显示器和摄像头,还 包括驾驶模拟器,驾驶模拟器包括第一显示器、 用于驾驶员输入驾驶控制信号的驾驶输入装置 和安装有模拟驾驶程序的计算机,第一显示器和 驾驶输入装置均与计算机连接,仿真模块基于传 感器模块采集的数据生成仿真模型,接收驾驶输 入装置发送的驾驶员输入的驾驶控制信号,更新 仿真模型,并由第二显示器和第一显示器同步显 示,摄像头采集第二显示器显示的内容并发送至 域控制器DCU,由与控制器进行学习。与现有技术 相比, 本发明具有提高自动驾驶稳定性等优点。权利要求书1页 说明书3页 附图2页CN 109801534 A 2019.05.24 C N 109801534 A

权 利 要 求 书1/1页CN 109801534 A 1.一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,包括仿真模块、传感器模块、域控制器DCU和摄像头暗箱,所述摄像头暗箱包括第二显示器和摄像头,所述摄像头与域控制器DCU连接,其特征在于,还包括驾驶模拟器,该驾驶模拟器包括第一显示器、用于驾驶员输入驾驶控制信号的驾驶输入装置和安装有模拟驾驶程序的计算机,所述第二显示器、第一显示器和驾驶输入装置均与计算机连接,所述计算机还与仿真模块连接; 所述仿真模块基于传感器模块采集的数据生成仿真模型,接收驾驶输入装置发送的驾驶员输入的驾驶控制信号,更新仿真模型,并由第二显示器和第一显示器同步显示,所述摄像头采集第一显示器显示的内容并发送至域控制器DCU,由与控制器进行学习。 2.根据权利要求1所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述摄像头暗箱还包括透镜,该透镜设于第二显示器和摄像头之间。 3.根据权利要求1所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述驾驶输入装置为模拟驾驶台。 4.根据权利要求1所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述仿真模块包括HIL硬件和HIL软件, 所述HIL硬件包括电源管理模块、可编程电源、实时仿真系统、负载箱、故障注入单元、断路测试盒,用于实现Simulink等仿真模型的实时运行, 所述HIL软件包括试验管理软件、自动化测试软件、故障注入软件。 5.根据权利要求1所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述传感器模块包括雷达暗箱和超声波暗箱。 6.根据权利要求1所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述域控制器DCU执行以下步骤: 阶段1:基于传感器模块采集的数据和驾驶控制信号训练决策模型; 阶段2:基于传感器模块采集的数据和训练好的决策模型输出驾驶控制信号。 7.根据权利要求6所述的一种基于自动驾驶模拟器的驾驶行为硬件在环仿真测试系统,其特征在于,所述驾驶控制信号包括方向盘、油门踏板、刹车踏板控制信号,所述阶段1具体包括以下步骤: 基于传感器模块采集的数据和驾驶控制信号得到包括跟车距离、加减速度、车辆与车道线的距离参数在内的期望参数,并利用传感器模块采集的数据和期望参数对决策模型进行训练。 2

汽车驾驶模拟训练的应用与展望

现代汽车驾驶模拟训练技术的应用与展望 于小辉 一、模拟训练技术的沿革与现状 二、模拟训练技术实现的可能 三、模拟训练技术的基本构成 四、在组训中的应用 五、未来的发展趋势 附件:《模霸2001版——汽车驾驶智能模拟培训系统》教学课程设置 我国目前汽车驾驶培训学校4000余所(不含军队),教练车10万余辆,年培训量300余万人,行业年收入近80亿元,然而年利润确不足15亿元,利润率在10—20%之间徘徊,原因何在?当然,原因是多方面的,但就行业内部的因素而言,究其根本原因,是培训成本高而培训效率低所至。在培训行业垄断经营的年代里,这个的问题并不突出,但随着市场经济的不断建立和成熟,“合理成本”与“合理价格”的矛盾将会日益突出。因而,大幅度地提高汽车驾驶员培训效益问题已成为当务之急。运用科学的培训手段,采取低成本高效率的培训方法,是获得市场生存可能的必由之路,因此,汽车驾驶模拟训练技术也就应运而生。 所谓模拟培训技术它是现代培训方式的一种,是在设备、场地、材料等环境条件受限制的情况下,通过使用某些廉价的仿真替代品来进行培训,以提高操作者技能的训练过程。汽车驾驶模拟培训技术可以大幅度地提高培训效率和降低培训成本,据资料介绍,前苏联、东欧、北欧、美、日等国培训专家强调:“把汽车模拟驾驶训练和场地驾驶训练结合起来的教学方法,是极

为成功的教学方法,这种方法将来还会继续使用。”由此可见,模拟与实车相结合的训练方法是公认的一种科学的训练方法。 多少年来,为普及和推广模拟培训技术,投入的人力不下万人,投入的财力不下亿元,然而至今为止,在全国范围内,模拟设备的覆盖率仍不足5%,既使已拥有模拟设备的单位,其模拟设备的利用率也不足50%,多少公司加盟进来,又多少公司暗然转行,为什么?笔者想就此谈一点浮浅的认识,请各位专家指正。 一、模拟训练技术的沿革与现状 (一)国际模拟培训理论的发展 模拟培训技术最早起源于1881年美国工程师 F.W.泰勒(Frecerick.W.Taylor)的“时间研究”,其成果对于二十世纪初美国和西欧一些国家为提高劳动生产率而推行的“泰勒制”曾产生过很大影响。正如列宁所指出的,泰勒等学者“按科学来分析人在劳动中的机械动作,制定最精确的工作方法,实行最完善的统计和监督制等等。”显然,他们为技术培训的科学化进行了开创性的研究。但是,研究者们只是着眼于对人的外显的操作动作进行客观分析,较少涉及人的心理因素,实际上是把人与机器等同起来,其结果是,在这种片面的实用主义观点指导下所设计的“合理的动作结构”与劳动者的心理活动产生了巨大的冲突。因此,这种培训也未完全达到提高生产率的目的。 二次世界大战期间,美国进行了军事飞行员的心理选拔和操作能力的训练研究。一些研究者认为,技术培训是通过练习和指导来进行的神经—肌肉的调节活动,研究的主要对象应是生理活动,而不是认识或心理活动。这种把微动作简单相加、被动反应的机械主义培训观点显然妨碍了人的技术能力的提高。不过,从行为的角度客观研究人的操作技能的掌握规律,特别是借助一些教学机器等现代化手段进行培训,在技术教育中也是取得了一定成效

自动驾驶仿真蓝皮书2019修改版_自动驾驶仿真测试标准介绍

第6章自动驾驶仿真测试标准介绍 6.1中国标准现状 6.1.1国家级自动驾驶道路测试标准 2018年4月12日,工业和信息化部、公安部、交通运输部联合发布了《智能网联汽车道路测试管理规范(试行)》。该规范自2018年5月1日起开始施行。这是我国首个针对自动驾驶汽车测试的考核评价标准。 根据规范中的解释,规范中 到的智能网联汽车指的是搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X(人、车、路、云端等)智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能,并最终可实现替代人来操作的新一代汽车,即通常意义上的智能汽车、自动驾驶汽车。这其中包括乘用车、商用车,但不包括低速汽车和摩托车。 表6-1国家级智能网联汽车标准及法律法规

6.1.2省市级自动驾驶道路测试标准 据不完全统计,截至2019年2月21日,全国共有22个省市区出台了智能网 联汽车测试管理规范或实施细则,其中有14个城市发出测试牌照,牌照数量总计100余张。 表6-2各省市自动驾驶汽车道路测试相关政策

6.2欧盟与美国标准现状 6.2.1美国自动驾驶仿真标准现状 (1)Waymo-Carcraft自主仿真平台 Waymo采用自主研发的仿真平台,基于仿真环境的网络训练,封闭道路和实际道路测试补充优化。每一天,数字汽车都要在虚拟世界行驶800万英里。Waymo 进行过结构化的场景设计,转化为模拟场景,目前已经完成了20000个场景转化。 在模拟中,Waymo跳过了对象识别这一步。Waymo不会向系统输入原始数据,让它识别行人,而是直接告诉汽车:这里有一个行人。Waymo会为不同的对象建模,对象按模型移动,Carcraft场景构建师也会编写程序,让它们以精准方式移动,用来测试特殊行为。一旦为场景搭建了基本架构,就可以测试所有的重要变量。在四向停车点前,你可以让不同的汽车、行人、自行车骑手调节抵达时间、停留时间和移动速度,还可以修改其它变量,进行测试。你只需要确定赋值范围,然后软件就会自动创建所有场景组合并运行。 (2)NVIDIA-DriveConstellation DriveConstellation,是一款软硬件一体的自动驾驶仿真系统,可帮助对自动驾驶技术进行测试。该系统通过云计算能力来模拟无人驾驶汽车在行驶过程中所遇到的突发情况,收集相关数据。该平台由两个不同的云计算解决方案组成,“ConstellationSimulator”服务器使用英伟达的图形处理器(GPU)运行DriveSim软件,该软件可以生成一个真实的虚拟世界,然后可将虚拟世界输入到虚拟汽车的传感器;第二个服务器名为“ConstellationVehicle”,由DriveAGX车载计算机驱动,负责处理模拟的传感器数据。 Constellation可以生成逼真的数据流,创建各种测试环境,模拟暴雨和暴雪等各种天气条件,以及不同的路面和地形。此外,它还可以模拟白天不同时间的眩目强光以及晚上有限的视野。由于该系统是分散管理的,开发人员能够上传交通场景,整合自己的车辆和传感器模型,并且让整个车队的测试车辆可以行驶“数十亿”英里的模拟里程。

自动驾驶仿真蓝皮书2019版_自动驾驶仿真测试的方法及应用

第2章自动驾驶仿真测试的方法及应用 2.1自动驾驶仿真技术方法 自动驾驶仿真技术,是计算机仿真技术在汽车领域的应用,它比传统ADAS 仿真系统研发更为复杂,对系统在解耦和架构上的要求非常高。类似其它通用仿真平台,它必须尽可能的真实,而对仿真系统进行分析和研究的一个基础性和关键性的问题就是将系统模型化,通过数学建模的方式将真实世界进行数字化还原和泛化,建立正确、可靠、有效的仿真模型是保证仿真结果具有高可信度的关键和前 。 对于自动驾驶仿真系统,需要对哪些模块数学建模以及如何精准建模,一直是近几年研究的热点。需求来源于自动驾驶的工作原理本身,所以我们先简单回顾下自动驾驶汽车控制架构,目前行业内普遍认为,自动驾驶汽车是通过搭载先进的车载传感器、控制器和数据处理器、执行机构等装置,借助车联网、5G和V2X等现代移动通信与网络技术实现交通参与物彼此间信息的互换与共享,从而具备在复杂行驶环境下的传感感知、决策规划、控制执行等功能。驾驶系统基于环境感知技术对车辆周围环境进行感知,并根据感知所获得的信息,通过车载中心电脑自主地控制车辆的转向和速度,使车辆能够安全可靠地行驶,并达到预定目的地。 图2-1自动驾驶汽车控制架构

自动驾驶的关键技术是环境感知技术和车辆控制技术,如图2-1所示。其中环境感知技术是无人驾驶汽车行驶的基础,车辆控制技术是无人驾驶汽车行驶的核心,包括决策规划和控制执行两个环节,这两项技术相辅相成共同构成自动驾驶汽车的关键技术。自动驾驶的整个流程归结起来有三个部分,首先,是通过雷达、激光雷达、摄像头、车载网联系统等对外界的环境进行感知识别;然后,在融合多方面感知信息的基础上,通过智能算法学习外界场景信息,预测场景中交通参与者的轨迹,规划车辆运行轨迹,实现车辆拟人化控制融入交通流中;第三,跟踪决策规划的轨迹目标,控制车辆的油门、刹车和转向等驾驶动作,调节车辆行驶速度、位置和方向等状态,以保证汽车的安全性、操纵性和稳定性。无论是环境感知技术,还是车辆控制技术,自动驾驶都需要大量的算法支持,而算法研发本来就是个不断迭代的过程,在算法不成熟的条件下,为了配合自动驾驶汽车的功能和性能开发,我们必须遵循从纯模型的仿真,到半实物的仿真,到封闭场地和道路测试,并最终走向开放场地和道路测试这一开发流程。这一流程已经越来越被业内人士所认可。密歇根州立大学的自动驾驶专家彭晖教授曾说过,任何成功的自动驾驶系统都是99%以上的模拟,加上一些精心设计的结构化测试,再加上一些路测。Waymo也很早就创建了Carcraft,据报道,仅仅在一天内,Waymo就可能在路况特别复杂的地方模拟成千上万次驾驶。现在,Waymo汽车每天在虚拟世界中行驶的里程数超过1287万公里。在2016年,他们的虚拟总里程数达到40亿公 里,而在真实公路上行驶的谷歌无人驾驶汽车只行驶了483万公里。 仿真技术的基本原理是在仿真场景内,将真实控制器变成算法,结合传感器仿真等技术,完成对算法的测试和验证。NVIDIA在自动驾驶相关论文中较为详细的解释了一种基于端到端深度学习原理的仿真测试,其主要过程如下: 1.架构:设计深度卷积神经网络(CNN),包括标准化层,卷积层,全连接层,输入为道路影像图片,输出为方向盘控制角度。 2.训练:仿真器根据之前准备好的由前置摄像头拍摄的道路影像,每一帧图片对应的人类司机操控方向盘的旋转角度作为真实参考值,用于校正CNN的输出角度,利用这些数据对CNN进行训练,使输出角度和真实角度的平均平方误差到达最小。 3.数据处理:对于每一帧图片,随机移动、翻转、扭曲、遮挡、改变亮度等,并相应改变方向盘的真实角度,用于模拟汽车的不同位置和环境,以期达到正态分布的仿真情境。

自动驾驶仿真蓝皮书2019修改版_现有的仿真测试软件现状

第4章现有的仿真测试软件现状 4.1典型自动驾驶仿真软件分类与发展变化情况 随着ADAS和自动驾驶的发展,仿真软件也经历了几个发展阶段。早期的仿真软件主要关注点在车辆本身,主要是动力学仿真为主,用来在车辆开发的过程中对整车的动力,稳定性,制动等进行仿真,如CarSim。伴随着各种ADAS功能的开发, 供简单道路环境,可编辑的对手车,行人,和简单完美传感器模型的辅助ADAS开发的仿真软件开始出现,比如Prescan。这时候的仿真软件一般都运行在单机,主要关注功能的验证,并不对场景和传感器的真实程度有太高的要求。随着以Waymo为代表的一系列目标为L4级别自动驾驶的初创公司的成立和取得突破性进展,尤其是以Waymo自建的Carcraft仿真环境在补充实际路测中取得的重要作用日益被大家认识到,出现了一批以使用高精地图,真实数据回放,以至于使用游戏引擎进行高真实感虚拟环境重建的仿真平台,既有各种初创公司的商业化产品,也有大的自动驾驶公司的内建平台,传统的从事动力学仿真和ADAS仿真测试工具链的公司也通过合作,收购,自研的方式构建更加符合未来自动驾驶对大量真实场景,大规模并行案例测试的需要。 现在的自动驾驶仿真系统的构成已经很复杂,各个仿真软件都有各自的优势和研发的重点,搭建一个完整的仿真系统也越来越需要多个软件互相之间的配合。典型的自动驾驶仿真平台要包括: 1)根据真实路网或高精地图搭建或生成大规模虚拟场景的道路环境模块 2)根据实际路侧数据,或者是参数化交通模型生成测试场景的交通模块 3)仿真各种传感器,包括摄像头,激光雷达,毫米波雷达,GPS,超声波雷 达,IMU的模块,既可以 供原始数据,也可以 供真值。 4)车辆动力学模型,可以根据ADAS或者自动驾驶系统的输入,结合路面特性 对车辆本身进行仿真,完成闭环的测试。 5)分布式案例存储和运行平台,可以通过添加硬件的方式大幅 高自动驾驶 测试的里程数。

汽车模拟驾驶模型与仿真的研究

第36卷第3期2002年5月 浙 江 大 学 学 报(工学版) Jo ur nal o f Zhejiang U niv ersity(Eng ineer ing Science) Vol.36No.3May 2002 收稿日期:2001-05-13. 作者简介:蔡忠法(1969-),男,浙江温岭人,讲师,主要从事电子技术和系统仿真的研究.E-m ail:z fcai@m https://www.doczj.com/doc/f112188654.html, 汽车模拟驾驶模型与仿真的研究 蔡忠法,章安元 (浙江大学电气工程学院,浙江杭州310027) 摘 要:在主动型驾驶模拟训练系统中,模拟驾驶舱各个操纵机构存在着多输入、多耦合、非线性的控制作用,而驾驶模拟训练要求驾驶动力学模型适于快速实时仿真.本文使用拟合多项式描述汽车发动机负荷特性,提出结构简化的汽车速度和方向控制模型.对模拟驾驶的仿真结构和学员操作的逻辑判断进行了讨论,通过对操纵机构输入的线性化处理,得到汽车行驶的仿真模型并选择快速仿真算法实现了所建模型.实验结果表明,本文提出的理论模型和仿真算法是正确可行的.关键词:汽车驾驶;模拟器;模型;仿真 中图分类号:T P312 文献标识码:A 文章编号:1008-973X(2002)03-0327-04 Study of automobile emulated driving model and simulation CAI Zhong -fa ,ZHANG A n -yuan (College of Electr ical Eng ineer ing ,Zhej iang U niv er sity ,H angz hou 310027,China ) Abstract :In active automo bile driving training simulato r,the steering framewo rk in the simulated cabin has multi-input,m ulti-co upling and non-linear contro l effect.A driving training sim ulator r equires dynam ic model suitable for fast real -tim e simulation .T his paper uses poly nom ials to express the load characteristics of the automo bile engine ,and presents simplified -str ucture velocity and direction co ntro l models .T he sim ulation structure o f simulated driving and log ic alestimation o f driver oper ation are discussed,and illegal operation of driver and car backing state are judged cor rectly.T hr oug h the linearization process of the steering fr am ew or k input function ,sim ulation models for m ultiple driving cases w ere derived and effectiv e algo rithm w as selected to realize the models.Ex periment results show ed that the presented m odel and simulation alg orithm are corr ect and feasible. Key words :automo bile driving ;simulator ;model ;simulation 汽车驾驶模拟训练系统是通过模拟驾驶舱和计算机实时生成汽车行驶过程中虚拟的视境、音响等驾驶环境,训练正确的驾驶操作.它可取代实车训练中的部分科目和内容,有利于驾驶培训正规化、科学化和规范化,并具有节能、安全、经济、高效等优点,因此,开发适合我国交通国情和道路状况的汽车驾驶模拟训练系统具有重大的社会效益和经济效益.而建立并实现汽车模拟驾驶的动力学模型是研制汽车驾驶模拟训练系统的前提.以往的汽车动力学模型主要是通过汽车部件建模,因而结构复杂,计算时 间长[1] .在基于微机平台的主动型汽车驾驶模拟训练系统中,需建立适合快速实时仿真、结构简化的汽车行驶速度和方向控制模型,以确定汽车行驶的世界坐标位置,控制图形生成系统动态生成虚拟视景.在主动型汽车驾驶模拟训练系统中,图形实时生成系统占据了大部分CPU 时间,因此需要在模型的逼真度与复杂性之间作一折中.为了满足模拟训练的要求,简化模型结构和选择合适的快速仿真算法是实现驾驶实时仿真所必须首先考虑的问题.

自动驾驶仿真蓝皮书2019修改版_虚拟场景数据库

第5章虚拟场景数据库 5.1自动驾驶虚拟场景库 5.1.1自动驾驶虚拟场景库的概念与构建要求 (1)自动驾驶虚拟场景库的概念 自动驾驶虚拟场景库即由满足 种测试需求的一系列自动驾驶测试场景构成的数据库。 其中,单个自动驾驶测试场景包括静态场景与动态场景。静态场景通常包括道路设施(道路、桥梁、隧道等),交通附属设施(标志标牌、公交站点等),周边环境(路灯绿化带、建筑物)等;动态场景通常包括交通管理控制,机动 车,行人与非机动车等。 根据测试需求,选取特定的自动驾驶虚拟场景,构建支持检索、调用等操作的数据库,即自动驾驶虚拟场景库。 (2)自动驾驶虚拟场景库构建要求 单个自动驾驶测试场景构建要求:要求虚拟静态、动态场景可高度还原对应的现实情况,所含关键信息齐全,可支持高精度的传感器仿真;动态场景如支持交通智能体行为及与主车互动,则可进一步 升测试效果。 自动驾驶测试场景库构建要求:根据测试需求,选择的测试场景应能在统计学上覆盖现实交通中部分典型现象,从而在 种程度上替代对应的路测场景;场景库中的场景应分类明确,支持快速检索与调用。 5.1.2自动驾驶虚拟场景库的数据来源与构建方法 (1)自动驾驶虚拟场景库的数据来源 自动驾驶虚拟场景库以虚拟场景为元素,其数据来源即虚拟场景的基础数据,主要包括: 构建静态场景的基础数据,主要包括高精地图,采集的视频、激光点云等多

构建动态场景的基础数据,主要包括交通管控方案(道路限速、信号配时等),视频、雷达、卫星定位等交通传感器信息(从中可解析交通对象的属性信 息与出行轨迹),宏观路况信息(可作为基于仿真模型生成动态场景的输入参数)等,主要来源于交通主管部门的管控方案数据与采集的传感器数据,自动驾驶相关公司的实地采集数据,以及互联网企业统计的路况数据等。 (2)自动驾驶虚拟场景库的构建思路 自动驾驶虚拟场景库的构建方法见3.3章节。 构建场景库需选取对自动驾驶具有挑战性且在现实中有一定概率出现的场景。由于场景的统计学意义难以精确估算,往往很难有力说明场景库与实际路测里程的确切关系。一些自动驾驶相关企业在构建虚拟场景库方面进行了探索,例如: Mcity 出了六步分析思路,主要是利用蒙特卡罗算法,减少日常驾驶中没有发生事故的数据,用发生了危险事故的数据进行取代,实现人类驾驶员与自动驾驶车之间数据高频率交互; 中国汽车技术研究中心将仿真场景划分为自然驾驶场景、危险工况场景、法律规范场景、参数重组场景四类,包括不同自然条件(天气、光线等),不同道路类型(路面状态、车道线类型等),不同交通参与者(车辆、行人位置速度等),不同环境类型(高速、小区、商场、乡村等)在内的多类型虚拟仿真测试用例。 目前,场景选取与场景库构建还处于不断探索的过程,可从以下方面持续开展研究: 1)制定完善自动驾驶测试相关标准,指导测试工作与场景库构建; 2)对典型复杂交通场景进行采集入库,例如主要城市、高速公路的拥堵与事故高发交叉口、路段,真实存在的复杂场景对自动驾驶测试有重要意义; 3)对真实复杂静态场景进行要素分析,泛化生成多类别的静态测试场景; 4)对真实复杂动态场景进行要素与行为分析,在交通宏观参数,驾驶员决策,车辆行为等多层面上进行泛化,生成多类别的动态测试场景; 5)完善虚拟测试场景的标注方法、重要度评价理论,从而实现更好的场景库组织架构,以及针对 种测试需求的场景集快速生成。

汽车驾驶模拟器

汽车驾驶模拟器的研究方法及步骤 一、虚拟现实建模方法 1、几何建模 2、运动建模 (1)物体位置 物体位置包括物体的移动、旋转和缩放。在视景仿真中,不仅需要一个全局性的绝对坐标,每个三维对象都需要建立一个相对坐标。对每个对象都给予一个坐标系统,称之为对象坐标系统,这个坐标系统原点的位置随物体的移动而改变。在虚拟驾驶系统中就是通过控制一个汽车局部坐标系的运动和变化来模拟汽车的运动过程。 (2)碰撞检测 在视景仿真系统中,经常需要检查对象A是否与对象B碰撞。碰撞检测需要计算两个物体的相对位置。许多视景仿真系统在实时计算中都是采用OBB包围盒检测法,运用这种方法可以节省时间,但降低了精确性。 3、物理建模 虚拟对象物理建模包括定义对象的质量、重量、惯性、表面纹理、光滑或粗糙、硬度、形状改变模式(橡皮带或塑料)等,这些特性与几何建模和行为规则结合起来,形成了更真实的虚拟物理模型。 4、行为建模 在虚拟驾驶系统中,行为建模主要包括两个方面,一方面是对驾驶员所操纵的汽车的行为进行约束,建立汽车操纵模型,使其符合汽车自身的运动和驾驶人员的操作步骤;另一方面是对场景中非受控物体的行为进行建模,使其的运动符合自然规律,比如场景中自动运行的汽车、路旁的行人等。 5、模型分割 二、虚拟驾驶系统各模块功能分析和开发方案确定 1、汽车虚拟驾驶系统的构成 汽车虚拟驾驶系统主要由虚拟驾驶操作输入系统、汽车动力学模型、运动仿真模型、实时操纵模型、场景管理管理平台、视景和声音渲染输出以及汽车数据模型库、场景模型库和声音模型库等组成。其中汽车动力学模型、运动仿真模型、实时操纵模型和虚拟驾驶场景管理平台是汽车虚拟驾驶系统的核心子系统。 系统的工作过程如下:在系统初始化时,根据用户的需求从汽车数据模型库中将用于仿真的车辆数据模型调入到动力学模型中,同时选择运行的三维场景,通过模型解析模块把它从场景数据库中调入场景管理平台;在仿真过程中,驾驶人员通过虚拟驾驶操作输入系统进行模拟驾驶操作,人机交互接口将油门、制动、换档和转向等动力学操作信息以及发动机启动、喇叭鸣笛等按钮操作状态送入汽车动力学模型和实时操纵模型中;经过仿真计算后,汽车运动仿真数据被送入运动摄像机模块中控制场景内摄像机的运动,同时汽车的行驶姿态还受到地面因素的影响;然后,场景管理控制模块根据此时摄像机的运动状态,通过视景渲染模块将三维场景在投影屏幕上实时反映出来,模拟视景变化,形成行车体感,并且通过虚拟仪表输出此时的汽车运行参数。另外,为了增强虚拟驾驶的沉浸感,系统还安装有音响系统,

相关主题
文本预览
相关文档 最新文档